Citation: Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche. Mathematical analysis of a model for HIV-malaria co-infection[J]. Mathematical Biosciences and Engineering, 2009, 6(2): 333-362. doi: 10.3934/mbe.2009.6.333
[1] | Kazeem Oare Okosun, Robert Smith? . Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences and Engineering, 2017, 14(2): 377-405. doi: 10.3934/mbe.2017024 |
[2] | Churni Gupta, Necibe Tuncer, Maia Martcheva . A network immuno-epidemiological model of HIV and opioid epidemics. Mathematical Biosciences and Engineering, 2023, 20(2): 4040-4068. doi: 10.3934/mbe.2023189 |
[3] | Nawei Chen, Shenglong Chen, Xiaoyu Li, Zhiming Li . Modelling and analysis of the HIV/AIDS epidemic with fast and slow asymptomatic infections in China from 2008 to 2021. Mathematical Biosciences and Engineering, 2023, 20(12): 20770-20794. doi: 10.3934/mbe.2023919 |
[4] | Yilong Li, Shigui Ruan, Dongmei Xiao . The Within-Host dynamics of malaria infection with immune response. Mathematical Biosciences and Engineering, 2011, 8(4): 999-1018. doi: 10.3934/mbe.2011.8.999 |
[5] | Shengqiang Liu, Lin Wang . Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences and Engineering, 2010, 7(3): 675-685. doi: 10.3934/mbe.2010.7.675 |
[6] | Pride Duve, Samuel Charles, Justin Munyakazi, Renke Lühken, Peter Witbooi . A mathematical model for malaria disease dynamics with vaccination and infected immigrants. Mathematical Biosciences and Engineering, 2024, 21(1): 1082-1109. doi: 10.3934/mbe.2024045 |
[7] | Lih-Ing W. Roeger, Z. Feng, Carlos Castillo-Chávez . Modeling TB and HIV co-infections. Mathematical Biosciences and Engineering, 2009, 6(4): 815-837. doi: 10.3934/mbe.2009.6.815 |
[8] | Qian Ding, Jian Liu, Zhiming Guo . Dynamics of a malaria infection model with time delay. Mathematical Biosciences and Engineering, 2019, 16(5): 4885-4907. doi: 10.3934/mbe.2019246 |
[9] | Oluwaseun Sharomi, Chandra N. Podder, Abba B. Gumel, Baojun Song . Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. Mathematical Biosciences and Engineering, 2008, 5(1): 145-174. doi: 10.3934/mbe.2008.5.145 |
[10] | Churni Gupta, Necibe Tuncer, Maia Martcheva . Immuno-epidemiological co-affection model of HIV infection and opioid addiction. Mathematical Biosciences and Engineering, 2022, 19(4): 3636-3672. doi: 10.3934/mbe.2022168 |
1. | K.O. Okosun, O.D. Makinde, A co-infection model of malaria and cholera diseases with optimal control, 2014, 258, 00255564, 19, 10.1016/j.mbs.2014.09.008 | |
2. | Temesgen Awoke, Semu Kassa, Optimal Control Strategy for TB-HIV/AIDS Co-Infection Model in the Presence of Behaviour Modification, 2018, 6, 2227-9717, 48, 10.3390/pr6050048 | |
3. | Farai Nyabadza, Senelani D. Hove-Musekwa, From heroin epidemics to methamphetamine epidemics: Modelling substance abuse in a South African province, 2010, 225, 00255564, 132, 10.1016/j.mbs.2010.03.002 | |
4. | S. Bowong, J. Kurths, Modelling Tuberculosis and Hepatitis B Co-infections, 2010, 5, 0973-5348, 196, 10.1051/mmnp/20105610 | |
5. | Samia Ghersheen, Vladimir Kozlov, Vladimir G. Tkachev, Uno Wennergren, Dynamical behaviour of SIR model with coinfection: The case of finite carrying capacity, 2019, 42, 0170-4214, 5805, 10.1002/mma.5671 | |
