The diffusion of Sulfate ions in concrete is a complex process and affects the performance of concrete. Experiments on the time-dependent distribution of sulfate ions in concrete under the coupling of pressure load, dry-wet circulation, and sulfate attack, and the diffusion coefficient of sulfate ions with various parameters was tested. The applicability of the cellular automata (CA) theory to simulate the diffusion of sulfate ions was discussed. In this paper, a multiparameter cellular automata (MPCA) model was developed to simulate the impacts of load, immersion ways, and sulfate solution concentration for the diffusion of sulfate ions in concrete. The MPCA model was compared with experimental data, considering compressive stress, sulfate solution concentration, and other parameters. The numerical simulations verify the calculation results based on the MPCA model are in good agreement with the test data. Finally, the applicability of the established MPCA model was also discussed.
Citation: Jian Cao, Tao Liu, Ziyang Han, Bin Tu. Sulfate ions diffusion in concrete under coupled effect of compression load and dry-wet circulation[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 9965-9991. doi: 10.3934/mbe.2023437
[1] | Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche . Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences and Engineering, 2009, 6(2): 333-362. doi: 10.3934/mbe.2009.6.333 |
[2] | Peter Witbooi, Gbenga Abiodun, Mozart Nsuami . A model of malaria population dynamics with migrants. Mathematical Biosciences and Engineering, 2021, 18(6): 7301-7317. doi: 10.3934/mbe.2021361 |
[3] | Pride Duve, Samuel Charles, Justin Munyakazi, Renke Lühken, Peter Witbooi . A mathematical model for malaria disease dynamics with vaccination and infected immigrants. Mathematical Biosciences and Engineering, 2024, 21(1): 1082-1109. doi: 10.3934/mbe.2024045 |
[4] | Yilong Li, Shigui Ruan, Dongmei Xiao . The Within-Host dynamics of malaria infection with immune response. Mathematical Biosciences and Engineering, 2011, 8(4): 999-1018. doi: 10.3934/mbe.2011.8.999 |
[5] | Zhong-Kai Guo, Hai-Feng Huo, Hong Xiang . Global dynamics of an age-structured malaria model with prevention. Mathematical Biosciences and Engineering, 2019, 16(3): 1625-1653. doi: 10.3934/mbe.2019078 |
[6] | Bassidy Dembele, Abdul-Aziz Yakubu . Controlling imported malaria cases in the United States of America. Mathematical Biosciences and Engineering, 2017, 14(1): 95-109. doi: 10.3934/mbe.2017007 |
[7] | Jinliang Wang, Jingmei Pang, Toshikazu Kuniya . A note on global stability for malaria infections model with latencies. Mathematical Biosciences and Engineering, 2014, 11(4): 995-1001. doi: 10.3934/mbe.2014.11.995 |
[8] | Khadiza Akter Eme, Md Kamrujjaman, Muntasir Alam, Md Afsar Ali . Vaccination and combined optimal control measures for malaria prevention and spread mitigation. Mathematical Biosciences and Engineering, 2025, 22(8): 2039-2071. doi: 10.3934/mbe.2025075 |
[9] | Zhilan Feng, Carlos Castillo-Chavez . The influence of infectious diseases on population genetics. Mathematical Biosciences and Engineering, 2006, 3(3): 467-483. doi: 10.3934/mbe.2006.3.467 |
[10] | Kento Okuwa, Hisashi Inaba, Toshikazu Kuniya . An age-structured epidemic model with boosting and waning of immune status. Mathematical Biosciences and Engineering, 2021, 18(5): 5707-5736. doi: 10.3934/mbe.2021289 |
The diffusion of Sulfate ions in concrete is a complex process and affects the performance of concrete. Experiments on the time-dependent distribution of sulfate ions in concrete under the coupling of pressure load, dry-wet circulation, and sulfate attack, and the diffusion coefficient of sulfate ions with various parameters was tested. The applicability of the cellular automata (CA) theory to simulate the diffusion of sulfate ions was discussed. In this paper, a multiparameter cellular automata (MPCA) model was developed to simulate the impacts of load, immersion ways, and sulfate solution concentration for the diffusion of sulfate ions in concrete. The MPCA model was compared with experimental data, considering compressive stress, sulfate solution concentration, and other parameters. The numerical simulations verify the calculation results based on the MPCA model are in good agreement with the test data. Finally, the applicability of the established MPCA model was also discussed.
[1] |
Y. Chen, P. Liu, Z. W. Yu, Study on degradation of macro performances and microstructure of concrete attacked by sulfate under artificial simulated environment, Constr. Build. Mater., 260 (2020), 119951. https://doi.org/10.1016/j.conbuildmat.2020.119951 doi: 10.1016/j.conbuildmat.2020.119951
![]() |
[2] |
N. Zhao, S. L. Wang, X. Y. Quan, F. Xu, K. N. Liu, Y. Liu, Behavior of polyvinyl alcohol fiber reinforced geopolymer composites under the coupled attack of sulfate and freeze-thaw in a marine environment, Ocean Eng., 238 (2021), 109734. https://doi.org/10.1016/j.oceaneng.2021.109734 doi: 10.1016/j.oceaneng.2021.109734
![]() |
[3] |
Y. Chen, J. F. Davalos, I. Ray, H. Y. Kim, Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures, Compos. Struct., 78 (2007), 101–111. https://doi.org/10.1016/j.compstruct.2005.08.015 doi: 10.1016/j.compstruct.2005.08.015
![]() |
[4] |
A. E. Idiart, C. M. López, I. Carol, Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: A meso-scale model, Cem. Concr. Compos., 33 (2011), 411–423. https://doi.org/10.1016/j.cemconcomp.2010.12.001 doi: 10.1016/j.cemconcomp.2010.12.001
![]() |
[5] |
D. D. Sun, K. Wu, H. S. Shi, S. Miramini, L. H. Zhang, Deformation behaviour of concrete materials under the sulfate attack, Constr. Build. Mater., 210 (2019), 232–241. https://doi.org/10.1016/j.conbuildmat.2019.03.050 doi: 10.1016/j.conbuildmat.2019.03.050
![]() |
[6] |
J. Marchand, E. Samson, Y. Maltais, J. J. Beaudoin, Theoretical analysis of the effect of weak sodium sulfate solutions on the durability of concrete, Cem. Concr. Compos., 243 (2002), 317–329. https://doi.org/10.1016/S0958-9465(01)00083-X doi: 10.1016/S0958-9465(01)00083-X
![]() |
[7] |
R. Tixier, B. Mobasher, Modeling of damage in cement-based materials subjected to external sulfate attack, I: Formulation, J. Mater. Civ. Eng., 15 (2003), 305–313. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:4(305) doi: 10.1061/(ASCE)0899-1561(2003)15:4(305)
![]() |
[8] |
R. Tixier, B. Mobasher, Modeling of damage in cement-based materials subjected to external sulfate attack, Ⅱ: Comparision with experiments, J. Mater. Civ. Eng., 15 (2003), 314–322. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:4(314) doi: 10.1061/(ASCE)0899-1561(2003)15:4(314)
![]() |
[9] |
B. Bary, Simplified coupled chemo-mechanical modeling of cement pastes behavior subjected to combined leaching and external sulfate attack, Int. J. Numer. Anal. Meth. Geomech, 32 (2008), 1791–1816. https://doi.org/10.1002/nag.696| doi: 10.1002/nag.696
![]() |
[10] |
S. Sarkar, S. Mahadevan, J. C. L. Meeussen, H. van der Sloot, D. S. Kosson, Numerical simulation of cementitious materials degradation under external sulfate attack, Cem. Concr. Compos., 32 (2010), 241–252. https://doi.org/10.1016/j.cemconcomp.2009.12.005 doi: 10.1016/j.cemconcomp.2009.12.005
![]() |
[11] |
C. Sun, J. K. Chen, J. Zhu, M. H. Zhang, J. Ye, A new diffusion model of sulfate ions in concrete, Constr. Build. Mater., 39 (2013), 39–45. https://doi.org/10.1016/j.conbuildmat.2012.05.022 doi: 10.1016/j.conbuildmat.2012.05.022
![]() |
[12] |
T. Ikumi, S. H. P. Cavalaro, I. Segura, A. Fuente, A. Aguado, Simplified methodology to evaluate the external sulfate attack in concrete structures, Mater. Des., 89 (2016), 1147–1160. https://doi.org/10.1016/j.matdes.2015.10.084 doi: 10.1016/j.matdes.2015.10.084
![]() |
[13] |
D. D. Sun, K. Wu, H. S. Shi, L. T. Zhang, L. H. Zhang, Effect of interfacial transition zone on the transport of sulfate ions in concrete, Constr. Build. Mater., 192 (2018), 28–37. https://doi.org/10.1016/j.conbuildmat.2018.10.140 doi: 10.1016/j.conbuildmat.2018.10.140
