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Abstract: A model with multiple disease stages is discussed; its main feature is that it considers a
general incidence rate, functions for death and immigration rates in all populations. We show via a
suitable Lyapunov function that the unique endemic equilibrium is globally asymptotically stable. We
conclude that, in order to obtain the existence and global stability of the equilibrium point of general
models, conditions must be imposed on the functions present in the model. In addition, the model has
no basic reproduction number due to the constant flow of infected people, which makes its eradication
impossible; therefore, there is no equilibrium point free of infection.
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1. Introduction

Mathematical models have revolutionized our understanding of the spread and control of infectious
diseases. By analyzing complex interactions between different factors such as population dynamics,
environmental factors and infectious agents, these models have helped public health officials make in-
formed decisions that have saved countless lives. Diseases that progress through multiple stages also
present unique challenges in epidemiology. Infectious diseases, such as HIV or tuberculosis, have dis-
tinct phases of disease progression, each with its own set of symptoms and transmission characteristics.
For example, in HIV infection, the initial acute phase is followed by a long period of asymptomatic
infection and, finally, the symptomatic phase leading to AIDS. Similarly, tuberculosis progresses from
latent infection to active disease, with varying levels of contagiousness and symptom severity. Accu-
rately identifying the stage of disease progression is critical for the design of appropriate public health
interventions, as different stages require different strategies for control and prevention [1, 2]. Among
all of the factors that affect the spread of a disease, migration and immigration are important aspects
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to consider, especially in diseases where asymptomatic individuals or carriers can transmit it, as their
traceability becomes very challenging since most diseases are identified based on symptomatic presen-
tation. Thus, it is crucial to take migration and immigration processes into account in predictive models,
as they can result in a more accurate prediction of the dynamics [3,4]. By studying the complex dynam-
ics of disease progression in the case of infectious diseases, we can improve our understanding of the
underlying biological processes, develop new interventions and ultimately reduce the burden of these
diseases on global public health [5–7]. Therefore, incorporating migration and immigration processes
into multistage mathematical models is crucial to comprehensively understanding complex population
dynamics. In this paper, we present a mathematical model considering an immigration process that
incorporates multiple infection states, including latent state (E), which are considered as infectious
without showing any symptoms and infectious states (I1, I2, . . . , In), as well as a recovered state (R),
with the aim to study the global stability of the equilibrium points. The incidence rate is given by
f (S )g(E) + f (S )

∑n
i=1 hi(Ii), where the function f (S ) is the contact function and the functions g(E) and

hi(Ii), for i = 1, . . . , n, are the force of infection, while the dead rate for all states of the model are pro-
portional to µ1σ1(S ), µ2σ2(E), µ3σ3(I1), . . . , µn+2σn+2(In) and µn+3σn+3(R), respectively; and the rates
at which each state evolves to an infectious or recovered state are α2σ(E), α3σ3(I1), . . . , αn+1σn+1(In−1),
and αn+2σn+2(In), respectively.

Therefore, the model is given by the following system of differential equations:

dS
dt

= Λ1 − f (S )g(E) − f (S )
n∑

i=1

hi(Ii) − µ1σ1(S ),

dE
dt

= Λ2 + f (S )g(E) + f (S )
n∑

i=1

hi(Ii) − µ2σ2(E),

dI1

dt
= Λ3 + α2σ2(E) − µ3σ3(I1),

dIi

dt
= Λi+2 + αi+1σi+1(Ii−1) − µi+2σi+2(Ii), i = 2, ..., n,

dR
dt

= Λn+3 + αn+2σn+2(In) − µn+3σn+3(R),

(1.1)

where Λ1, Λ2, . . . ,Λn+3 represents the constant flow of new members into each compartment, respec-
tively.

Multistage models with a bilinear or nonlinear incidence rate have been studied; for example, in [8],
a multistage model with amelioration is considered to study the disease progression of HIV/AIDS, as
well as the global stability of the equilibrium points. The incidence rate used is the bilinear rate known
as the pseudo mass action law of the form

∑r
m=1 cβm

Im
N S . A generalization of the previous result is

given in [9], the incidence rate was f (N)
∑n

i=1 λiIiS , where f is a function that depends on the density
of the population. In [10], the global stability of a general multistage model was proved; the term for
the incidence rate was

∑n
j=1 f (N)g j(S , I j), and the death rate functions and the transfer rate functions

were different and permits amelioration or immunity restoration. In [11], an extension of a previously
proposed model is introduced to investigate global stability in a general cholera model. The model
incorporated a nonlinear incidence rate given by the expression

∑n
j=1 D(N) f j(S , I j) +

∑m
j=1 g j(S ,W j),

where S and I j possess commonly established significance and W j denotes the number of pathogens
shed by individuals. In [12], a model with imperfect vaccine and multistage behavior is studied; this
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model is similar to [10]; because the vaccinated people can infect others and they will have an influence
on the dynamics of the disease, the incidence rate used was

∑n
j=1 y(N)h j(S , I j) +

∑m
j=1 y(N)g j(V, I j).

None of the previous multistage models consider immigration terms and nonlinear incidence rates, as
our model does. Models that include immigration and, a nonlinear incidence rate have been studied in
[13–18] but none of them are multistage. The novelty of our model is that it considers general incidence
rates and also takes into account migration processes; besides, it generalizes the work presented in [19].