6. | A. Omame, D. Okuonghae, R.A. Umana, S.C. Inyama, Analysis of a co-infection model for HPV-TB, 2020, 77, 0307904X, 881, 10.1016/j.apm.2019.08.012 | |
7. | Xiulei Jin, Shuwan Jin, Daozhou Gao, Mathematical Analysis of the Ross–Macdonald Model with Quarantine, 2020, 82, 0092-8240, 10.1007/s11538-020-00723-0 | |
8. | Ibrahim M. ELmojtaba, J.Y.T. Mugisha, Mohsin H.A. Hashim, Mathematical analysis of the dynamics of visceral leishmaniasis in the Sudan, 2010, 217, 00963003, 2567, 10.1016/j.amc.2010.07.069 | |
9. | O.D. Makinde, K.O. Okosun, Impact of Chemo-therapy on Optimal Control of Malaria Disease with Infected Immigrants, 2011, 104, 03032647, 32, 10.1016/j.biosystems.2010.12.010 | |
10. | Peter Mpasho Mwamtobe, Simphiwe Mpumelelo Simelane, Shirley Abelman, Jean Michel Tchuenche, Optimal control of intervention strategies in malaria–tuberculosis co-infection with relapse, 2018, 11, 1793-5245, 1850017, 10.1142/S1793524518500171 | |
11. | E. Bonyah, M.A. Khan, K.O. Okosun, J.F. Gómez‐Aguilar, On the co‐infection of dengue fever and Zika virus, 2019, 40, 0143-2087, 394, 10.1002/oca.2483 | |
12. | Pierre Magal, Ousmane Seydi, Glenn Webb, Final Size of an Epidemic for a Two-Group SIR Model, 2016, 76, 0036-1399, 2042, 10.1137/16M1065392 | |
13. | N. Hussaini, J. M-S Lubuma, K. Barley, A.B. Gumel, Mathematical analysis of a model for AVL–HIV co-endemicity, 2016, 271, 00255564, 80, 10.1016/j.mbs.2015.10.008 | |
14. | Ayinla Ally Yeketi, Wan Ainun Mior Othman, M. A. Omar Awang, The role of vaccination in curbing tuberculosis epidemic, 2019, 5, 2363-6203, 1689, 10.1007/s40808-019-00623-w | |
15. | Kazeem O. Okosun, Ouifki Rachid, Nizar Marcus, Optimal control strategies and cost-effectiveness analysis of a malaria model, 2013, 111, 03032647, 83, 10.1016/j.biosystems.2012.09.008 | |
16. | Juan Wang, Xue-Zhi Li, Souvik Bhattacharya, The backward bifurcation of a model for malaria infection, 2018, 11, 1793-5245, 1850018, 10.1142/S1793524518500183 | |
17. | Daozhou Gao, Travis C. Porco, Shigui Ruan, Coinfection dynamics of two diseases in a single host population, 2016, 442, 0022247X, 171, 10.1016/j.jmaa.2016.04.039 | |
18. | KAZEEM OARE OKOSUN, ON THE DYNAMICS MALARIA-DYSENTERY CO-INFECTION MODEL, 2020, 28, 0218-3390, 453, 10.1142/S0218339020400082 | |
19. | Abdon Atangana, Sania Qureshi, 2020, 9781119654223, 225, 10.1002/9781119654223.ch9 | |
20. | Sanaa Moussa Salman, A nonstandard finite difference scheme and optimal control for an HIV model with Beddington–DeAngelis incidence and cure rate, 2020, 135, 2190-5444, 10.1140/epjp/s13360-020-00839-1 | |
21. | K.O. Okosun, Rachid Ouifki, Nizar Marcus, Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity, 2011, 106, 03032647, 136, 10.1016/j.biosystems.2011.07.006 | |
22. | Afshin Babaei, Hossein Jafari, Atena Liya, Mathematical models of HIV/AIDS and drug addiction in prisons, 2020, 135, 2190-5444, 10.1140/epjp/s13360-020-00400-0 | |
23. | K. U. Egeonu, A. Omame, S. C. Inyama, A co-infection model for two-strain Malaria and Cholera with optimal control, 2021, 2195-268X, 10.1007/s40435-020-00748-2 | |
