Research article Special Issues

Projections of human papillomavirus vaccination and its impact on cervical cancer using the Caputo fractional derivative


  • We propose a fractional order model for human papillomavirus (HPV) dynamics, including the effects of vaccination and public health education on developing cervical cancer. First, we discuss the general structure of Caputo fractional derivatives and integrals. Next, we define the fractional HPV model using Caputo derivatives. The model equilibrium quantities, with their stability, are discussed based on the magnitude of the reproduction number. We compute and simulate numerical solutions of the presented fractional model using the Adams-Bashforth-Moulton scheme. Meanwhile, real data sourced from reports from the World Health Organization is used to establish the parameters and compute the basic reproduction number. We present figures of state variables for different fractional orders and the classical integer order. The impacts of vaccination and public health education are discussed through numerical simulations. From the results, we observe that an increase in both vaccination rates and public health education increases the quality of life, and thus, reduces disease burden and suffering in communities. The results also confirm that modeling HPV transmission dynamics using fractional derivatives includes history effects in the model, making the model further insightful and appropriate for studying HPV dynamics.

    Citation: Simphiwe M. Simelane, Justin B. Munyakazi, Phumlani G. Dlamini, Oluwaseun F. Egbelowo. Projections of human papillomavirus vaccination and its impact on cervical cancer using the Caputo fractional derivative[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 11605-11626. doi: 10.3934/mbe.2023515

    Related Papers:

    [1] Eminugroho Ratna Sari, Fajar Adi-Kusumo, Lina Aryati . Mathematical analysis of a SIPC age-structured model of cervical cancer. Mathematical Biosciences and Engineering, 2022, 19(6): 6013-6039. doi: 10.3934/mbe.2022281
    [2] Tufail Malik, Jody Reimer, Abba Gumel, Elamin H. Elbasha, Salaheddin Mahmud . The impact of an imperfect vaccine and pap cytologyscreening on the transmission of human papillomavirus and occurrenceof associated cervical dysplasia and cancer. Mathematical Biosciences and Engineering, 2013, 10(4): 1173-1205. doi: 10.3934/mbe.2013.10.1173
    [3] Ilse Domínguez-Alemán, Itzel Domínguez-Alemán, Juan Carlos Hernández-Gómez, Francisco J. Ariza-Hernández . A predator-prey fractional model with disease in the prey species. Mathematical Biosciences and Engineering, 2024, 21(3): 3713-3741. doi: 10.3934/mbe.2024164
    [4] Adnan Sami, Amir Ali, Ramsha Shafqat, Nuttapol Pakkaranang, Mati ur Rahmamn . Analysis of food chain mathematical model under fractal fractional Caputo derivative. Mathematical Biosciences and Engineering, 2023, 20(2): 2094-2109. doi: 10.3934/mbe.2023097
    [5] Simphiwe M. Simelane, Phumlani G. Dlamini, Fadekemi J. Osaye, George Obaido, Blessing Ogbukiri, Kehinde Aruleba, Cadavious M. Jones, Chidozie W. Chukwu, Oluwaseun F. Egbelowo . Modeling the impact of public health education on tungiasis dynamics with saturated treatment: Insight through the Caputo fractional derivative. Mathematical Biosciences and Engineering, 2023, 20(5): 7696-7720. doi: 10.3934/mbe.2023332
    [6] Jutarat Kongson, Chatthai Thaiprayoon, Apichat Neamvonk, Jehad Alzabut, Weerawat Sudsutad . Investigation of fractal-fractional HIV infection by evaluating the drug therapy effect in the Atangana-Baleanu sense. Mathematical Biosciences and Engineering, 2022, 19(11): 10762-10808. doi: 10.3934/mbe.2022504
    [7] Noura Laksaci, Ahmed Boudaoui, Seham Mahyoub Al-Mekhlafi, Abdon Atangana . Mathematical analysis and numerical simulation for fractal-fractional cancer model. Mathematical Biosciences and Engineering, 2023, 20(10): 18083-18103. doi: 10.3934/mbe.2023803
    [8] Ritu Agarwal, Pooja Airan, Mohammad Sajid . Numerical and graphical simulation of the non-linear fractional dynamical system of bone mineralization. Mathematical Biosciences and Engineering, 2024, 21(4): 5138-5163. doi: 10.3934/mbe.2024227
    [9] Najat Ziyadi . A male-female mathematical model of human papillomavirus (HPV) in African American population. Mathematical Biosciences and Engineering, 2017, 14(1): 339-358. doi: 10.3934/mbe.2017022
    [10] Hardik Joshi, Brajesh Kumar Jha, Mehmet Yavuz . Modelling and analysis of fractional-order vaccination model for control of COVID-19 outbreak using real data. Mathematical Biosciences and Engineering, 2023, 20(1): 213-240. doi: 10.3934/mbe.2023010
  • We propose a fractional order model for human papillomavirus (HPV) dynamics, including the effects of vaccination and public health education on developing cervical cancer. First, we discuss the general structure of Caputo fractional derivatives and integrals. Next, we define the fractional HPV model using Caputo derivatives. The model equilibrium quantities, with their stability, are discussed based on the magnitude of the reproduction number. We compute and simulate numerical solutions of the presented fractional model using the Adams-Bashforth-Moulton scheme. Meanwhile, real data sourced from reports from the World Health Organization is used to establish the parameters and compute the basic reproduction number. We present figures of state variables for different fractional orders and the classical integer order. The impacts of vaccination and public health education are discussed through numerical simulations. From the results, we observe that an increase in both vaccination rates and public health education increases the quality of life, and thus, reduces disease burden and suffering in communities. The results also confirm that modeling HPV transmission dynamics using fractional derivatives includes history effects in the model, making the model further insightful and appropriate for studying HPV dynamics.