This paper is organized in the following manner. In Section 2, we impose conditions on the func-
tions included in the model and prove the existence of a single equilibrium point. The global stability
of a unique equilibrium point is proved in Section 3. In Section 4, we present numerical simulations
to illustrate our main result. Finally, in Section 5, we discuss our results and provide some further
extensions of the model.

2. Model analysis

To investigate the model dynamics, some conditions over the functions are required:

I). f , g, hi, σ j are strictly increasing functions in [0,+∞) and f (0) = g(0) = hi(0) = σ j(0) = 0 for
i = 1, . . . , n and j = 1, . . . , n + 3.

II). There are positive constants k1, k2, . . . , kn+3 such that σ1(S ) ≥ k1S , σ2(E) ≥ k2E, σi+2(Ii) ≥ ki+2Ii

for i = 1, . . . , n, σn+3(R) ≥ kn+3R.

III).
g(E)
σ2(E)

and
hi(Ii)
σi+2(Ii)

for i = 1, . . . , n are non-increasing functions in (0,+∞).

The hypotheses I and III are necessary conditions for achieving global stability, and II is a necessary
condition for verifying the existence of an invariant set. Moreover, conditions I and II allow us to
work with positive quantities, i.e., they are biological conditions. Condition III can be interpreted as a
saturation of the force of infection with respect to the increase in infectious individuals, as this quotient
can be a constant, a decreasing function or a combination of these. In fact, lim

I→∞

h(I)
σ(I) = lim

I→∞

h(I)
I

I
σ(I) is

either a constant or zero. It should be noted that, according to condition II, I
σ(I) is bounded, which

implies that h(I) decreases as I increases. The saturation effect in the force of infection was first
discussed in [20].

The feasible set for the model (1.1) is given by

Ω =

(S , E, I) ∈ R3
+ : S (t) + E(t) +

µ2

2α2
I1(t) +

n∑
i=2

 Ii

2i

i+1∏
j=2

µ j

α j

 ≤ Λ

δ

 , (2.1)

where Λ = Λ1 + Λ2 +
µ2

2α2
Λ3 +

∑n
i=2

(
Λi+2

2i

∏i+2
j=2

µ j

α j

)
, δ = min

{
µ1k1,

µ2
2 k2,

µ3
2 k3, . . . ,

µn+1
2 kn+1, µn+2kn+2

}
and

k1, k2, . . . , kn+2, as defined in condition II.

Proposition 1. The set Ω is positively invariant with respect to system (1.1).

Proof. Let Θ(t) be the function defined by

Θ(t) =S (t) + E(t) +
µ2

2α2
I1(t) +

µ2µ3

22α2α3
I2(t) + · · · +

µ2µ3 · · · µn+1

2nα2α3 · · ·αn+1
In(t)
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=S (t) + E(t) +
µ2

2α2
I1(t) +

n∑
i=2

 Ii(t)
2i

i+1∏
j=2

µ j

α j

 ,
where S , E, I1, . . . , In are the solution of model (1.1), and let (S (0), E(0), I1(0), . . . , In(0)) ∈ Ω be the
initial condition of the system (1.1). Taking the derivative of Θ with respect to t, we have

dΘ

dt
= Λ − µ1σ1(S ) −

µ2

2
σ2(E) −

µ2

22α2
µ3σ3(I1) − · · ·

−
µ2µ3 · · · µn

2nα2α3 · · ·αn
µn+1σn+1(In−1) −

µ2µ3 · · · µn+1

2nα2α3 · · ·αn+1
µn+2σn+2(In).

By the condition II, we have that −µ1σ1(S ) ≤ −µ1k1S , −
µ2
2 σ2(E) ≤ −

µ2
2 k2E,

. . . ,−
µ2µ3 · · · µn+1

2nα2α3 · · ·αn+1
µn+2σn+2(In) ≤ −

µ2µ3 · · · µn+1

2nα2α3 · · ·αn+1
µn+2kn+2In, which implies that

dΘ

dt
≤ Λ − µ1k1S −

µ2

2
k2E −

µ2

22α2
µ3k3I1 − · · ·

−
µ2µ3 · · · µn

2nα2α3 · · ·αn
µn+1kn+1In−1 −

µ2µ3 · · · µn+1

2nα2α3 · · · × αn+1
µn+2kn+2In.

By taking δ of the form δ = min
{
µ1k1,

µ2
2 k2,

µ3
2 k3, . . . ,

µn+1
2 kn+1, µn+2kn+2

}
, we obtain

dΘ

dt
≤ Λ − δ

S (t) + E(t) +
µ2

2α2
I1(t) +

n∑
i=2

 Ii

2i

i+1∏
j=2

µ j

α j


 = Λ − δΘ.

It follows that dΘ
dt ≤ 0 if Θ ≥ Λ

δ
. Besides, we have

Θ ≤
Λ

δ
+

(
Θ(0) −

Λ

δ

)
e−δt for all t ≥ 0.

In particular, Θ ≤ Λ
δ

if Θ(0) ≤ Λ
δ
. Therefore, the set Ω is positively invariant. In addition, if Θ(0) >

Λ
δ
, then either the solutions enters into the set Ω infinite times or Θ(t) approaches Λ

δ
asymptotically.

Hence, the set Ω attracts all solutions in Rn+2
+ .

�

Proposition 2. There exists an endemic equilibrium (S ∗, E∗, I∗1, I
∗
2, . . . , I

∗
n) of the system (1.1).

Proof. To obtain the equilibrium points of the model (1.1), we need to solve the following system of
equations:

Λ1 − f (S )g(E) − f (S )
n∑

i=1

hi(Ii) − µ1σ1(S ) = 0, (2.2)

Λ2 + f (S )g(E) + f (S )
n∑

i=1

hi(Ii) − µ2σ2(E) = 0, (2.3)
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Λ3 + α2σ2(E) − µ3σ3(I1) = 0, (2.4)
Λi+2 + αi+1σi+1(Ii−1) − µi+2σi+2(Ii) = 0, i = 2, ..., n. (2.5)

From the equations (2.2) and (2.3), we have

f (S )g(E) + f (S )
n∑

i=1

hi(Ii) = Λ1 − µ1σ1(S ) = µ2σ2(E) − Λ2;

in this way,

σ2(E) =
Λ1 + Λ2 − µ1σ1(S )

µ2
, (2.6)

and from the equation (2.4), we obtain

σ3(I1) =
Λ3

µ3
+
α2

µ3
σ2(E) =

Λ3

µ3
+
α2

µ3

[
Λ1 + Λ2 − µ1σ1(S )

µ2

]
. (2.7)

Continuing in this way with the equation (2.5), for i = 2, . . . , n, we get

σi+2(Ii) =
Λi+2

µi+2
+

i+1∑
k=3

Λk

µk

i+1∏
j=k

α j

µ j+1

 +

i+1∏
j=2

α j

µ j+1

[
Λ1 + Λ2 − µ1σ1(S )

µ2

]
. (2.8)

Since σ1, σ2, . . . , σn+2 are strictly increasing functions, we can solve the equations (2.6)-(2.8) in the
form E = φ0(S ), I1 = φ1(S ), . . . , In = φn+2(S ). Now, let ϕ be the function defined by

ϕ(S ) = Λ1 − f (S )g(E) − f (S )
n∑

i=1

hi(Ii) − µ1σ1(S ), (2.9)

which depends just on S . If we solve the equation ϕ(S ) = 0 for some S ∗, we get that E∗ = φ0(S ∗), I∗1 =

φ1(S ∗), . . . , In = φn+2(S ∗), and in this way, we obtain the equilibrium point.
We notice that, in the equation (2.6), when

σ1(S ) =
Λ1 + Λ2

µ1
,

we have that σ2(E) = 0. Now remembering that σ1(0) = 0 and σ1 is a strictly increasing function, there
exists S̄ such that σ1(S̄ ) = (Λ1 + Λ2)/µ1, and, for the same reason, we have that σ2(E) = 0 ⇔ E = 0
when S = S̄ . Similarly, from equation (2.7), there exists Ī1 such that σ3(Ī1) = Λ3/µ3 when S = S̄ ,
and from equations (2.8), there exists Īi such that σi+2(Īi) = Λi+2

µi+2
+

∑i+1
k=3

(
Λk
µk

∏i+1
j=k

α j

µ j+1

)
when S = S̄ .

Therefore, we want to find a root of equation (2.9) in the interval (0, S̄ ). To do this, observe that
ϕ(0) = Λ1 > 0 and

ϕ(S̄ ) = Λ1 − Λ1 − Λ2 − f (S̄ )
n∑

i=1

hi(Īi)

= −Λ2 − f (S̄ )
n∑

i=1

hi(Īi) < 0.

This means that, for the continuity of ϕ, there exists S ∗ ∈ (0, S̄ ) such that ϕ(S ∗) = 0. In conclusion, we
show that there is a single equilibrium point (S ∗, E∗, I∗1, I

∗
2, . . . , I

∗
n). �
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3. Global stability

In this section, we prove the stability of the unique equilibrium point by using a Lyapunov function.
First, we prove a proposition that will guarantee that the Lyapunov function is positive and only zero
at the endemic equilibrium point.

Proposition 3. If φ is a continuous increasing function in (0,∞), the function

Ψ (x) = x − x∗ − φ(x∗)
∫ x

x∗

dτ
φ(τ)

is positive for x > 0 and Ψ (x) = 0 just for x = x∗.

Proof. First, we start showing that, in x∗ > 0, the function Ψ has a minimum. In fact, Ψ ′(x) = 1− φ(x∗)
φ(x) ;

since φ is an increasing function, we have that Ψ ′(x) is negative if x < x∗ and positive if x > x∗. Thus,
Ψ attains its minimum value at x∗. Finally, we can see that Ψ (x∗) = 0; thus, Ψ (x) > 0 for x > 0
(x , x∗). �

For the proof of the next theorem, we omit the equation for recovery state R because it does not
appear in the other equations.

Theorem 4. The equilibrium point (S ∗, E∗, I∗1, I
∗
2, . . . , I

∗
n) is globally asymptotically stable.

Proof. Let L be the Lyapunov function defined by

L =

(
S − S ∗ − f (S ∗)

∫ S

S ∗

dτ
f (τ)

)
+

(
E − E∗ − σ2(E∗)

∫ E

E∗

dτ
σ2(τ)

)
+

n∑
i=1

ai

Ii − I∗i − σi+2(I∗i )
∫ Ii

I∗i

dτ
σi+2(τ)

 ,
where a1 =

f (S ∗)
∑n

i=1 hi(I∗i )
α2σ2(E∗) , ai =

f (S ∗)
∑n

j=i h j(I∗j )

αi+1σi+1(I∗i−1) . By Proposition 3, we have that L > 0 and L = 0 just in
(S ∗, E∗, I∗1, I

∗
2, . . . , I

∗
n). This Lyapunov function was first proposed in [21]. The orbital derivative of L is

L̇ =

(
1 −

f (S ∗)
f (S )

) Λ1 − f (S )g(E) − f (S )
n∑

i=1

hi(Ii) − µ1σ1(S )


+

(
1 −

σ2(E∗)
σ2(E)

) Λ2 + f (S )g(E) + f (S )
n∑

i=1

hi(Ii) − µ2σ2(E)


+ a1

(
1 −

σ3(I∗1)
σ3(I1)

)
(Λ3 + α2σ2(E) − µ3σ3(I1))

+

n∑
i=2

ai

(
1 −

σi+2(I∗i )
σi+2(Ii)

)
(Λi+2 + αi+1σi+1(Ii−1) − µi+2σi+2(Ii)) .

From the equilibrium equations, we have
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Λ1 = f (S ∗)g(E∗) + f (S ∗)
n∑

i=1

hi(I∗i ) + µ1σ1(S ∗),

µ2 =
Λ2 + f (S ∗)g(E∗) + f (S ∗)

∑n
i=1 hi(I∗i )

σ2(E∗)
,

µ3 =
Λ3 + α2σ2(E∗)

σ3(I∗1)
,

µi+2 =
Λi+2 + αi+1σi+1(I∗i−1)

σi+2(I∗i )
, i = 2, 3, . . . , n.

Puting these equations in the orbital derivative, we obtain

L̇ =

(
1 −

f (S ∗)
f (S )

)  f (S ∗)g(E∗) + f (S ∗)
n∑

i=1

hi(I∗i ) + µ1σ1(S ∗)

− f (S )g(E) − f (S )
n∑

i=1

hi(Ii) − µ1σ1(S )


+

(
1 −

σ2(E∗)
σ2(E)

) Λ2 + f (S )g(E) + f (S )
n∑

i=1

hi(Ii)

−

Λ2 + f (S ∗)g(E∗) + f (S ∗)
n∑

i=1

hi(I∗i )

 σ2(E)
σ2(E∗)


+ a1

(
1 −

σ3(I∗1)
σ3(I1)

) [
Λ3 + α2σ2(E) − (Λ3 + α2σ2(E∗))

σ3(I1)
σ3(I∗1)

]
+

n∑
i=2

ai

(
1 −

σi+2(I∗i )
σi+2(Ii)

) [
Λi+2 + αi+1σi+1(Ii−1) −

(
Λi+2 + αi+1σi+1(I∗i−1)

) σi+2(Ii)
σi+2(I∗i )

]
;

rearranging and grouping terms, we have that

L̇ =µ1σ1(S ∗)
(
1 −

f (S ∗)
f (S )

) (
1 −

σ1(S )
σ1(S ∗)

)
+ f (S ∗)g(E∗)

(
1 −

f (S ∗)
f (S )

) (
1 −

f (S )
f (S ∗)

g(E)
g(E∗)

)
+ f (S ∗)

n∑
i=1

hi(I∗i )
(
1 −

f (S ∗)
f (S )

) (
1 −

f (S )
f (S ∗)

hi(Ii)
hi(I∗i )

)
+ Λ2

(
1 −

σ2(E∗)
σ2(E)

) (
1 −

σ2(E)
σ2(E∗)

)
+ f (S ∗)g(E∗)

(
1 −

σ2(E∗)
σ2(E)

) (
f (S )
f (S ∗)

g(E)
g(E∗)

−
σ2(E)
σ2(E∗)

)
+ f (S ∗)

n∑
i=1

hi(I∗i )
(
1 −

σ2(E∗)
σ2(E)

) (
f (S )
f (S ∗)

hi(Ii)
hi(I∗i )

−
σ2(E)
σ2(E∗)

)
+ a1Λ3

(
1 −

σ3(I∗1)
σ3(I1)

) (
1 −

σ3(I1)
σ3(I∗1)

)
+ a1α2σ2(E∗)

(
1 −

σ3(I∗1)
σ3(I1)

) (
σ2(E)
σ2(E∗)

−
σ3(I1)
σ3(I∗1)

)
Mathematical Biosciences and Engineering Volume 20, Issue 9, 15765–15780.