24. | Winston Garira, 2013, Chapter 35, 978-1-4614-4997-3, 595, 10.1007/978-1-4614-4998-0_35 | |
25. | Daozhou Gao, Thomas M. Lietman, Travis C. Porco, Antibiotic resistance as collateral damage: The tragedy of the commons in a two-disease setting, 2015, 263, 00255564, 121, 10.1016/j.mbs.2015.02.007 | |
26. | Lathifah Hanif, Application of optimal control strategies to HIV-malaria co-infection dynamics, 2018, 974, 1742-6588, 012057, 10.1088/1742-6596/974/1/012057 | |
27. | Ana Carvalho, Carla M. A. Pinto, A delay fractional order model for the co-infection of malaria and HIV/AIDS, 2017, 5, 2195-268X, 168, 10.1007/s40435-016-0224-3 | |
28. | Sara Elsheikh, Rachid Ouifki, Kailash C. Patidar, A non-standard finite difference method to solve a model of HIV–Malaria co-infection, 2014, 20, 1023-6198, 354, 10.1080/10236198.2013.821116 | |
29. | Hossein Kheiri, Mohsen Jafari, Optimal control of a fractional-order model for the HIV/AIDS epidemic, 2018, 11, 1793-5245, 1850086, 10.1142/S1793524518500869 | |
30. | C.P. Bhunu, Mathematical analysis of a three-strain tuberculosis transmission model, 2011, 35, 0307904X, 4647, 10.1016/j.apm.2011.03.037 | |
31. | Jemal Mohammed-Awel, Eric Numfor, Optimal insecticide-treated bed-net coverage and malaria treatment in a malaria-HIV co-infection model, 2017, 11, 1751-3758, 160, 10.1080/17513758.2016.1192228 | |
32. | K.O. Okosun, O.D. Makinde, I. Takaidza, Impact of optimal control on the treatment of HIV/AIDS and screening of unaware infectives, 2013, 37, 0307904X, 3802, 10.1016/j.apm.2012.08.004 | |
33. | A. A. M. Arafa, M. Khalil, A. Sayed, A Non-Integer Variable Order Mathematical Model of Human Immunodeficiency Virus and Malaria Coinfection with Time Delay, 2019, 2019, 1076-2787, 1, 10.1155/2019/4291017 | |
34. | Samia Ghersheen, Vladimir Kozlov, Vladimir Tkachev, Uno Wennergren, Mathematical analysis of complex SIR model with coinfection and density dependence, 2019, 1, 2577-7408, 10.1002/cmm4.1042 | |
35. | H. Kheiri, M. Jafari, Fractional optimal control of an HIV/AIDS epidemic model with random testing and contact tracing, 2019, 60, 1598-5865, 387, 10.1007/s12190-018-01219-w | |
36. | Xiaoming Li, Xianghui Xu, Jie Wang, Jing Li, Sheng Qin, Juxiang Yuan, Study on Prediction Model of HIV Incidence Based on GRU Neural Network Optimized by MHPSO, 2020, 8, 2169-3536, 49574, 10.1109/ACCESS.2020.2979859 | |
37. | ANTTI SOLONEN, HEIKKI HAARIO, JEAN MICHEL TCHUENCHE, HERIETH RWEZAURA, STUDYING THE IDENTIFIABILITY OF EPIDEMIOLOGICAL MODELS USING MCMC, 2013, 06, 1793-5245, 1350008, 10.1142/S1793524513500083 | |
38. | Robert Smith, Kazeem Oare Okosun, Optimal control analysis of malaria–schistosomiasis co-infection dynamics, 2016, 13, 1551-0018, 2, 10.3934/mbe.2017024 | |
39. | Ibrahim M. ELmojtaba, Mathematical model for the dynamics of visceral leishmaniasis-malaria co-infection, 2016, 39, 01704214, 4334, 10.1002/mma.3864 | |
40. | F. Nyabadza, B. T. Bekele, M. A. Rúa, D. M. Malonza, N. Chiduku, M. Kgosimore, The Implications of HIV Treatment on the HIV-Malaria Coinfection Dynamics: A Modeling Perspective, 2015, 2015, 2314-6133, 1, 10.1155/2015/659651 | |
