A model with multiple disease stages is discussed; its main feature is that it considers a general incidence rate, functions for death and immigration rates in all populations. We show via a suitable Lyapunov function that the unique endemic equilibrium is globally asymptotically stable. We conclude that, in order to obtain the existence and global stability of the equilibrium point of general models, conditions must be imposed on the functions present in the model. In addition, the model has no basic reproduction number due to the constant flow of infected people, which makes its eradication impossible; therefore, there is no equilibrium point free of infection.
Citation: Miller Cerón Gómez, Felipe Alves Rubio, Eduardo Ibarguen Mondragón. Qualitative analysis of generalized multistage epidemic model with immigration[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 15765-15780. doi: 10.3934/mbe.2023702
[1] | Ali Moussaoui, Pierre Auger, Christophe Lett . Optimal number of sites in multi-site fisheries with fish stock dependent migrations. Mathematical Biosciences and Engineering, 2011, 8(3): 769-783. doi: 10.3934/mbe.2011.8.769 |
[2] | Azmy S. Ackleh, H.T. Banks, Keng Deng, Shuhua Hu . Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations. Mathematical Biosciences and Engineering, 2005, 2(2): 289-315. doi: 10.3934/mbe.2005.2.289 |
[3] | Diène Ngom, A. Iggidir, Aboudramane Guiro, Abderrahim Ouahbi . An observer for a nonlinear age-structured model of a harvested fish population. Mathematical Biosciences and Engineering, 2008, 5(2): 337-354. doi: 10.3934/mbe.2008.5.337 |
[4] | Karl Peter Hadeler . Structured populations with diffusion in state space. Mathematical Biosciences and Engineering, 2010, 7(1): 37-49. doi: 10.3934/mbe.2010.7.37 |
[5] | Hua Guo, Yuan Tian, Kaibiao Sun, Xinyu Song . Dynamic analysis of two fishery capture models with a variable search rate and fuzzy biological parameters. Mathematical Biosciences and Engineering, 2023, 20(12): 21049-21074. doi: 10.3934/mbe.2023931 |
[6] | Sophia R.-J. Jang . Discrete host-parasitoid models with Allee effects and age structure in the host. Mathematical Biosciences and Engineering, 2010, 7(1): 67-81. doi: 10.3934/mbe.2010.7.67 |
[7] | Yanfeng Liang, David Greenhalgh . Estimation of the expected number of cases of microcephaly in Brazil as a result of Zika. Mathematical Biosciences and Engineering, 2019, 16(6): 8217-8242. doi: 10.3934/mbe.2019416 |
[8] | Santanu Bhattacharya, Nandadulal Bairagi . Dynamic optimization of fishing tax and tourism fees for sustainable bioeconomic resource management. Mathematical Biosciences and Engineering, 2025, 22(7): 1751-1789. doi: 10.3934/mbe.2025064 |
[9] | Dong Liang, Jianhong Wu, Fan Zhang . Modelling Population Growth with Delayed Nonlocal Reaction in 2-Dimensions. Mathematical Biosciences and Engineering, 2005, 2(1): 111-132. doi: 10.3934/mbe.2005.2.111 |
[10] | Davide De Gaetano . Forecasting volatility using combination across estimation windows: An application to S&P500 stock market index. Mathematical Biosciences and Engineering, 2019, 16(6): 7195-7216. doi: 10.3934/mbe.2019361 |
A model with multiple disease stages is discussed; its main feature is that it considers a general incidence rate, functions for death and immigration rates in all populations. We show via a suitable Lyapunov function that the unique endemic equilibrium is globally asymptotically stable. We conclude that, in order to obtain the existence and global stability of the equilibrium point of general models, conditions must be imposed on the functions present in the model. In addition, the model has no basic reproduction number due to the constant flow of infected people, which makes its eradication impossible; therefore, there is no equilibrium point free of infection.