15772

+

n∑
i=2

aiΛi+2

(
1 −

σi+2(I∗i )
σi+2(Ii)

) (
1 −

σi+2(Ii)
σi+2(I∗i )

)
+

n∑
i=2

aiαi+1σi+1(I∗i−1)
(
1 −

σi+2(I∗i )
σi+2(Ii)

) (
σi+1(Ii−1)
σi+1(I∗i−1)

−
σi+2(Ii)
σi+2(I∗i )

)
,

L̇ =µ1σ1(S ∗)
(
1 −

f (S ∗)
f (S )

) (
1 −

σ1(S )
σ1(S ∗)

)
+ Λ2

(
1 −

σ2(E∗)
σ2(E)

) (
1 −

σ2(E)
σ2(E∗)

)
+ a1Λ3

(
1 −

σ3(I∗1)
σ3(I1)

) (
1 −

σ3(I1)
σ3(I∗1)

)
+

n∑
i=2

aiΛi+2

(
1 −

σi+2(I∗i )
σi+2(Ii)

) (
1 −

σi+2(Ii)
σi+2(I∗i )

)
+ f (S ∗)g(E∗)

(
1 −

f (S ∗)
f (S )

−
f (S )g(E)

f (S ∗)g(E∗)
+

g(E)
g(E∗)

)
+ f (S ∗)

n∑
i=1

hi(I∗i )
(
1 −

f (S ∗)
f (S )

−
f (S )hi(Ii)

f (S ∗)hi(I∗i )
+

hi(Ii)
hi(I∗i )

)
+ f (S ∗)g(E∗)

(
f (S )g(E)

f (S ∗)g(E∗)
−

f (S )g(E)
f (S ∗)g(E∗)

σ2(E∗)
σ2(E)

−
σ2(E)
σ2(E∗)

+ 1
)

+ f (S ∗)
n∑

i=1

hi(I∗i )
(

f (S )hi(Ii)
f (S ∗)hi(I∗i )

−
f (S )hi(Ii)

f (S ∗)hi(I∗i )
σ2(E∗)
σ2(E)

−
σ2(E)
σ2(E∗)

+ 1
)

+ a1α2σ2(E∗)
(
σ2(E)
σ2(E∗)

−
σ2(E)
σ2(E∗)

σ3(I∗1)
σ3(I1)

−
σ3(I1)
σ3(I∗1)

+ 1
)

+

n∑
i=2

aiαi+1σi+1(I∗i−1)
(
σi+1(Ii−1)
σi+1(I∗i−1)

−
σi+2(Ii)
σi+2(I∗i )

−
σi+1(Ii−1)
σi+1(I∗i−1)

σi+2(I∗i )
σi+2(Ii)

+ 1
)
.

Adding the terms that have in common f (S ∗)g(E∗) and those that have f (S ∗)
∑n

i=1 hi(I∗i ), we get

L̇ =µ1σ1(S ∗)
(
1 −

f (S ∗)
f (S )

) (
1 −

σ1(S )
σ1(S ∗)

)
+ Λ2

(
1 −

σ2(E∗)
σ2(E)

) (
1 −

σ2(E)
σ2(E∗)

)
+ a1Λ3

(
1 −

σ3(I∗1)
σ3(I1)

) (
1 −

σ3(I1)
σ3(I∗1)

)
+

n∑
i=2

aiΛi+2

(
1 −

σi+2(I∗i )
σi+2(Ii)

) (
1 −

σi+2(Ii)
σi+2(I∗i )

)
+ f (S ∗)g(E∗)

(
2 −

f (S ∗)
f (S )

−
f (S )g(E)

f (S ∗)g(E∗)
σ2(E∗)
σ2(E)

−
σ2(E)
σ2(E∗)

+
g(E)
g(E∗)

)
+ f (S ∗)

n∑
i=1

hi(I∗i )
(
2 −

f (S ∗)
f (S )

−
f (S )hi(Ii)

f (S ∗)hi(I∗i )
σ2(E∗)
σ2(E)

−
σ2(E)
σ2(E∗)

+
hi(Ii)
hi(I∗i )

)
+ a1α2σ2(E∗)

(
σ2(E)
σ2(E∗)

−
σ2(E)
σ2(E∗)

σ3(I∗1)
σ3(I1)

−
σ3(I1)
σ3(I∗1)

+ 1
)

+

n∑
i=2

aiαi+1σi+1(I∗i−1)
(
σi+1(Ii−1)
σi+1(I∗i−1)

−
σi+2(Ii)
σi+2(I∗i )

−
σi+1(Ii−1)
σi+1(I∗i−1)

σi+2(I∗i )
σi+2(Ii)

+ 1
)
.

From the equations for a1 and ai, we have that
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a1α2σ2(E∗) = f (S ∗)
n∑

i=1

hi(I∗i ),

n∑
i=2

aiαi+1σi+1(I∗i−1) = f (S ∗)
n∑

i=2

n∑
j=i

h j(I∗j ).

�

Now, adding the like terms, we obtain

L̇ =µ1σ1(S ∗)
(
1 −

f (S ∗)
f (S )

) (
1 −

σ1(S )
σ1(S ∗)

)
+ Λ2

(
1 −

σ2(E∗)
σ2(E)

) (
1 −

σ2(E)
σ2(E∗)

)
+ a1Λ3

(
1 −

σ3(I∗1)
σ3(I1)

) (
1 −

σ3(I1)
σ3(I∗1)

)
+

n∑
i=2

aiΛi+2

(
1 −

σi+2(I∗i )
σi+2(Ii)

) (
1 −

σi+2(Ii)
σi+2(I∗i )

)
+ f (S ∗)g(E∗)

(
2 −

f (S ∗)
f (S )

−
f (S )g(E)

f (S ∗)g(E∗)
σ2(E∗)
σ2(E)

−
σ2(E)
σ2(E∗)

+
g(E)
g(E∗)

)
+ f (S ∗)h1(I∗1)

(
3 −

f (S ∗)
f (S )

−
f (S )h1(I1)
f (S ∗)h1(I∗1)

σ2(E∗)
σ2(E)

−
σ2(E)
σ2(E∗)

σ3(I∗1)
σ3(I1)

−
σ3(I1)
σ3(I∗1)

+
h1(I1)
h1(I∗1)

)
+ f (S ∗)h2(I∗2)

(
4 −

f (S ∗)
f (S )

−
f (S )h2(I2)
f (S ∗)h2(I∗2)

σ2(E∗)
σ2(E)

−
σ2(E)
σ2(E∗)

σ3(I∗1)
σ3(I1)

−
σ3(I1)
σ3(I∗1)

σ4(I∗2)
σ4(I3)

−
σ4(I2)
σ4(I∗2)

+
h2(I2)
h2(I∗2)

)
+ f (S ∗)

n∑
i=3

hi(I∗i )
(
i + 2 −

f (S ∗)
f (S )

−
f (S )hi(Ii)

f (S ∗)hi(I∗i )
σ2(E∗)
σ2(E)

−
σ2(E)
σ2(E∗)

σ3(I∗1)
σ3(I1)

− · · · −
σi+1(Ii−1)
σi+1(I∗i−1)

σi+2(I∗i )
σi+2(Ii)

−
σi+2(Ii)
σi+2(I∗i )

+
hi(Ii)
hi(I∗i )

)
.

After respectively adding and subtracting the terms f (S ∗)g(E∗), σ2(E)
σ2(E∗)

g(E∗)
g(E) and f (S ∗)hi(I∗i ), σi+2(Ii)

σi+2(I∗i )
hi(I∗i )
hi(Ii)

for each i = 1, . . . , n and regrouping some expressions, we get

L̇ =µ1σ1(S ∗)
(
1 −

f (S ∗)
f (S )

) (
1 −

σ1(S )
σ1(S ∗)

)
+ Λ2

(
1 −

σ2(E∗)
σ2(E)

) (
1 −

σ2(E)
σ2(E∗)

)
+ a1Λ3

(
1 −

σ3(I∗1)
σ3(I1)

) (
1 −

σ3(I1)
σ3(I∗1)

)
+

n∑
i=2

aiΛi+2

(
1 −

σi+2(I∗i )
σi+2(Ii)

) (
1 −

σi+2(Ii)
σi+2(I∗i )

)
+ f (S ∗)g(E∗)

(
3 −

f (S ∗)
f (S )

−
f (S )g(E)

f (S ∗)g(E∗)
σ2(E∗)
σ2(E)

−
σ2(E)
σ2(E∗)

g(E∗)
g(E)

)
+ f (S ∗)g(E∗)

(
σ2(E)
σ2(E∗)

g(E∗)
g(E)

− 1 −
σ2(E)
σ2(E∗)

+
g(E)
g(E∗)

)
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+ f (S ∗)h1(I∗1)
(
4 −

f (S ∗)
f (S )

−
f (S )h1(I1)
f (S ∗)h1(I∗1)

σ2(E∗)
σ2(E)

−
σ2(E)
σ2(E∗)

σ3(I∗1)
σ3(I1)

−
σ3(I1)
σ3(I∗1)

h1(I∗1)
h1(I1)

)
+ f (S ∗)h1(I∗1)

(
σ3(I1)
σ3(I∗1)

h1(I∗1)
h1(I1)

− 1 −
σ3(I1)
σ3(I∗1)

+
h1(I1)
h1(I∗1)

)
+ f (S ∗)h2(I∗2)

(
5 −

f (S ∗)
f (S )

−
f (S )h2(I2)
f (S ∗)h2(I∗2)

σ2(E∗)
σ2(E)

−
σ2(E)
σ2(E∗)

σ3(I∗1)
σ3(I1)

−
σ3(I1)
σ3(I∗1)

σ4(I∗2)
σ4(I3)

−
σ4(I2)
σ4(I∗2)

h2(I∗2)
h2(I2)

)
+ f (S ∗)h2(I∗2)

(
σ4(I2)
σ4(I∗2)

h2(I∗2)
h2(I2)

− 1 −
σ4(I2)
σ4(I∗2)

+
h2(I2)
h2(I∗2)

)
+ f (S ∗)

n∑
i=3

hi(I∗i )
(
i + 3 −

f (S ∗)
f (S )

−
f (S )hi(Ii)

f (S ∗)hi(I∗i )
σ2(E∗)
σ2(E)

−
σ2(E)
σ2(E∗)

σ3(I∗1)
σ3(I1)

− · · · −
σi+1(Ii−1)
σi+1(I∗i−1)

σi+2(I∗i )
σi+2(Ii)

−
σi+2(Ii)
σi+2(I∗i )

hi(I∗i )
hi(Ii)

)
+ f (S ∗)

n∑
i=3

hi(I∗i )
(
σi+2(Ii)
σi+2(I∗i )

hi(I∗i )
hi(Ii)

− 1 −
σi+2(Ii)
σi+2(I∗i )

+
hi(Ii)
hi(I∗i )

)
.

Now, we see that

(
σ2(E)
σ2(E∗)

g(E∗)
g(E)

− 1 −
σ2(E)
σ2(E∗)

+
g(E)
g(E∗)

)
=

(
g(E)
g(E∗)

−
σ2(E)
σ2(E∗)

) (
1 −

g(E∗)
g(E)

)
(
σi+2(Ii)
σi+2(I∗i )

hi(I∗i )
hi(Ii)

− 1 −
σi+2(Ii)
σi+2(I∗i )

+
hi(Ii)
hi(I∗i )

)
=

(
hi(Ii)
hi(I∗i )

−
σi+2(Ii)
σi+2(I∗i )

) (
1 −

hi(Ii)
hi(I∗i )

)
for i = 1 . . . , n. From this, we can write the last equations for L̇ as

L̇ =µ1σ1(S ∗)
(
1 −

f (S ∗)
f (S )

) (
1 −

σ1(S )
σ1(S ∗)

)
+ Λ2

(
1 −

σ2(E∗)
σ2(E)

) (
1 −

σ2(E)
σ2(E∗)

)
+

n∑
i=1

aiΛi+2

(
1 −

σi+2(I∗i )
σi+2(Ii)

) (
1 −

σi+2(Ii)
σi+2(I∗i )

)
+ f (S ∗)g(E∗)

(
3 −

f (S ∗)
f (S )

−
f (S )g(E)

f (S ∗)g(E∗)
σ2(E∗)
σ2(E)

−
σ2(E)
σ2(E∗)

g(E∗)
g(E)

)
+ f (S ∗)h1(I∗1)

(
4 −

f (S ∗)
f (S )

−
f (S )h1(I1)
f (S ∗)h1(I∗1)

σ2(E∗)
σ2(E)

−
σ2(E)
σ2(E∗)

σ3(I∗1)
σ3(I1)

−
σ3(I1)
σ3(I∗1)

h1(I∗1)
h1(I1)

)
+ f (S ∗)

n∑
i=2

hi(I∗i )
(
i + 3 −

f (S ∗)
f (S )

−
f (S )hi(Ii)

f (S ∗)hi(I∗i )
σ2(E∗)
σ2(E)

−
σ2(E)
σ2(E∗)

σ3(I∗1)
σ3(I1)
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− · · · −
σi+1(Ii−1)
σi+1(I∗i−1)

σi+2(I∗i )
σi+2(Ii)

−
σi+2(Ii)
σi+2(I∗i )

hi(I∗i )
hi(Ii)

)
+ f (S ∗)g(E∗)

(
g(E)
g(E∗)

−
σ2(E)
σ2(E∗)

) (
1 −

g(E∗)
g(E)

)
+ f (S ∗)

n∑
i=1

hi(I∗i )
(

hi(Ii)
hi(I∗i )

−
σi+2(Ii)
σi+2(I∗i )

) (
1 −

hi(Ii)
hi(I∗i )

)
.

We know that the geometric mean is lower than or equal to the arithmetic mean , i.e., n
√

x1x2 · · · xn ≤
x1+x2+···+xn

n or n n
√

x1x2 · · · xn ≤ x1 + x2 + · · · + xn. Hence, we obtain

3 ≤
f (S ∗)
f (S )

+
f (S )g(E)

f (S ∗)g(E∗)
σ2(E∗)
σ2(E)

+
σ2(E)
σ2(E∗)

g(E∗)
g(E)

,

4 ≤
f (S ∗)
f (S )

+
f (S )h1(I1)
f (S ∗)h1(I∗1)

σ2(E∗)
σ2(E)

+
σ2(E)
σ2(E∗)

σ3(I∗1)
σ3(I1)

+
σ3(I1)
σ3(I∗1)

h1(I∗1)
h1(I1)

,

i + 3 ≤
f (S ∗)
f (S )

+
f (S )hi(Ii)

f (S ∗)hi(I∗i )
σ2(E∗)
σ2(E)

+
σ2(E)
σ2(E∗)

σ3(I∗1)
σ3(I1)

,

+ · · · +
σi+1(Ii−1)
σi+1(I∗i−1)

σi+2(I∗i )
σi+2(Ii)

+
σi+2(Ii)
σi+2(I∗i )

hi(I∗i )
hi(Ii)

for i = 2, . . . , n.

By the conditions I and III, and for i = 1, . . . , n, we have

(
1 −

f (S ∗)
f (S )

) (
1 −

σ1(S )
σ1(S ∗)

)
≤ 0,(

1 −
σ2(E∗)
σ2(E)

) (
1 −

σ2(E)
σ2(E∗)

)
≤ 0,(

1 −
σi+2(I∗i )
σi+2(Ii)

) (
1 −

σi+2(Ii)
σi+2(I∗i )

)
≤ 0,(

g(E)
g(E∗)

−
σ2(E)
σ2(E∗)

) (
1 −

g(E∗)
g(E)

)
≤ 0,(

hi(Ii)
hi(I∗i )

−
σi+2(Ii)
σi+2(I∗i )

) (
1 −

hi(Ii)
hi(I∗i )

)
≤ 0.

Therefore, L̇ ≤ 0 for all (S , E, I1, I2, . . . , In) and L̇ = 0 if and only if (S , E, I1, I2, . . . , In) =

(S ∗, E∗, I∗1, I
∗
2, . . . , I

∗
n). So, the equilibrium point is globally asymptotically stable.

4. Numerical simulation

Here, we introduce an example of HIV/AIDS transmission dynamics to show the theoretical re-
sults. The population is divided into four stages of disease progression, susceptible to HIV infection
(S ), HIV-positive individuals in the acute HIV infection stage (E), HIV-positive individuals in the
chronic HIV infection stage (I) and individuals with full-blown AIDS (A). We divided the chronic
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HIV infection stage into two groups (I1 and I2). Besides, we assume that people in compartment I2 are
more infectious than those in I1.

Susceptible individuals can be infected through contact with HIV-positive individuals. The suscep-
tible individuals that were infected go to the acute HIV infection stage (E). After a period α−1

2 , they
progress to the first chronic stage of the disease (I1). Individuals in the first chronic stage progress to
the second chronic phase after a period α−1

3 . The individuals in the I2 compartment progress to full-
blown AIDS after a period α−1

4 . Here, all compartments have a recruitment rate Λ and natural mortality
rate µ. Also, individuals with full-blown AIDS have an additional mortality rate due to the disease.

Therefore, we obtain the following system of differential equations:

dS
dt

= Λ1 − βS E − S [h(I1) + h(I2)] − µS ,

dE
dt

= Λ2 + βS E + S [h(I1) + h(I2)] − (µ + α2)E,

dI1

dt
= Λ3 + α2E − (µ + α3)I1, (4.1)

dI2

dt
= Λ4 + α3I1 − (µ + α4)I2,

dA
dt

= Λ5 + α4I2 − (µ + µA)A,

where h1(I1) = m1I1/(1 + I1) and h2(I2) = m2I2/(1 + I2). Table 1 shows the model parameters and their
description. Figures 1 and 2 show the dynamics of infectious individuals for the scenarios described
before.

Table 1. Parameter description and values adopted in the simulations of the system (4.1).

Parameter Definition Value Reference
Λ1 Recruitment rate of susceptible individuals 100 Assumed
µ Natural mortality rate 1/75 [22]
Λ2 Recruitment rate of individuals in the acute phase 10 Assumed
α2 Progression rate to the first chronic phase 1/(42/365) [23]
Λ3 Recruitment rate of individuals in the first chronic phase 10 Assumed
α3 Progression rate to the second chronic phase 1/5 [24]
Λ4 Recruitment rate of individuals in the second chronic phase 10 Assumed
α4 Progression rate to full-blown AIDS 1/5 [24]
Λ5 Recruitment rate of individuals with full-blown AIDS 10 Assumed
µA Additional mortality rate due to AIDS 1/3 [25]
m1 Coefficient of function h1 0.001 Assumed
m2 Coefficient of function h2 0.01 Assumed

To simulate some epidemiological scenarios, we assumed four scenarios with different initial con-
ditions for the infected individuals. In scenario 1, we assumed that E(0) = I1(0) = I2(0) = 1 and
A(0) = 10. For the scenario 2, E(0) = I1(0) = I2(0) = 10 and A(0) = 100; in scenario 3, we sup-
pose that E(0) = I1(0) = I2(0) = 50 and A(0) = 500; finally for the last scenario, we have that
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E(0) = I1(0) = I2(0) = 100 and A(0) = 1000. For susceptible individuals, we set it as 100 in all sce-
narios. Figure 2 shows the dynamics of individuals with full-blown AIDS according to the scenarios
of the initial conditions.

(a) (b)

Figure 1. Dynamics of individuals in the chronic HIV stage under different initial conditions.

Figure 2. Dynamics of individuals with full-blown AIDS under different initial conditions.

As expected from the global stability, all solutions converge to the respective equilibrium point
coordinate.

5. Discussion

In this paper, we analyzed a multistage mathematical model that includes a general incidence func-
tion, death rate functions and immigration in all stages of the model. Our model has only one equi-
librium point due to the constant rate of immigration in all populations that transmit the disease. We
prove that this equilibrium point is globally asymptotically stable by using an appropriate Lyapunov
function and considering sufficient conditions for the functions involved in the model. Our results
provide a foundation for creating models that can help us understand how different incidence rates
affect the spread of diseases that have multiple stages in the presence of migration and immigration.
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Additionally, our allows us to explore what might happen in scenarios that do not match our initial
assumptions. In the context of the model, migration or immigration terms can be interpreted as vertical
transmission. There is also the possibility of investigating non-constant migration terms; we believe
that the global stability theorem presented here would need little change, that the only thing left to
prove would be the existence of an endemic equilibrium. One limitation of the present model is that
it considers the process of immigration/migration as a constant influx, but rarely is this true in a real
context. Generally, this process occurs in a discontinuous way. Another limitation is the absence of
R0, which results in only one endemic equilibrium point. If we set the migration terms to zero, we
can recover the disease-free equilibrium point and, therefore, the possibility of finding the R0 threshold
that allows for the eradication of the disease, as mentioned and discussed in [26]. This suggests that
stopping migration or immigration is an effective measure to try to stop the transmission of a disease.
This can also be interpreted as quarantine measures taken to halt a disease.
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