41. | A. Mhlanga, A theoretical model for the transmission dynamics of HIV/HSV-2 co-infection in the presence of poor HSV-2 treatment adherence, 2018, 3, 2444-8656, 603, 10.2478/AMNS.2018.2.00047 | |
42. | Wisdom S. Avusuglo, Kenzu Abdella, Wenying Feng, Stability analysis on an economic epidemiological model with vaccination, 2017, 14, 1551-0018, 975, 10.3934/mbe.2017051 | |
43. | Carla Pinto, Diana Rocha, 2012, A new mathematical model for co-infection of malaria and HIV, 978-1-4673-2703-9, 33, 10.1109/NSC.2012.6304760 | |
44. | Bashir Abdullahi Baba, Bulent Bilgehan, Optimal control of a fractional order model for the COVID – 19 pandemic, 2021, 144, 09600779, 110678, 10.1016/j.chaos.2021.110678 | |
45. | Purity M. Ngina, Rachel Waema Mbogo, Livingstone S. Luboobi, Mathematical Modelling of In-Vivo Dynamics of HIV Subject to the Influence of the CD8+ T-Cells, 2017, 08, 2152-7385, 1153, 10.4236/am.2017.88087 | |
46. | Sandeep Sharma, Nitu Kumari, 2018, Chapter 51, 978-981-10-5328-3, 673, 10.1007/978-981-10-5329-0_51 | |
47. | K. O. Okosun, M. A. Khan, E. Bonyah, S. T. Ogunlade, On the dynamics of HIV-AIDS and cryptosporidiosis, 2017, 132, 2190-5444, 10.1140/epjp/i2017-11625-3 | |
48. | Peter M. Mwamtobe, Shirley Abelman, J. Michel Tchuenche, Ansley Kasambara, Optimal (Control of) Intervention Strategies for Malaria Epidemic in Karonga District, Malawi, 2014, 2014, 1085-3375, 1, 10.1155/2014/594256 | |
49. | Baba Seidu, Oluwole D. Makinde, Ibrahim Y. Seini, Mathematical Analysis of the Effects of HIV-Malaria Co-infection on Workplace Productivity, 2015, 63, 0001-5342, 151, 10.1007/s10441-015-9255-y | |
50. | E. Lungu, T. J. Massaro, E. Ndelwa, N. Ainea, S. Chibaya, N. J. Malunguza, Mathematical Modeling of the HIV/Kaposi’s Sarcoma Coinfection Dynamics in Areas of High HIV Prevalence, 2013, 2013, 1748-670X, 1, 10.1155/2013/753424 | |
51. | S. Mushayabasa, J.M. Tchuenche, C.P. Bhunu, E. Ngarakana-Gwasira, Modeling gonorrhea and HIV co-interaction, 2011, 103, 03032647, 27, 10.1016/j.biosystems.2010.09.008 | |
52. | Oluwatayo M. Ogunmiloro, Local and global asymptotic behavior of malaria-filariasis coinfections in compliant and noncompliant susceptible pregnant women to antenatal medical program in the tropics, 2019, 2019, 2544-9990, 31, 10.2478/ejaam-2019-0003 | |
53. | Oluwatayo M. Ogunmiloro, Mathematical Modeling of the Coinfection Dynamics of Malaria-Toxoplasmosis in the Tropics, 2019, 56, 1896-3811, 139, 10.2478/bile-2019-0013 | |
54. | M.S. Goudiaby, L.D. Gning, M.L. Diagne, Ben M. Dia, H. Rwezaura, J.M. Tchuenche, Optimal control analysis of a COVID-19 and tuberculosis co-dynamics model, 2022, 28, 23529148, 100849, 10.1016/j.imu.2022.100849 | |
55. | Anwarud Din, Saida Amine, Amina Allali, A stochastically perturbed co-infection epidemic model for COVID-19 and hepatitis B virus, 2023, 111, 0924-090X, 1921, 10.1007/s11071-022-07899-1 | |
56. | Zinabu Teka Melese, Haileyesus Tessema Alemneh, Enhancing reservoir control in the co-dynamics of HIV-VL: from mathematical modeling perspective, 2021, 2021, 1687-1847, 10.1186/s13662-021-03584-6 | |
57. | Hilda Fahlena, Rudy Kusdiantara, Nuning Nuraini, Edy Soewono, Dynamical analysis of two-pathogen coinfection in influenza and other respiratory diseases, 2022, 155, 09600779, 111727, 10.1016/j.chaos.2021.111727 | |
58. | Solomon Kadaleka, Shirley Abelman, Jean M. Tchuenche, A Human-Bovine Schistosomiasis Mathematical Model with Treatment and Mollusciciding, 2021, 69, 0001-5342, 511, 10.1007/s10441-021-09416-0 | |
59. | A. Omame, H. Rwezaura, M. L. Diagne, S. C. Inyama, J. M. Tchuenche, COVID-19 and dengue co-infection in Brazil: optimal control and cost-effectiveness analysis, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-02030-6 | |
60. | M.L. Diagne, H. Rwezaura, S.A. Pedro, J.M. Tchuenche, Theoretical analysis of a measles model with nonlinear incidence functions, 2023, 117, 10075704, 106911, 10.1016/j.cnsns.2022.106911 | |
61. | HUSSAM ALRABAIAH, MATI UR RAHMAN, IBRAHIM MAHARIQ, SAMIA BUSHNAQ, MUHAMMAD ARFAN, FRACTIONAL ORDER ANALYSIS OF HBV AND HCV CO-INFECTION UNDER ABC DERIVATIVE, 2022, 30, 0218-348X, 10.1142/S0218348X22400369 | |
62. | Scott Greenhalgh, Carly Rozins, A generalized differential equation compartmental model of infectious disease transmission, 2021, 6, 24680427, 1073, 10.1016/j.idm.2021.08.007 | |
63. | M. L. Diagne, H. Rwezaura, S. Y. Tchoumi, J. M. Tchuenche, Jan Rychtar, A Mathematical Model of COVID-19 with Vaccination and Treatment, 2021, 2021, 1748-6718, 1, 10.1155/2021/1250129 | |
64. | S.Y. Tchoumi, E.Z. Dongmo, J.C. Kamgang, J.M. Tchuenche, Dynamics of a two-group structured malaria transmission model, 2022, 29, 23529148, 100897, 10.1016/j.imu.2022.100897 | |
65. | Wei-Yun Shen, Yu-Ming Chu, Mati ur Rahman, Ibrahim Mahariq, Anwar Zeb, Mathematical analysis of HBV and HCV co-infection model under nonsingular fractional order derivative, 2021, 28, 22113797, 104582, 10.1016/j.rinp.2021.104582 | |
66. | S.Y. Tchoumi, H. Rwezaura, J.M. Tchuenche, Dynamic of a two-strain COVID-19 model with vaccination, 2022, 39, 22113797, 105777, 10.1016/j.rinp.2022.105777 | |
67. | Bevina D. Handari, Rossi A. Ramadhani, Chidozie W. Chukwu, Sarbaz H. A. Khoshnaw, Dipo Aldila, An Optimal Control Model to Understand the Potential Impact of the New Vaccine and Transmission-Blocking Drugs for Malaria: A Case Study in Papua and West Papua, Indonesia, 2022, 10, 2076-393X, 1174, 10.3390/vaccines10081174 | |
68. | S.Y. Tchoumi, M.L. Diagne, H. Rwezaura, J.M. Tchuenche, Malaria and COVID-19 co-dynamics: A mathematical model and optimal control, 2021, 99, 0307904X, 294, 10.1016/j.apm.2021.06.016 | |
69. | N. Ringa, M.L. Diagne, H. Rwezaura, A. Omame, S.Y. Tchoumi, J.M. Tchuenche, HIV and COVID-19 co-infection: A mathematical model and optimal control, 2022, 31, 23529148, 100978, 10.1016/j.imu.2022.100978 | |
70. | Solomon Kadaleka, Shirley Abelman, Jean M. Tchuenche, A Mathematical Model of the Transmission Dynamics of Bovine Schistosomiasis with Contaminated Environment, 2022, 70, 0001-5342, 10.1007/s10441-021-09434-y | |
71. | Baba Seidu, Oluwole Daniel Makinde, Ibrahim Yakubu Seini, Andrew Pickering, On the Optimal Control of HIV-TB Co-Infection and Improvement of Workplace Productivity, 2023, 2023, 1607-887X, 1, 10.1155/2023/3716235 | |
72. | Mamadou Lamine Diagne, Herieth Rwezaura, S.A. Pedro, Jean Michel Tchuenche, Theoretical Analysis of a Measles Model with Nonlinear Incidence Functions, 2022, 1556-5068, 10.2139/ssrn.4160579 | |