![]() |
[14] |
Z. Chen, L. Y. Wu, V. Bindiganavile, C. F. Yi, Coupled models to describe the combined diffusion-reaction behaviour of chloride and sulphate ions in cement-based systems, Constr. Build. Mater., 243 (2020), 118232. https://doi.org/10.1016/j.conbuildmat.2020.118232 doi: 10.1016/j.conbuildmat.2020.118232
![]() |
[15] |
Y. W. Zhou, H. Tian, L. L. Sui, F. Xing, N. X. Han, Strength deterioration of concrete in sulfate environment: An experimental study and theoretical modeling, Adv. Mater. Sci. Eng., 2015 (2015), 1–13. https://doi.org/10.1155/2015/951209 doi: 10.1155/2015/951209
![]() |
[16] |
P. Liu, Y. Chen, Z. W. Yu, Z. H. Lu, Effect of sulfate solution concentration on the deterioration mechanism and physical properties of concrete, Constr. Build. Mater., 227 (2019), 116641. https://doi.org/10.1016/j.conbuildmat.2019.08.022 doi: 10.1016/j.conbuildmat.2019.08.022
![]() |
[17] |
S. W. Tang, Y. Yao, C. Andrade, Z. J. Li, Recent durability studies on concrete structure, Cem. Concr. Res., 78 (2015), 143–154. https://doi.org/10.1016/j.cemconres.2015.05.021 doi: 10.1016/j.cemconres.2015.05.021
![]() |
[18] |
M. Santhanam, M. Otieno, Deterioration of concrete in the marine environment, Marine Concr. Struct., (2016), 137–149. https://doi.org/10.1016/B978-0-08-100081-6.00005-2 doi: 10.1016/B978-0-08-100081-6.00005-2
![]() |
[19] |
A.M. Neville, Recovery of creep and observations on the mechanism of creep of concrete, Appl. Sci. Res., 9 (1960). https://doi.org/10.1007/BF00382191 doi: 10.1007/BF00382191
![]() |
[20] |
J. P. Li, F. Xie, G. W. Zhao, L. Li, Experimental and numerical investigation of cast-in-situ concrete under external sulfate attack and drying-wetting cycles, Constr. Build. Mater., 249 (2020), 118789. https://doi.org/10.1016/j.conbuildmat.2020.118789 doi: 10.1016/j.conbuildmat.2020.118789
![]() |
[21] |
P. J. Tumidajski, G. Chan, K. E. Philipose, An effective diffusivity for sulfate transport into concrete, Cem. Concr. Res., 25 (1995), 1159–1163. https://doi.org/10.1016/0008-8846(95)00108-O doi: 10.1016/0008-8846(95)00108-O
![]() |
[22] |
P. N. Gospodinov, Numerical simulation of 3D sulfate ion diffusion and liquid push out of the material capillaries in cement composites, Cem. Concr. Res., 35 (2005), 520–526. https://doi.org/10.1016/j.cemconres.2004.07.005 doi: 10.1016/j.cemconres.2004.07.005
![]() |
[23] |
G. J. Yin, X. B. Zuo, Y. J Tang, O. Ayinde, J. L. Wang, Numerical simulation on time-dependent mechanical behavior of concrete under coupled axial loading and sulfate attack, Ocean Eng., 142 (2017), 115–124. https://doi.org/10.1016/j.oceaneng.2017.07.016 doi: 10.1016/j.oceaneng.2017.07.016
![]() |
[24] |
W. Sun, X. B. Zuo, Numerical simulation of sulfate diffusivity in concrete under combination of mechanical loading and sulfate environments, J. Sustainable Cem.-Based Mater., 1 (2012), 46–55. https://doi.org/10.1080/21650373.2012.728564 doi: 10.1080/21650373.2012.728564
![]() |
[25] | J. Von Neumann, Theory of self-reproducing automata, University of Illinois press, Urbana, 1966. |
[26] |
S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys., 55 (1983), 601–644. https://doi.org/10.1103/RevModPhys.55.601 doi: 10.1103/RevModPhys.55.601
![]() |
[27] |
A. Talaminos-Barroso, J. Reina-Tosina, L. M. Roa-Romero, Models based on cellular automata for the analysis of biomedical systems, Control Appl. Biomed. Eng. Syst., (2020), 405–445. https://doi.org/10.1016/B978-0-12-817461-6.00014-7 doi: 10.1016/B978-0-12-817461-6.00014-7