    [1] CDC fact sheet. Centers for Disease Control and Prevention, Genital HPV infection. Available from: http://www.cdc.gov/std/HPV/STDFact-HPV.htm.
    [2] S. L. Lee, A. M. Tameru, A mathematical model of Human Papillomavirus (HPV) in the United States and its impact on Cervical Cancer, J. Cancer, 3 (2012), 262–268. https://doi.org/10.7150/jca.4161 doi: 10.7150/jca.4161
    [3] National Cancer Institute, HPV and Cancer. Available from: https://www.cancer.gov/about-cancer/causes-prevention/risk/infectious-agents/hpv-and-cancer.
    [4] World Health Organization, Cervical Cancer Fact Sheet, Access date: 02 June 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/cervical-cancer.
    [5] K. P. Braaten, M. R. Laufer, Human Papillomavirus (HPV), HPV-related disease, and the HPV vaccine, Rev. Obstet. Gynecol., 1 (2008), 2–10.
    [6] Centers for Disease Control and Prevention, Human Papillomavirus (HPV) Vaccination: What Everyone Should Know, Accesse date: 02 June 2022. https://www.cdc.gov/vaccines/vpd/hpv/public/index.html.
    [7] U. K. Nwajeri, A. B. Panle, A. Omame, M. C. Obi, C. P. Onyenegecha, On the fractional order model for HPV and Syphilis using non–singular kernel, Results Phys., 37 (2022), 105463. https://doi.org/10.1016/j.rinp.2022.105463 doi: 10.1016/j.rinp.2022.105463
    [8] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Academic Press, San Diego, CA, 1999.
    [9] D. Baleanu, M. Hassan Abadi, A. Jajarmi, K. Zarghami Vahid, J. J. Nieto, A new comparative study on the general fractional model of COVID-19 with isolation and quarantine effects, Alexandria Eng. J., 61 (2022), 4779–4791. https://doi.org/10.1016/j.aej.2021.10.030 doi: 10.1016/j.aej.2021.10.030
    [10] P. A. Naik, J. Zu, K. M. Owolabi, Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control, Chaos, Solitons Fractals, 138 (2020), 109826. https://doi.org/10.1016/j.chaos.2020.109826 doi: 10.1016/j.chaos.2020.109826
    [11] A. Atangana, E. Alabaraoye, Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller-Segel equations, Adv. Differ. Equations, 94 (2013). https://doi.org/10.1186/1687-1847-2013-94 doi: 10.1186/1687-1847-2013-94
    [12] R. Scherer, S. L. Kalla, Y. Tang, J. Huang, The Grunwald-Letnikov method for fractional differential equations, Comput. Math. Appl., 62 (2011), 902–917. https://doi.org/10.1016/j.camwa.2011.03.054 doi: 10.1016/j.camwa.2011.03.054
    [13] U. K. Nwajeri, A. Omame, C. P. Onyenegecha, Analysis of a fractional order model for HPV and CT co-infection, Results Phys., 28 (2021), 104643. https://doi.org/10.1016/j.rinp.2021.104643 doi: 10.1016/j.rinp.2021.104643
    [14] K. M. Owolabi, A. Atangana, Numerical Methods for Fractional Differentiation, Springer Singapore, 2019. https://doi.org/10.1007/978-981-15-0098-5
    [15] U. K. Nwajeri, A. B. Panle, A. Omame, M. C. Obi, C. P. Onyenegecha, On the fractional order model for HPV and Syphilis using non–singular kernel, Results Phys., 37 (2022), 105463. https://doi.org/10.1016/j.rinp.2022.105463 doi: 10.1016/j.rinp.2022.105463