73. | Sanaa Moussa Salman, Strong Resonance Bifurcations in a Discrete-Time In-Host Model With a Saturating Infection Rate, 2023, 18, 1555-1415, 10.1115/1.4062390 | |
74. | Dereje Gutema Edossa, Alemu Geleta Wedajo, Purnachandra Rao Koya, Andrei Korobeinikov, Optimal Combinations of Control Strategies and Cost-Effectiveness Analysis of Dynamics of Endemic Malaria Transmission Model, 2023, 2023, 1748-6718, 1, 10.1155/2023/7677951 | |
75. | I. Ratti, P. Kalra, Study of Disease Dynamics of Co-infection of Rotavirus and Malaria with Control Strategies, 2023, 17, 1823-8343, 151, 10.47836/mjms.17.2.05 | |
76. | Abou Bakari Diabaté, Boureima Sangaré, Ousmane Koutou, Optimal control analysis of a COVID-19 and Tuberculosis (TB) co-infection model with an imperfect vaccine for COVID-19, 2023, 2254-3902, 10.1007/s40324-023-00330-8 | |
77. | Adesoye Idowu Abioye, Olumuyiwa James Peter, Hammed Abiodun Ogunseye, Festus Abiodun Oguntolu, Tawakalt Abosede Ayoola, Asimiyu Olalekan Oladapo, A fractional-order mathematical model for malaria and COVID-19 co-infection dynamics, 2023, 27724425, 100210, 10.1016/j.health.2023.100210 | |
78. | Zhenfeng Shi, Daqing Jiang, A viral co-infection model with general infection rate in deterministic and stochastic environments, 2023, 10075704, 107436, 10.1016/j.cnsns.2023.107436 | |
79. | Zenebe Shiferaw Kifle, Legesse Lemecha Obsu, Mathematical modeling and analysis of COVID-19 and TB co-dynamics, 2023, 9, 24058440, e18726, 10.1016/j.heliyon.2023.e18726 | |
80. | Alina Glaubitz, Feng Fu, Population heterogeneity in vaccine coverage impacts epidemic thresholds and bifurcation dynamics, 2023, 24058440, e19094, 10.1016/j.heliyon.2023.e19094 | |
81. | Simeon Adeyemo, Adekunle Sangotola, Olga Korosteleva, Modeling Transmission Dynamics of Tuberculosis–HIV Co-Infection in South Africa, 2023, 4, 2673-3986, 408, 10.3390/epidemiologia4040036 | |
82. | Sonu Chugh, Joydip Dhar, Rangan K. Guha, Stability and optimal control of two products innovation diffusion system, 2023, 26667207, 100344, 10.1016/j.rico.2023.100344 | |
83. | Folashade B. Agusto, Ramsès Djidjou-Demasse, Ousmane Seydi, Mathematical model of Ehrlichia chaffeensis transmission dynamics in dogs , 2023, 17, 1751-3758, 10.1080/17513758.2023.2287082 | |
84. | Shaima Al-Shanfari, Ibrahim M. Elmojtaba, Nasser Al-Salti, Fatima Al-Shandari, Mathematical analysis and optimal control of cholera-malaria co-infection model, 2024, 26667207, 100393, 10.1016/j.rico.2024.100393 | |
85. | C.W. Chukwu, S.Y. Tchoumi, M.L. Diagne, A simulation study to assess the epidemiological impact of pneumonia transmission dynamics in high-risk populations, 2024, 10, 27726622, 100423, 10.1016/j.dajour.2024.100423 | |
86. | Naresh Kumar Jothi, A. Lakshmi, 2024, Chapter 43, 978-981-99-8645-3, 551, 10.1007/978-981-99-8646-0_43 | |
87. | Oluwatayo Michael Ogunmiloro, Amos Sesan Idowu, Dynamic insights into malaria–onchocerciasis co-disease transmission: mathematical modeling, basic reproduction number and sensitivity analysis, 2024, 30, 1405-213X, 10.1007/s40590-024-00601-y | |
88. | Rasha Majeed Yaseen, Hassan Fadhil Al-Husseiny, 2024, 3061, 0094-243X, 040040, 10.1063/5.0196252 | |
89. | Afonso Dimas Martins, Mick Roberts, Quirine ten Bosch, Hans Heesterbeek, Indirect interaction between an endemic and an invading pathogen: A case study of Plasmodium and Usutu virus dynamics in a shared bird host population, 2024, 157, 00405809, 118, 10.1016/j.tpb.2024.04.002 | |
90. | J. O. Akanni, S. Ajao, S. F. Abimbade, , Dynamical analysis of COVID-19 and tuberculosis co-infection using mathematical modelling approach, 2024, 4, 2767-8946, 208, 10.3934/mmc.2024018 | |
91. | Michael Byamukama, Damian Kajunguri, Martin Karuhanga, Optimal control analysis of pneumonia and HIV/AIDS co-infection model, 2024, 03, 2811-0072, 10.1142/S2811007224500068 | |
92. | M.G. Roberts, Infection thresholds for two interacting pathogens in a wild animal population, 2024, 375, 00255564, 109258, 10.1016/j.mbs.2024.109258 | |
93. | Akeem Olarewaju Yunus, Morufu Oyedunsi Olayiwola, Mathematical modeling of malaria epidemic dynamics with enlightenment and therapy intervention using the Laplace-Adomian decomposition method and Caputo fractional order, 2024, 8, 27731863, 100147, 10.1016/j.fraope.2024.100147 | |
94. | Yaxin Ren, Yakui Xue, Modeling and optimal control of COVID-19 and malaria co-infection based on vaccination, 2024, 4, 2767-8946, 316, 10.3934/mmc.2024026 | |
95. | Philip N. A. Akuka, Baba Seidu, Eric Okyere, Stephen Abagna, Mohamed Abdelsalam, Fractional‐Order Epidemic Model for Measles Infection, 2024, 2024, 2090-908X, 10.1155/2024/8997302 | |
96. | Nouar Chorfi, Samir Bendoukha, Salem Abdelmalek, The optimal control of an HIV/AIDS reaction-diffusion epidemic model, 2024, 0, 1937-1632, 0, 10.3934/dcdss.2024193 | |
97. | Kshama Jain, Anuradha Bhattacharjee, Srikumar Krishnamurhty, Mathematical analysis of COVID-19 and TB co-infection dynamics with optimal control, 2025, 11, 2363-6203, 10.1007/s40808-024-02197-8 | |
98. | Jamal Shah, Hameed Khan, Emad A. A. Ismail, Fuad A. Awaad, Abhinav Kumar, Modeling scabies transmission dynamics: a stochastic approach with spectral collocation and neural network insights, 2025, 140, 2190-5444, 10.1140/epjp/s13360-025-06025-5 | |
99. | Michael Byamukama, Martin Karuhanga, Damian Kajunguri, Nian-Sheng Tang, Mathematical Analysis of the Role of Treatment and Vaccination in the Management of the HIV/AIDS and Pneumococcal Pneumonia Co‐Infection, 2025, 2025, 2314-4629, 10.1155/jom/5879698 | |
100. | Anum Aish Buhader, Mujahid Abbas, Mudassar Imran, Andrew Omame, Existence and stability results in a fractional optimal control model for dengue and two-strains of salmonella typhi, 2025, 13, 26668181, 101075, 10.1016/j.padiff.2025.101075 | |
101. |
Purnendu Sardar, Santosh Biswas, Krishna Pada Das, Saroj Kumar Sahani, Vikas Gupta,
Stability, sensitivity, and bifurcation analysis of a fractional-order HIV model of CD T cells with memory and external virus transmission from macrophages,
2025,
140,
2190-5444,
10.1140/epjp/s13360-025-06081-x
|
|
102. | Shikha Saha, Amit Kumar Saha, Chandra Nath Podder, Dynamics of COVID-malaria co-infection with optimal control and cost-effectiveness analysis, 2025, 14, 26668181, 101217, 10.1016/j.padiff.2025.101217 |