![]() |
[28] |
W. C. Huang, B. W. Zhou, Y. C. Yu, D. Z. Yin, Vulnerability analysis of road network for dangerous goods transportation considering intentional attack: Based on cellular automata, Reliab. Eng. Syst. Saf., 214 (2021), 107779. https://doi.org/10.1016/j.ress.2021.107779 doi: 10.1016/j.ress.2021.107779
![]() |
[29] |
S. Ghosh, S. Bhattacharya, Computational model on COVID-19 pandemic using probabilistic cellular automata, SN Comput. Sci., 230 (2021). https://doi.org/10.1007/s42979-021-00619-3 doi: 10.1007/s42979-021-00619-3
![]() |
[30] |
Y. Z. X. Liu, J. Q. Guo, J. Taplin, Y. B. Wang, Characteristic analysis of mixed traffic flow of regular and autonomous vehicles using cellular automata, J. Adv. Transp., 2017 (2017), 1–10. https://doi.org/10.1155/2017/8142074 doi: 10.1155/2017/8142074
![]() |
[31] |
K. Małecki, A computer simulation of traffic flow with on-street parking and drivers' behaviour based on cellular automata and a multi-agent system, J. Comput. Sci., 28 (2018), 32–42. https://doi.org/10.1016/j.jocs.2018.07.005 doi: 10.1016/j.jocs.2018.07.005
![]() |
[32] | F. Biondini, F. Bontempi, D. M. Frangopol, P. G. Malerba, Durability analysis of deteriorating concrete structures due to diffusion processes: Application to box-girder bridges, in Proceedings of the International Conference on Short and Medium Span Bridges, 2 (2002), 745–752. |
[33] |
F. Biondini, F. Bontempi, D. M. Frangopol, P. G. Malerba, Cellular automata approach to durability analysis of concrete structures in aggressive environments, J. Struct. Eng., 130 (2004), 1724–1737. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1724) doi: 10.1061/(ASCE)0733-9445(2004)130:11(1724)
![]() |
[34] | F. Biondini, F. Bontempi, D. M. Frangopol, A cellular automata finite element formulation for lifetime assessment of concrete structures. in Proceedings of the Structural Engineers World Congress, 2002. |
[35] |
F. Biondini, D. M. Frangopol, P. G. Malerba, Uncertainty effects on lifetime structural performance of cable-stayed bridges, Probabilistic Eng. Mech., 23 (2008). https://doi.org/10.1016/j.probengmech.2008.01.008 doi: 10.1016/j.probengmech.2008.01.008
![]() |
[36] | F. Biondini, D. M. Frangopol, Probabilistic life-cycle optimization of concrete structures, Engineering, 2008. |
[37] | J. Podroužek, Importance sampling strategy for oscillatory stochastic processes, in 5th International Conference on Reliable Engineering Computing, 2012. |
[38] |
F. Biondini, D. M. Frangopol, Probabilistic limit analysis and lifetime prediction of concrete structures, Struct. Infrastruct. Eng., 4 (2008), 399–412. https://doi.org/10.1080/15732470701270157 doi: 10.1080/15732470701270157
![]() |
[39] |
D. Vořechovská, J. Podroužek, M. Chromá, P. Rovnaníková, B. Teplý, Modeling of chloride concentration effect on reinforcement corrosion, Comput-Aided. Civ. Inf., 24 (2009), 446–458. https://doi.org/10.1111/j.1467-8667.2009.00602.x| doi: 10.1111/j.1467-8667.2009.00602.x
![]() |
[40] |
J. Cao, Y. F. Wang, K. P. Li, Y. S. Ma, Modeling the diffusion of chloride ion in concrete using cellular automaton, J. Mater. Civ. Eng., 24 (2012), 783–788. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000440 doi: 10.1061/(ASCE)MT.1943-5533.0000440
![]() |
[41] |
F. Biondini, A. Palermo, G. Toniolo, Seismic performance of concrete structures exposed to corrosion: case studies of low-rise precast buildings, Struct. Infrastruct. Eng., 7 (2011), 109–119. https://doi.org/10.1080/15732471003588437 doi: 10.1080/15732471003588437
![]() |
[42] |
A. Titi, F. Biondini, Probabilistic seismic assessment of multistory precast concrete frames exposed to corrosion, Bull Earthquake Eng., 12 (2014), 2665–2681. https://doi.org/10.1007/s10518-014-9620-2 doi: 10.1007/s10518-014-9620-2
![]() |
[43] |
F. Biondini, E. Camnasio, A. Palermo, Lifetime seismic performance of concrete bridges exposed to corrosion. Struct. Infrastruct. Eng., 10 (2014), 880–900. https://doi.org/10.1080/15732479.2012.761248 doi: 10.1080/15732479.2012.761248
![]() |
[44] |
A. Titi, F. Biondini, On the accuracy of diffusion models for life-cycle assessment of concrete structures, Struct. Infrastruct. Eng., 12 (2015), 1202–1215. https://doi.org/10.1080/15732479.2015.1099110 doi: 10.1080/15732479.2015.1099110
![]() |
[45] |
X. Ruan, Y. Li, X. Y. Zhou, Z. R. Jin, Z. Y. Yin, Simulation method of concrete chloride ingress with mesoscopic cellular automata, Constr. Build. Mater., 249 (2020), 118778. https://doi.org/10.1016/j.conbuildmat.2020.118778 doi: 10.1016/j.conbuildmat.2020.118778
![]() |
[46] |
J. J. Ma, P. Z. Lin, Simulation approach for random diffusion of chloride in concrete under sustained load with cellular automata, Materials, 15 (2022), 4384. https://doi.org/10.3390/ma15134384 doi: 10.3390/ma15134384
![]() |
[47] |
M. L. Berndt, Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate, Constr. Build. Mater., 23 (2009), 2606–2613. https://doi.org/10.1016/j.conbuildmat.2009.02.011 doi: 10.1016/j.conbuildmat.2009.02.011
![]() |
[48] | Ministry of housing and urban-rural development of the People's Republic of China, Standard for Test Methods of Long-term Performance and Durability of Ordinary Concrete, China Architecture & Building Press, Beijing, 2009. |
[49] |
F. Biondini, A. Nero, Cellular finite beam element for nonlinear analysis of concrete structures under fire, J. Struct. Eng., 137 (2011). https://doi.org/10.1061/(ASCE)ST.1943-541X.0000307 doi: 10.1061/(ASCE)ST.1943-541X.0000307
![]() |
[50] | J. Podroužek, B. Teplý, Modelling of chloride transport inconcrete by cellular automata, Eng. Mech., 15 (2008), 213–222. |
[51] |
Q. Fu, Z. R. Zhang, Z. H. Wang, J. Q. He, D. T. Niu, Erosion behavior of ions in lining concrete incorporating fly ash and silica fume under the combined action of load and flowing groundwater containing composite salt, Case Stud. Constr. Mater., 17 (2022), e01659. https://doi.org/10.1016/j.cscm.2022.e01659 doi: 10.1016/j.cscm.2022.e01659
![]() |
[52] |
F. Liu, Z. P. You, Z. P. A. Diab, Z. Z. Liu, C. Zhang, S. C. Guo, External sulfate attack on concrete under combined effects of flexural fatigue loading and drying-wetting cycles, Constr. Build. Mater., 249 (2020), 118224. https://doi.org/10.1016/j.conbuildmat.2020.118224 doi: 10.1016/j.conbuildmat.2020.118224
![]() |
1. | Yoram Vodovotz, Gregory Constantine, James Faeder, Qi Mi, Jonathan Rubin, John Bartels, Joydeep Sarkar, Robert H. Squires, David O. Okonkwo, Jörg Gerlach, Ruben Zamora, Shirley Luckhart, Bard Ermentrout, Gary An, Translational Systems Approaches to the Biology of Inflammation and Healing, 2010, 32, 0892-3973, 181, 10.3109/08923970903369867 | |
2. | Jinhu Xu, Yicang Zhou, Hopf bifurcation and its stability for a vector-borne disease model with delay and reinfection, 2016, 40, 0307904X, 1685, 10.1016/j.apm.2015.09.007 | |
3. | Jia Li, Modelling of transgenic mosquitoes and impact on malaria transmission, 2011, 5, 1751-3758, 474, 10.1080/17513758.2010.523122 | |
4. | Kazeem O. Okosun, Ouifki Rachid, Nizar Marcus, Optimal control strategies and cost-effectiveness analysis of a malaria model, 2013, 111, 03032647, 83, 10.1016/j.biosystems.2012.09.008 | |
5. | Liming Cai, Xuezhi Li, Necibe Tuncer, Maia Martcheva, Abid Ali Lashari, Optimal control of a malaria model with asymptomatic class and superinfection, 2017, 288, 00255564, 94, 10.1016/j.mbs.2017.03.003 | |
6. | Liming Cai, Necibe Tuncer, Maia Martcheva, How does within-host dynamics affect population-level dynamics? Insights from an immuno-epidemiological model of malaria, 2017, 40, 01704214, 6424, 10.1002/mma.4466 | |
7. | Li-Ming Cai, Abid Ali Lashari, Il Hyo Jung, Kazeem Oare Okosun, Young Il Seo, Mathematical Analysis of a Malaria Model with Partial Immunity to Reinfection, 2013, 2013, 1085-3375, 1, 10.1155/2013/405258 | |
8. | Yang Li, Jia Li, Discrete-time model for malaria transmission with constant releases of sterile mosquitoes, 2019, 13, 1751-3758, 225, 10.1080/17513758.2018.1551580 | |
9. | K.O. Okosun, Rachid Ouifki, Nizar Marcus, Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity, 2011, 106, 03032647, 136, 10.1016/j.biosystems.2011.07.006 | |
10. | O.D. Makinde, K.O. Okosun, Impact of Chemo-therapy on Optimal Control of Malaria Disease with Infected Immigrants, 2011, 104, 03032647, 32, 10.1016/j.biosystems.2010.12.010 | |
11. | Yijun Lou, Xiao-Qiang Zhao, The periodic Ross–Macdonald model with diffusion and advection, 2010, 89, 0003-6811, 1067, 10.1080/00036810903437804 | |
12. | Yijun Lou, Xiao-Qiang Zhao, A Climate-Based Malaria Transmission Model with Structured Vector Population, 2010, 70, 0036-1399, 2023, 10.1137/080744438 | |
13. | DYNAMICS OF STAGE-STRUCTURED DISCRETE MOSQUITO POPULATION MODELS, 2011, 1, 2156-907X, 53, 10.11948/2011005 | |
14. | Hongyan Yin, Cuihong Yang, Xin'an Zhang, Jia Li, Dynamics of malaria transmission model with sterile mosquitoes, 2018, 12, 1751-3758, 577, 10.1080/17513758.2018.1498983 | |
15. | Jia Li, Simple discrete-time malarial models, 2013, 19, 1023-6198, 649, 10.1080/10236198.2012.672566 | |
16. | A. K. Misra, Anupama Sharma, Jia Li, A mathematical model for control of vector borne diseases through media campaigns, 2013, 18, 1553-524X, 1909, 10.3934/dcdsb.2013.18.1909 | |
17. | Shangbing Ai, Jia Li, Junliang Lu, Mosquito-Stage-Structured Malaria Models and Their Global Dynamics, 2012, 72, 0036-1399, 1213, 10.1137/110860318 | |
18. | Arman Rajaei, Amin Vahidi‐Moghaddam, Amir Chizfahm, Mojtaba Sharifi, Control of malaria outbreak using a non‐linear robust strategy with adaptive gains, 2019, 13, 1751-8652, 2308, 10.1049/iet-cta.2018.5292 | |
19. | Yanyuan Xing, Zhiming Guo, Jian Liu, Backward bifurcation in a malaria transmission model, 2020, 14, 1751-3758, 368, 10.1080/17513758.2020.1771443 | |
20. | Rashid Jan, Sultan Alyobi, Mustafa Inc, Ali Saleh Alshomrani, Muhammad Farooq, A robust study of the transmission dynamics of malaria through non-local and non-singular kernel, 2023, 8, 2473-6988, 7618, 10.3934/math.2023382 | |
21. | S.Y. Tchoumi, H. Rwezaura, J.M. Tchuenche, A mathematical model with numerical simulations for malaria transmission dynamics with differential susceptibility and partial immunity, 2023, 3, 27724425, 100165, 10.1016/j.health.2023.100165 | |
22. | Ge Zhang, Ying Peng, Ruoheng Wang, Cuihong Yang, Xin'an Zhang, The impact of releasing sterile mosquitoes on the dynamics of competition between different species of mosquitoes, 2024, 0, 1531-3492, 0, 10.3934/dcdsb.2024016 |