[1] | D. L. Blazes, S. F. Dowell, The role of disease surveillance in precision public health, in Genomic and Precision Medicine, Elsevier, (2019), 257–265. https://doi.org/10.1016/B978-0-12-801496-7.00015-0 |
[2] |
H. Esmail, C. Barry, D. Young, R. Wilkinson, The ongoing challenge of latent tuberculosis, Philosoph. Transact. Royal Soc. B Biol. Sci., 369 (2014), 20130437. https://doi.org/10.1098/rstb.2013.0437 doi: 10.1098/rstb.2013.0437
![]() |
[3] |
F. Castelli, G. Sulis, Migration and infectious diseases, Clin. Microbiol. Infect., 23 (2017), 283–289. https://doi.org/10.1016/j.cmi.2017.03.012 doi: 10.1016/j.cmi.2017.03.012
![]() |
[4] |
I. Mokrousov, Major impact of massive migration on spread of Mycobacterium tuberculosis strains, Human Migrat. Biocultur. Perspect., 255 (2021). https://doi.org/10.1093/oso/9780190945961.003.0020 doi: 10.1093/oso/9780190945961.003.0020
![]() |
[5] |
M. Eckhardt, J. F. Hultquist, R. M. Kaake, R. Hüttenhain, N. J. Krogan, A systems approach to infectious disease, Nat. Rev. Genet., 21 (2020), 339–354. https://doi.org/10.1038/s41576-020-0212-5 doi: 10.1038/s41576-020-0212-5
![]() |
[6] | D. M. Tobin, Modelling infectious disease to support human health, 2022. https://doi.org/10.1242/dmm.049824 |
[7] |
A. L. Jenner, R. A. Aogo, C. L. Davis, A. M. Smith, M. Craig, Leveraging computational modeling to understand infectious diseases, Current Pathobiol. Rep., 8 (2020), 149–161. https://doi.org/10.1007/s40139-020-00213-x doi: 10.1007/s40139-020-00213-x
![]() |
[8] |
C. C. McCluskey, A model of HIV/AIDS with staged progression and amelioration, Math. Biosci., 181 (2003), 1–16. https://doi.org/10.1016/S0025-5564(02)00149-9 doi: 10.1016/S0025-5564(02)00149-9
![]() |
[9] |
H. Guo, M. Y. Li, Global dynamics of a staged-progression model with amelioration for infectious diseases, J. Biol. Dynam., 2 (2008), 154–168. https://doi.org/10.1080/17513750802120877 doi: 10.1080/17513750802120877
![]() |
[10] |
H. Guo, M. Y. Li, Z. Shuai, Global dynamics of a general class of multistage models for infectious diseases, SIAM J. Appl. Math., 72 (2012), 261–279. https://doi.org/10.1137/110827028 doi: 10.1137/110827028
![]() |
[11] |
Y. Wang, J. Cao, Global stability of general cholera models with nonlinear incidence and removal rates, J. Franklin Institute, 352 (2015), 2464–2485. https://doi.org/10.1016/j.jfranklin.2015.03.030 doi: 10.1016/j.jfranklin.2015.03.030
![]() |
[12] | Y. Wang, S. Zhai, M. Du, P. Zhao, Dynamic behaviour of multi-stage epidemic model with imperfect vaccine, IAENG Int. J. Appl. Math., 52 (2022), 1–9. |
[13] |
M. C. Gómez, E. I. Mondragon, F. A. Rubio, Mathematical model of a SCIR epidemic system with migration and nonlinear incidence function, J. Math. Computer Sci., 31 (2023), 345–352. https://doi.org/10.22436/jmcs.031.04.01 doi: 10.22436/jmcs.031.04.01
![]() |
[14] | S. Henshaw, C. C. McCluskey, Global stability of a vaccination model with immigration, Electr. J. Differ. Equat., 92 (2015), 1–10. |
[15] |
Z. A. Khan, A. L. Alaoui, A. Zeb, M. Tilioua, S. Djilali, Global dynamics of a SEI epidemic model with immigration and generalized nonlinear incidence functional, Results Phys., 27 (2021), 104477. https://doi.org/10.1016/j.rinp.2021.104477 doi: 10.1016/j.rinp.2021.104477
![]() |
[16] |
R. P. Sigdel, C. C. McCluskey, Global stability for an SEI model of infectious disease with immigration, Appl. Math. Comput., 243 (2014), 684–689. https://doi.org/10.1016/j.amc.2014.06.020 doi: 10.1016/j.amc.2014.06.020
![]() |
[17] |
P. J. Witbooi, An SEIR model with infected immigrants and recovered emigrants, Adv. Diffe. Equat., 2021 (2021), 1–15. https://doi.org/10.1186/s13662-020-03162-2 doi: 10.1186/s13662-020-03162-2
![]() |
[18] |
J. Zhang, J. Li, Z. Ma, Global dynamics of an SEIR epidemic model with immigration of different compartments, Acta Math. Sci., 26 (2006), 551–567. https://doi.org/10.1016/S0252-9602(06)60081-7 doi: 10.1016/S0252-9602(06)60081-7
![]() |
[19] |
H. Guo, M. Y. Li, Impacts of migration and immigration on disease transmission dynamics in heterogenous populations, Discrete Continuous Dynam. Syst. B, 17 (2012), 2413–2430. https://doi.org/10.3934/dcdsb.2012.17.2413 doi: 10.3934/dcdsb.2012.17.2413
![]() |
[20] |
V. Capasso, G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43–61. https://doi.org/10.1016/0025-5564(78)90006-8 doi: 10.1016/0025-5564(78)90006-8
![]() |
[21] |
A. Korobeinikov, M. Philip, Non-linear incidence and stability of infectious disease models, Math. Med. Biol. J. IMA, 22 (2005), 113–128. https://doi.org/10.1093/imammb/dqi001 doi: 10.1093/imammb/dqi001
![]() |
[22] | World Health Organization: Health data overview for the Federative Republic of Brazil, 2023. Available from: https://data.who.int/countries/076 |
[23] | National Health Service: Overview HIV and AIDS, 2017. Available from: https://www.nhs.uk/conditions/hiv-and-aids/ |
[24] | National Institutes of Health: The Stages of HIV Infection, 2023. Available from: https://hivinfo.nih.gov/understanding-hiv/fact-sheets/stages-hiv-infection#:~:text=The%5C%20three%5C%20stages%5C%20of%5C%20HIV,one%5C%20stage%5C%20to%5C%20the%5C%20next |
[25] | National Institutes of Health: What Are HIV and AIDS?, 2023. Available from: https://www.hiv.gov/hiv-basics/overview/about-hiv-and-aids/what-are-hiv-and-aids/ |
[26] |
F. Brauer, P. van den Driessche, Models for transmission of disease with immigration of infectives, Math. Biosci., 171 (2001), 143–154. https://doi.org/10.1016/S0025-5564(01)00057-8 doi: 10.1016/S0025-5564(01)00057-8
![]() |
1. | Inna Senina, John Sibert, Patrick Lehodey, Parameter estimation for basin-scale ecosystem-linked population models of large pelagic predators: Application to skipjack tuna, 2008, 78, 00796611, 319, 10.1016/j.pocean.2008.06.003 | |
2. | Daniel R. Goethel, Terrance J. Quinn, Steven X. Cadrin, Incorporating Spatial Structure in Stock Assessment: Movement Modeling in Marine Fish Population Dynamics, 2011, 19, 1064-1262, 119, 10.1080/10641262.2011.557451 | |
3. | Sibylle Dueri, Blaise Faugeras, Olivier Maury, Modelling the skipjack tuna dynamics in the Indian Ocean with APECOSM-E – Part 2: Parameter estimation and sensitivity analysis, 2012, 245, 03043800, 55, 10.1016/j.ecolmodel.2012.02.008 | |
4. | Lisa A. Kerr, Daniel R. Goethel, 2014, 9780123970039, 501, 10.1016/B978-0-12-397003-9.00021-7 | |
5. | Jeerawan Suksamran, Yongwimon Lenbury, Stability analysis and traveling wave solution of a reaction–diffusion model for fish population incorporating time-dependent recruitment intensity, 2019, 2019, 1687-1847, 10.1186/s13662-019-2140-2 | |
6. | Alistair J. Hobday, Jock W. Young, Osamu Abe, Daniel P. Costa, Robert K. Cowen, Karen Evans, Maria A. Gasalla, Rudy Kloser, Olivier Maury, Kevin C. Weng, Climate impacts and oceanic top predators: moving from impacts to adaptation in oceanic systems, 2013, 23, 0960-3166, 537, 10.1007/s11160-013-9311-0 | |
7. | Qiang-Jun Xie, Ze-Rong He, Chun-Guo Zhang, Harvesting Renewable Resources of Population with Size Structure and Diffusion, 2014, 2014, 1085-3375, 1, 10.1155/2014/396420 | |
8. | Inna Senina, Patrick Lehodey, John Sibert, John Hampton, Integrating tagging and fisheries data into a spatial population dynamics model to improve its predictive skills, 2020, 77, 0706-652X, 576, 10.1139/cjfas-2018-0470 | |
9. | Inna N. Senina, Patrick Lehodey, John Hampton, John Sibert, Quantitative modelling of the spatial dynamics of South Pacific and Atlantic albacore tuna populations, 2020, 175, 09670645, 104667, 10.1016/j.dsr2.2019.104667 | |
10. | Blaise Faugeras, Olivier Maury, Modeling fish population movements: From an individual-based representation to an advection–diffusion equation, 2007, 247, 00225193, 837, 10.1016/j.jtbi.2007.04.012 | |
11. | Chontita Rattanakul, Yongwimon Lenbury, Jeerawan Suksamran, Analysis of advection-diffusion-reaction model for fish population movement with impulsive tagging: stability and traveling wave solution, 2019, 2019, 1687-1847, 10.1186/s13662-019-2153-x | |
12. | James T Thorson, Albert J Hermann, Kevin Siwicke, Mark Zimmermann, Sam Subbey, Grand challenge for habitat science: stage-structured responses, nonlocal drivers, and mechanistic associations among habitat variables affecting fishery productivity, 2021, 78, 1054-3139, 1956, 10.1093/icesjms/fsaa236 | |
13. | Nicolas Barrier, Matthieu Lengaigne, Jonathan Rault, Renaud Person, Christian Ethé, Olivier Aumont, Olivier Maury, Mechanisms underlying the epipelagic ecosystem response to ENSO in the equatorial Pacific ocean, 2023, 00796611, 103002, 10.1016/j.pocean.2023.103002 | |
14. | RBC Lundgreen, A Nielsen, M Krüger-Johnsen, D Righton, M Mion, K Radtke, M Plikshs, AJ Leskelä, J Raitaniemi, CA Griffiths, M Casini, U Krumme, K Hüssy, Examining fish movement in terms of advection or diffusion: a case study of northeastern Atlantic cod, 2022, 691, 0171-8630, 115, 10.3354/meps14065 | |
15. | Nicolas Barrier, Olivier Maury, Roland Seferian, Yeray Santana‐Falcón, Alex Tidd, Matthieu Lengaigne, Assessing the Time of Emergence of Marine Ecosystems From Global to Local Scales Using IPSL‐CM6A‐LR/APECOSM Climate‐To‐Fish Ensemble Simulations, 2025, 13, 2328-4277, 10.1029/2024EF004736 | |
16. | Laureline Dalaut, Nicolas Barrier, Matthieu Lengaigne, Jonathan Rault, Alejandro Ariza, Mokrane Belharet, Adrien Brunel, Ralf Schwamborn, Mariana Travassos-Tolotti, Olivier Maury, Which processes structure global pelagic ecosystems and control their trophic functioning? Insights from the mechanistic model APECOSM, 2025, 00796611, 103480, 10.1016/j.pocean.2025.103480 | |
17. | Johannes Krotz, Juan M. Restrepo, Jorge Ramirez, A Dynamic Likelihood Approach to Filtering Transport Processes: Advection-Diffusion Dynamics, 2025, 00219991, 114089, 10.1016/j.jcp.2025.114089 | |
18. | 2025, 1, 10.5194/sp-5-opsr-13-2025 |