    [16] K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
    [17] S. M. Simelane, P. G. Dlamini, A fractional order differential equation model for Hepatitis B virus with saturated incidence, Results Phys., 24 (2021), 104114. https://doi.org/10.1016/j.rinp.2021.104114 doi: 10.1016/j.rinp.2021.104114
    [18] Z. M. Odibat, N. T. Shawagfeh, Generalized Taylor's formula, Appl. Math. Comput., 186 (2007), 286–293. https://doi.org/10.1016/j.amc.2006.07.102 doi: 10.1016/j.amc.2006.07.102
    [19] N. Ozalp, E. Demirci, A fractional order SEIR model with vertical transmission, Math. Comput. Model., 54 (2011), 1–6. https://doi.org/10.1016/j.mcm.2010.12.051 doi: 10.1016/j.mcm.2010.12.051
    [20] W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332 (2007), 709–726. https://doi.org/10.1016/j.jmaa.2006.10.040 doi: 10.1016/j.jmaa.2006.10.040
    [21] O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
    [22] J. Jia, J. Xiao, Stability analysis of a disease resistance seirs model with nonlinear incidence rate, Adv. Differ. Equations, 75 (2018). https://doi.org/10.1186/s13662-018-1494-1
    [23] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [24] J. L. S. Allen, Introduction to Mathematical Biology, Pearson Education, Inc, Upper Saddle River, 2007.
    [25] MATLAB. 9.7.0.1190202 (R2019b). Natick, Massachusetts: The MathWorks Inc, 2018.
    [26] Wolfram Research, Inc, Mathematica, Version 9.0, Champaign, IL, 2012.
    [27] Indian Council of Medical Research, Consensus Document for Management of Cancer Cervix, 2016.
    [28] J. Ferlay, M. Ervik, F. Lam, M. Colombet, L. Mery, M. Pineros, et al., Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer, 2020. Available from: https://gco.iarc.fr/today.
    [29] E. Amponsah-Dacosta, N. Blose, V. V. Nkwinika, V. Chepkurui, Human papillomavirus vaccination in South Africa: Programmatic challenges and opportunities for integration with other adolescent health services, Front. Public Health, 10 (2022). https://doi.org/10.3389/fpubh.2022.799984 doi: 10.3389/fpubh.2022.799984
    [30] United Nations, Department of Economic and Social Affairs, Population Division, World Population Prospects 2019, Online Edition. Rev. 1, Access date: 02 January 2021, Available from: https://population.un.org/wpp/Download/Standard/Population/.
    [31] World Health Organization, Global strategy to accelerate the elimination of cervical cancer as a public health problem, Access date: 05 March 2021, Available from: https://www.who.int/publications/i/item/9789240014107.
    [32] N. Gupta, A. S. Chauhan, S. Prinja, A. K. Pandey, Impact of COVID-19 on outcomes for patients with cervical cancer in India, JCO Global Oncol., 7 (2021), 716–725. https://doi.org/10.1200/GO.20.00654 doi: 10.1200/GO.20.00654
    [33] L. Bruni, G. Albero, B. Serrano, M. Mena, J. J. Collado, D. Gómez, et al., ICO/IARC Information Centre on HPV and Cancer (HPV Information Centre), Human Papillomavirus and Related Diseases in India, Summary Report, Access date: 18 June 2022.
  • This article has been cited by:

    1. Jean-Michel Coron, Georges Bastin, Dissipative Boundary Conditions for One-Dimensional Quasi-linear Hyperbolic Systems: Lyapunov Stability for the -Norm, 2015, 53, 0363-0129, 1464, 10.1137/14097080X
    2. Mapundi K. Banda, Gediyon Y. Weldegiyorgis, Numerical boundary feedback stabilisation of non-uniform hyperbolic systems of balance laws, 2020, 93, 0020-7179, 1428, 10.1080/00207179.2018.1509133
    3. Rafael Vazquez, Miroslav Krstic, Jean-Michel Coron, 2011, Backstepping boundary stabilization and state estimation of a 2 × 2 linear hyperbolic system, 978-1-61284-801-3, 4937, 10.1109/CDC.2011.6160338
    4. Rafael Vazquez, Miroslav Krstic, 2013, Marcum Q-functions and explicit feedback laws for stabilization of constant coefficient 2 × 2 linear hyperbolic systems, 978-1-4673-5717-3, 466, 10.1109/CDC.2013.6759925
    5. Pierre-Olivier Lamare, Nikolaos Bekiaris-Liberis, Control of 2×2 linear hyperbolic systems: Backstepping-based trajectory generation and PI-based tracking, 2015, 86, 01676911, 24, 10.1016/j.sysconle.2015.09.009
    6. Thang Van Pham, Didier Georges, Gildas Besancon, Predictive Control With Guaranteed Stability for Water Hammer Equations, 2014, 59, 0018-9286, 465, 10.1109/TAC.2013.2272171
    7. Rafael Vazquez, Miroslav Krstic, Marcum -functions and explicit kernels for stabilization of linear hyperbolic systems with constant coefficients, 2014, 68, 01676911, 33, 10.1016/j.sysconle.2014.02.008
    8. Michael Di Loreto, Sérine Damak, Sabine Mondié, 2016, Chapter 2, 978-3-319-32371-8, 17, 10.1007/978-3-319-32372-5_2
    9. Rafael Vazquez, Jean-Michel Coron, Miroslav Krstic, Georges Bastin, 2011, Local exponential H2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping, 978-1-61284-801-3, 1329, 10.1109/CDC.2011.6161075
    10. Christophe Prieur, Aneel Tanwani, 2017, Chapter 8, 978-3-319-51297-6, 201, 10.1007/978-3-319-51298-3_8
    11. Michael Herty, Hui Yu, 2016, Boundary stabilization of hyperbolic conservation laws using conservative finite volume schemes, 978-1-5090-1837-6, 5577, 10.1109/CDC.2016.7799126
    12. Jean-Michel Coron, Rafael Vazquez, Miroslav Krstic, Georges Bastin, Local Exponential Stabilization of a Quasilinear Hyperbolic System Using Backstepping, 2013, 51, 0363-0129, 2005, 10.1137/120875739
    13. Miroslav Krstic, Nikolaos Bekiaris-Liberis, Nonlinear stabilization in infinite dimension, 2013, 37, 13675788, 220, 10.1016/j.arcontrol.2013.09.002
    14. Miroslav Krstic, Nikolaos Bekiaris-Liberis, Nonlinear Stabilization in Infinite Dimension, 2013, 46, 14746670, 1, 10.3182/20130904-3-FR-2041.00061
    15. Pierre-Olivier Lamare, Nikolaos Bekiaris-Liberis, Alexandre M. Bayen, 2015, Control of 2 × 2 linear hyperbolic systems: Backstepping-based trajectory generation and PI-based tracking, 978-3-9524-2693-7, 497, 10.1109/ECC.2015.7330592
    16. R. Vazquez, J. Coron, M. Krstic, G. Bastin, 2012, Collocated output-feedback stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping, 978-1-4577-1096-4, 2202, 10.1109/ACC.2012.6314688
    17. Georges Bastin, Jean-Michel Coron, Brigitte d'Andrea-Novel, Paul Suvarov, Alain Vande Wouwer, Achim Kienle, 2014, Stability analysis of switching hyperbolic systems: the example of SMB chromatography, 978-3-9524269-1-3, 2153, 10.1109/ECC.2014.6862556
    18. Isha Jakhar, DDS : A Solution to Network Centric Warfare, 2020, 2456-3307, 270, 10.32628/CSEIT206432
    19. Aníbal Coronel, Alex Tello, Fernando Huancas, A characterization of the reachable profiles of entropy solutions for the elementary wave interaction problem of convex scalar conservation laws, 2025, 10, 2473-6988, 3124, 10.3934/math.2025145
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1947) PDF downloads(94) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog