Malaria is a life-threatening mosquito-borne infectious disease prevalent in tropical regions, primarily transmitted to humans by the bites of infected Anopheles mosquitoes. This study presents a mathematical model analysis aimed at understanding the dynamics of malaria transmission and the effectiveness of various prevention strategies. Despite being preventable and curable, malaria continues to pose significant public health challenges, notably due to the risk of recurrent infections if improperly treated. The proposed deterministic model establishes the positivity and boundedness of solutions alongside the local stability of equilibria. A sensitivity analysis is conducted to identify key parameters impacting the basic reproduction number ($ R_0 $), which is crucial for evaluating intervention strategies. The findings indicate that although the current vaccines are not $ 100\% $ effective, vaccination could significantly contribute to malaria control alongside existing preventive measures, such as mosquito nets and insecticide spraying. The study underscores the need for a comprehensive approach combining multiple strategies to effectively reduce malaria transmission and improve health outcomes in endemic regions. Overall, this research highlights the importance of mathematical modeling in formulating effective disease control policies.
Citation: Khadiza Akter Eme, Md Kamrujjaman, Muntasir Alam, Md Afsar Ali. Vaccination and combined optimal control measures for malaria prevention and spread mitigation[J]. Mathematical Biosciences and Engineering, 2025, 22(8): 2039-2071. doi: 10.3934/mbe.2025075
Malaria is a life-threatening mosquito-borne infectious disease prevalent in tropical regions, primarily transmitted to humans by the bites of infected Anopheles mosquitoes. This study presents a mathematical model analysis aimed at understanding the dynamics of malaria transmission and the effectiveness of various prevention strategies. Despite being preventable and curable, malaria continues to pose significant public health challenges, notably due to the risk of recurrent infections if improperly treated. The proposed deterministic model establishes the positivity and boundedness of solutions alongside the local stability of equilibria. A sensitivity analysis is conducted to identify key parameters impacting the basic reproduction number ($ R_0 $), which is crucial for evaluating intervention strategies. The findings indicate that although the current vaccines are not $ 100\% $ effective, vaccination could significantly contribute to malaria control alongside existing preventive measures, such as mosquito nets and insecticide spraying. The study underscores the need for a comprehensive approach combining multiple strategies to effectively reduce malaria transmission and improve health outcomes in endemic regions. Overall, this research highlights the importance of mathematical modeling in formulating effective disease control policies.
| [1] | World Health Organization, WHO: Leading Health Emergency Response, Available from: https://www.who.int. |
| [2] |
L. Gao, Q. Shi, Z. Liu, Z. Li, X. Dong, Impact of the COVID-19 pandemic on malaria control in Africa: A preliminary analysis, Trop. Med. Infect. Dis., 8 (2023), 67. https://doi.org/10.3390/tropicalmed8010067 doi: 10.3390/tropicalmed8010067
|
| [3] |
S. Chhim, P. Piola, T. Housen, V. Herbreteau, B. Tol, Malaria in Cambodia: a retrospective analysis of a changing epidemiology 2006–2019, Int. J. Environ. Res. Public Health, 18 (2021), 1960. https://doi.org/10.3390/ijerph18041960 doi: 10.3390/ijerph18041960
|
| [4] |
S. Mandal, R. R. Sarkar, S. Sinha, Mathematical models of malaria—a review, Malar. J., 10 (2011), 1–19. https://doi.org/10.1186/1475-2875-10-202 doi: 10.1186/1475-2875-10-202
|
| [5] |
X. Li, R. W. Snow, K. Lindblade, A. M. Noor, R. Steketee, R. Rabinovich, et al., Border malaria: defining the problem to address the challenge of malaria elimination, Malar. J., 22 (2023), 239. https://doi.org/10.1186/s12936-023-04675-3 doi: 10.1186/s12936-023-04675-3
|
| [6] |
K. M. Mohammad, K. M. Akhi, M. Kamrujjaman, Bifurcation analysis of an influenza A (H1N1) model with treatment and vaccination, PLoS One, 20 (2025), e0315280. https://doi.org/10.1371/journal.pone.0315280 doi: 10.1371/journal.pone.0315280
|
| [7] |
M. Alam, K. Kuga, J. Tanimoto, Three-strategy and four-strategy model of vaccination game introducing an intermediate protecting measure, Appl. Math. Comput., 346 (2019), 408–422. https://doi.org/10.1016/j.chaos.2019.05.031 doi: 10.1016/j.chaos.2019.05.031
|
| [8] |
M. Alam, M. Tanaka, J. Tanimoto, A game theoretic approach to discuss the positive secondary effect of vaccination scheme in an infinite and well-mixed population, Chaos, Solitons Fractals, 125 (2019), 201–213. https://doi.org/10.1016/j.chaos.2019.05.031. doi: 10.1016/j.chaos.2019.05.031
|
| [9] |
U. Kulsum, M. Alam, M. Kamrujjaman, Modeling and investigating the dilemma of early and delayed vaccination driven by the dynamics of imitation and aspiration, Chaos, Solitons Fractals, 178 (2024), 114364. https://doi.org/10.1016/j.chaos.2023.114364 doi: 10.1016/j.chaos.2023.114364
|
| [10] |
M. Akter, M. Alam, M. Kamrujjaman, An in-silico game theoretic approach for health intervention efficacy assessment, Healthcare Anal., 5 (2024), 100318. https://doi.org/10.1016/j.health.2024.100318 doi: 10.1016/j.health.2024.100318
|
| [11] | C. W. Brown, M. E. l. Kahoui, D. Novotni, A. Weber, Algorithmic methods for investigating equilibria in epidemic modeling, J. Symb. Comput., 41 (2006), 59–63. |
| [12] |
A. A. Akhi, K. M. Mohammad, M. Kamrujjaman, Seasonal variability and stochastic branching process in malaria outbreak probability, Acta Trop., 257 (2024), 107311. https://doi.org/10.1016/j.actatropica.2024.107311 doi: 10.1016/j.actatropica.2024.107311
|
| [13] |
D. Greenhalgh, Some results for an SEIR epidemic model with density dependent in the death rate, IMA J. Math. Appl. Med. Biol., 9 (1992), 67–106. https://doi.org/10.1093/imammb/9.2.67 doi: 10.1093/imammb/9.2.67
|
| [14] |
W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics Ⅱ.—The problem of endemicity, Bull. Math. Biol., 53 (1991), 57–87. https://doi.org/10.1016/S0092-8240(05)80041-2 doi: 10.1016/S0092-8240(05)80041-2
|
| [15] | G. Macdonald, The Epidemiology and Control of Malaria Oxford, Oxford University Press, 1957. |
| [16] | R. Ross, The Prevention of Malaria, 2nd edition, Murray, London, 1911. https://doi.org/10.1007/978-0-85729-115-8-12 |
| [17] |
D. L. Smith, F. E. McKenzie, Statics and dynamics of malaria infection in Anopheles mosquitoes, Malar. J., 3 (2004), 13. https://doi.org/10.1186/1475-2875-3-13 doi: 10.1186/1475-2875-3-13
|
| [18] |
A. A. Akhi, M. Kamrujjaman, K. F. Nipa, T. Khan, A continuous-time Markov chain and stochastic differential equations approach for modeling malaria propagation, Healthcare Anal., 4 (2023), 100239. https://doi.org/10.1016/j.health.2023.100239 doi: 10.1016/j.health.2023.100239
|
| [19] |
A. A. Onifade, I. O. Ademola, J. Rychtá?, D. Taylor, A deterministic mathematical model for quantifiable prediction of antimalarials limiting the prevalence of multidrug-resistant malaria, Healthcare Anal., 5 (2024), 100333. https://doi.org/10.1016/j.health.2024.100333 doi: 10.1016/j.health.2024.100333
|
| [20] |
C. Chiyaka, J. M. Tchuenche, W. Garira, S. Dube, A mathematical analysis of the effects of control strategies on the transmission dynamics of malaria, Appl. Math. Comput., 195 (2008), 641–662. https://doi.org/10.1016/j.amc.2007.05.016 doi: 10.1016/j.amc.2007.05.016
|
| [21] |
A. Ayalew, Y. Molla, A. Woldegbreal, Modeling and stability analysis of the dynamics of malaria disease transmission with some control strategies, Abstr. Appl. Anal., 1 (2024), 8837744. https://doi.org/10.1155/2024/8837744 doi: 10.1155/2024/8837744
|
| [22] |
D. W. Dinsa, T. D. Keno, C. T. Deressa, A systematic review of age-structured malaria transmission models (2019–2024), Front. Appl. Math. Stat., 10 (2024), 1512390. https://doi.org/10.3389/fams.2024.1512390 doi: 10.3389/fams.2024.1512390
|
| [23] |
K. Blayneh, Y. Cao, H. D. Kwon, Optimal control of vector-borne diseases: Treatment and prevention, Discrete Contin. Dyn. Syst. - Ser. B, 11 (2009), 587–611. https://doi.org/10.3934/dcdsb.2009.11.587 doi: 10.3934/dcdsb.2009.11.587
|
| [24] | K. Okosun, Mathematical Epidemiology of Malaria Disease Transmission and its Optimal Control Analyses, PhD thesis, University of the Western Cape, South Africa, 2010. |
| [25] | WHO, Global Malaria Programme: Position Statement on ITNs, 2009. Available from: https://www.mofa.go.jp/mofaj/gaiko/oda/shimin/oda_ngo/taiwa/pdfs/seikyo_08_0210.pdf. |
| [26] |
S. Ahmed, S. Rahman, M. Kamrujjaman, Optimal treatment strategies to control acute HIV infection, Infect. Dis. Modell., 6 (2021), 1202–1219. https://doi.org/10.1016/j.idm.2021.09.004 doi: 10.1016/j.idm.2021.09.004
|
| [27] | C. Castillo, Optimal control of an epidemic through educational campaigns, Electron. J. Differ. Equations, 125 (2006), 1–11. |
| [28] |
R. M. Karrakchou, S. Gourari, Optimal control and infectiology: Application to an HIV/AIDS model, Appl. Math. Comput., 177 (2006), 807–818. https://doi.org/10.1016/j.amc.2005.11.092 doi: 10.1016/j.amc.2005.11.092
|
| [29] |
D. Kirschner, S. Lenhart, S. Serbin, Optimal control of the chemotherapy of HIV, J. Math. Biol., 35 (1997), 775–792. https://doi.org/10.1007/s002850050076 doi: 10.1007/s002850050076
|
| [30] |
P. S. Suresh, Optimal quarantine programmes for controlling an epidemic spread, J. Oper. Res. Soc., 29 (1978), 265–268. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
|
| [31] |
P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
|
| [32] | X. Yan, Y. Zou, J. Li, Optimal quarantine and isolation strategies in epidemics control, World J. Modell. Simul., 3 (2007), 202–211. |
| [33] | M. N. Hassan, M. S. Mahmud, K. F. Nipa, M. Kamrujjaman, Mathematical modeling and COVID-19 forecast in Texas, USA: a prediction model analysis and the probability of disease outbreak, Disaster Med. Public Health Preparedness, 17 (2023). https://doi.org/10.1017/dmp.2021.151 |
| [34] |
M. Rafikov, L. Bevilacqua, A. P. P. Wyse, Optimal control strategy of malaria vector using genetically modified mosquitoes, J. Theor. Biol., 258 (2009), 418–425. https://doi.org/10.1016/j.jtbi.2008.08.006 doi: 10.1016/j.jtbi.2008.08.006
|
| [35] |
K. Wickwire, A note on the optimal control of carrier-borne epidemic, J. Appl. Probab., 12 (1975), 565–568. https://doi.org/10.2307/3212871 doi: 10.2307/3212871
|
| [36] |
R. C. A. Thomé, H. M. Yang, L. Esteva, Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide, Math. Biosci., 223 (2010), 12–23. https://doi.org/10.1016/j.mbs.2009.08.009 doi: 10.1016/j.mbs.2009.08.009
|
| [37] |
T. D. Keno, L. B. Dano, O. D. Makinde, Modeling and optimal control analysis for malaria transmission with role of climate variability, Comput. Math. Methods, 1 (2022), 9667396. https://doi.org/10.1155/2022/9667396 doi: 10.1155/2022/9667396
|
| [38] |
D. G. Edossa, A. G. Wedajo, P. R. Koya, Optimal combinations of control strategies and cost‐effectiveness analysis of dynamics of endemic malaria transmission model, Comput. Math. Methods Med., 1 (2023), 7677951. https://doi.org/10.1155/2023/7677951 doi: 10.1155/2023/7677951
|
| [39] |
A. I. K. Butt, M. Imran, B. A. McKinney, S. Batool, H. Aftab, Mathematical and stability analysis of dengue – malaria co-infection with disease control strategies, Mathematics, 11 (2023), 4600. https://doi.org/10.3390/math11224600 doi: 10.3390/math11224600
|
| [40] |
Z. Yu, J. Zhang, Y. Zhang, X. Cong, X. Li, A. M. Mostafa, Mathematical modeling and simulation for COVID-19 with mutant and quarantined strategy, Chaos, Solitons Fractals, 181 (2024), 114656. https://doi.org/10.1016/j.chaos.2024.114656 doi: 10.1016/j.chaos.2024.114656
|
| [41] |
Z. Yu, S. Wu, Y. Zhang, X. Cong, K. Wu, IRLTS rumor propagation model considering the influence of lurking psychology and the truth of rumors, Nonlinear Dyn., 112 (2024), 1–17. https://doi.org/10.1007/s11071-024-09741-2 doi: 10.1007/s11071-024-09741-2
|
| [42] |
Z. Yu, H. Zi, Y. Zhang, S. Wu, X. Cong, A. M. Mostafa, Dynamic modeling and simulation of double-rumor spreaders in online social networks with IS2TR model, Nonlinear Dyn., 113 (2024), 4369–4393. https://doi.org/10.1007/s11071-024-09538-3 doi: 10.1007/s11071-024-09538-3
|
| [43] |
S. Olaniyi, O. S. Obabiyi, Mathematical model for malaria transmission dynamics in human and mosquito populations with nonlinear forces of infection, Int. J. Pure Appl. Math., 88 (2013), 125–156. https://doi.org/10.12732/ijpam.v88i1.10 doi: 10.12732/ijpam.v88i1.10
|
| [44] |
K. Blayneh, Y. Cao, H. Kwon, Optimal control of vector-borne diseases: treatment and prevention, Discrete Contin. Dyn. Syst., 11 (2009), 587–611. https://doi.org/10.3934/dcdsb.2009.11.587 doi: 10.3934/dcdsb.2009.11.587
|
| [45] |
K. O. Okosun, O. D. Makinde, Modelling the impact of drug resistance in malaria transmission and its optimal control analysis, Int. J. Phys. Sci., 6 (2011), 6479–6487. https://doi.org/10.5897/IJPS10.542 doi: 10.5897/IJPS10.542
|
| [46] |
P. Bejon, M. T. White, A. Olotu, K. Bojang, J. P. A. Lusingu, N. Salim, et al., Efficacy of RTS, S malaria vaccines: individual-participant pooled analysis of phase 2 data, Lancet Infect. Dis., 13 (2013), 319–327. https://doi.org/10.1016/S1473-3099(13)70005-7 doi: 10.1016/S1473-3099(13)70005-7
|
| [47] |
K. Kawata, M. Nakabayashi, Determinants of COVID-19 vaccine preference: A survey study in Japan, SSM Popul. Health, 15 (2021), 100902. https://doi.org/10.1016/j.ssmph.2021.100902 doi: 10.1016/j.ssmph.2021.100902
|
| [48] |
T. Fukai, K. Kawata, M. Nakabayashi, Updated beliefs and shaken confidence: evidence from vaccine hesitancy caused by experiencing "COVID arm", BMC Infect. Dis., 23 (2023), 612. https://doi.org/10.1186/s12879-023-08558-5 doi: 10.1186/s12879-023-08558-5
|
| [49] |
M. D. McKay, R. J. Beckman, R. J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21 (1979), 239–245. https://doi.org/10.2307/1268522 doi: 10.2307/1268522
|
| [50] |
H. Gulbudak, Z. Qu, F. Milner, N. Tuncer, Sensitivity analysis in an immuno-epidemiological vector-host model, Bull. Math. Biol., 84 (2022), 27. https://doi.org/10.1007/s11538-021-00979-0 doi: 10.1007/s11538-021-00979-0
|
| [51] | W. H. Fleming, R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer Verlag, New York, 1975. |
| [52] | L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Wiley, New York, 1962. https://doi.org/10.1002/zamm.19630431023 |
| [53] |
Z. Qu, D. Patterson, L. M. Childs, C. J. Edholm, J. Ponce, O. Prosper, et al., Modeling immunity to malaria with an age-structured pde framework, SIAM J. Appl. Math., 83 (2023), 1098–1125. https://doi.org/10.1137/21M1464427 doi: 10.1137/21M1464427
|
mbe-22-08-075-suplementary.pdf |
![]() |