Research article

Internet of Bio Nano Things-based FRET nanocommunications for eHealth


  • Received: 02 February 2023 Revised: 23 February 2023 Accepted: 27 February 2023 Published: 15 March 2023
  • The integration of the Internet of Bio Nano Things (IoBNT) with artificial intelligence (AI) and molecular communications technology is now required to achieve eHealth, specifically in the targeted drug delivery system (TDDS). In this work, we investigate an analytical framework for IoBNT with Forster resonance energy transfer (FRET) nanocommunication to enable intelligent bio nano thing (BNT) machine to accurately deliver therapeutic drug to the diseased cells. The FRET nanocommunication is accomplished by using the well-known pair of fluorescent proteins, EYFP and ECFP. Furthermore, the proposed IoBNT monitors drug transmission by using the quenching process in order to reduce side effects in healthy cells. We investigate the IoBNT framework by driving diffusional rate models in the presence of a quenching process. We evaluate the performance of the proposed framework in terms of the energy transfer efficiency, diffusion-controlled rate and drug loss rate. According to the simulation results, the proposed IoBNT with the intelligent bio nano thing for monitoring the quenching process can significantly achieve high energy transfer efficiency and low drug delivery loss rate, i.e., accurately delivering the desired therapeutic drugs to the diseased cell.

    Citation: Saied M. Abd El-Atty, Konstantinos A. Lizos, Osama Alfarraj, Faird Shawki. Internet of Bio Nano Things-based FRET nanocommunications for eHealth[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 9246-9267. doi: 10.3934/mbe.2023405

    Related Papers:

  • The integration of the Internet of Bio Nano Things (IoBNT) with artificial intelligence (AI) and molecular communications technology is now required to achieve eHealth, specifically in the targeted drug delivery system (TDDS). In this work, we investigate an analytical framework for IoBNT with Forster resonance energy transfer (FRET) nanocommunication to enable intelligent bio nano thing (BNT) machine to accurately deliver therapeutic drug to the diseased cells. The FRET nanocommunication is accomplished by using the well-known pair of fluorescent proteins, EYFP and ECFP. Furthermore, the proposed IoBNT monitors drug transmission by using the quenching process in order to reduce side effects in healthy cells. We investigate the IoBNT framework by driving diffusional rate models in the presence of a quenching process. We evaluate the performance of the proposed framework in terms of the energy transfer efficiency, diffusion-controlled rate and drug loss rate. According to the simulation results, the proposed IoBNT with the intelligent bio nano thing for monitoring the quenching process can significantly achieve high energy transfer efficiency and low drug delivery loss rate, i.e., accurately delivering the desired therapeutic drugs to the diseased cell.



    加载中


    [1] M. Kuscu, B. D. Unluturk, Internet of Bio-Nano Things: A review of applications, enabling technologies and key challenges, ITU J. Future Evol. Technol., 2 (2021), 1–24. https://doi.org/10.52953/CHBB9821 doi: 10.52953/CHBB9821
    [2] P. Manickam, S. A. Mariappan, S. M. Murugesan, S. Hansda, A. Kaushik, R. Shinde, et al., Artificial Intelligence (AI) and Internet of Medical Things (IoMT) assisted biomedical systems for intelligent healthcare, Biosensors, 12 (2022), 1–29. https://doi.org/10.3390/bios12080562 doi: 10.3390/bios12080562
    [3] I. F. Akyildiz, F. Brunetti, C. Blazquez, Nanonetworks: A new communication paradigm, Comput. Networks, 52 (2008), 2260–2279. https://doi.org/10.1016/j.comnet.2008.04.001 doi: 10.1016/j.comnet.2008.04.001
    [4] T. Nakano, T. Suda, M. Moore, R. Egashira, A. Enomoto, K. Arima, Molecular communication for nanomachines using intercellular calcium signaling, in 5th IEEE Conference on Nanotechnology, (2005), 1–5. https://doi.org/10.1109/NANO.2005.1500804
    [5] D. M. Charron, G. Zheng, Nanomedicine development guided by FRET imaging, Nano Today, 18 (2018), 124–136. https://doi.org/10.1016/j.nantod.2017.12.006 doi: 10.1016/j.nantod.2017.12.006
    [6] P. Kulakowski, K. Turbic, L. M. Correia, From nano-communications to body area networks: A perspective on truly personal communications, IEEE Access, 8 (2020), 159839–159853. https://doi.org/10.1109/ACCESS.2020.3015825 doi: 10.1109/ACCESS.2020.3015825
    [7] H. Chen, H. L. Puhl, S. V. Koushik, S. S. Vogel, S. R. Ikeda, Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells, Biophysics, 91 (2006), 39–41. https://doi.org/ 10.1529/biophysj.106.088773 doi: 10.1529/biophysj.106.088773
    [8] L. Liu, F. He, Y. Yu, Y. Wang, Application of FRET biosensors in mechanobiology and mechanopharmacological screening, Front. Bioeng. Biotechnol., 8 (2020), 1–17. https://doi.org/10.3389/fbioe.2020.595497 doi: 10.3389/fbioe.2020.595497
    [9] M. Kuscu, O. B. Akan, The Internet of molecular things based on FRET, IEEE Internet of Thin. J., 3 (2016), 4–17. https://doi.org/10.1109/JIOT.2015.2439045 doi: 10.1109/JIOT.2015.2439045
    [10] M. Kuscu, O. B. Akan, A physical channel model and analysis for nanoscale molecular communications with Förster resonance energy transfer (FRET), IEEE Trans., Nanotechnol., 11 (2012), 200–207. https://doi.org/10.1109/TNANO.2011.2170705 doi: 10.1109/TNANO.2011.2170705
    [11] S. A. Qureshi, W. W. W. Hsiao, L. Hussain, H. Aman, T. N. Le, M. Rafique, Development of fluorescent nanodiamonds for optical biosensing and disease diagnosis, Biosensors, 12 (2022), 1181 https://doi.org/10.3390/bios12121181 doi: 10.3390/bios12121181
    [12] Z. H. Chen, L. Lin, C. F. Wu, C. F. Li, R. H. Xu, Y. Sun, Artificial intelligence for assisting cancer diagnosis and treatment in the era of precision medicine, Cancer Commun. (Lond), 41 (2021), 1100−1115. https://doi.org/10.1002/cac2.12215 doi: 10.1002/cac2.12215
    [13] Y. Tian, A. C. Nusantara, T. Hamoh, A. Mzyk, X. Tian, F. Perona, et al., Functionalized fluorescent nanodiamonds for simultaneous drug delivery and quantum sensing in HeLa cells, ACS Appl. Mater. Interfaces, 14 (2022), 39265−39273. https://doi.org/10.1021/acsami.2c11688 doi: 10.1021/acsami.2c11688
    [14] Z. Zhu, Z. Yao, G. Qi, N. Mazur, B. Cong, Associative learning mechanism for drug-target interaction prediction, preprint, arXiv: 2205.15364. https://doi.org/10.48550/arXiv.2205.15364
    [15] Z. Zhu, X. He, G. Qi, Y. Li, B. Cong, Y. Liu, Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI, Inf. Fusion, 91 (2023), 376–387. https://doi.org/10.1016/j.inffus.2022.10.022. doi: 10.1016/j.inffus.2022.10.022
    [16] X. Peng, D. R. Draney, W. M. Volcheck, Quenched near-infrared fluorescent peptide substrate for HIV-1 protease assay, Opt. Mol. Probes Biomed. Appl., 6097 (2006), 1–12. https://doi.org/10.1117/12.669174 doi: 10.1117/12.669174
    [17] J. F. Lovell, J. Chen, M. T. Jarvi, W. Cao, A. D. Allen, Y. Liu, et al., FRET quenching of photosensitizer singlet oxygen generation, J. Phys. Chem. B, 113 (2009), 3203–3211. https://doi.org/10.1021/jp810324v doi: 10.1021/jp810324v
    [18] A. Hellebust, R. Richards-Kortum, Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics, Nanomedicine, 7 (2012), 429–445. https://doi.org/10.2217/nnm.12.12 doi: 10.2217/nnm.12.12
    [19] B. Fang, Y. Shen, B. Peng, H. Bai, L. Wang, J. Zhang, et al., Small-molecule quenchers for förster resonance energy transfer: Structure, mechanism, and applications, Angewandte Chemie, 6 (2022). https://doi.org/10.1002/anie.202207188 doi: 10.1002/anie.202207188
    [20] Y. Wu, T. Jiang, Developments in FRET- and BRET-based biosensors, Micromachines, 13 (2022), 1789, https://doi.org/10.3390/mi13101789 doi: 10.3390/mi13101789
    [21] Y. Zhang, H. Tang, W. Chen, J. Zhang, Nanomaterials used in fluorescence polarization based biosensors, Int. J. Mol. Sci., 23 (2022), 8625, https://doi.org/10.3390/ijms23158625 doi: 10.3390/ijms23158625
    [22] S. M. A. El-atty, Health monitoring scheme-based FRET nanocommunications in internet of biological nanothings, Nanomedicine, 33 (2020), 1–17. https://doi.org/10.1002/dac.4398 doi: 10.1002/dac.4398
    [23] O. Afzal, A. S. A. Altamimi, M. S. Nadeem, S. I. Alzarea, W. H. Almalki, A. Tariq, et al., Nanoparticles in drug delivery: From history to therapeutic applications, Sci. Rep., 12 (2022). https://doi.org/10.3390/nano12244494 doi: 10.3390/nano12244494
    [24] H. Pham, M. H. Soflaee, A. V. Karginov, L. W. Miller, Förster resonance energy transfer biosensors for fluorescence and time-gated luminescence analysis of rac1 activity, Sci. Rep., 12 (2022). https://doi.org/10.1038/s41598-022-09364-w doi: 10.1038/s41598-022-09364-w
    [25] M. Kuscu, A. Kiraz, O. B. Akan, Fluorescent molecules as transceiver nanoantennas: The first practical and high-rate information transfer over a nanoscale communication channel based on FRET, Sci. Rep., 5 (2015). https://doi.org/10.1038/srep07831 doi: 10.1038/srep07831
    [26] S. Somathilaka, D. P. Martins, X. Li, Y. Li, S. Balasubramaniam, Inferring gene regulatory neural networks for bacterial ddecision making in biofilms, preprint, arXiv: 2301.04225. https://doi.org/10.48550/arXiv.2301.04225
    [27] S. Do, C. Lee, T. Lee1, D. Kim, Y. Shin, Engineering DNA-based synthetic condensates with programmable material properties, compositions, and functionalities, Sci. Adv., 8 (2022), 1–14. https://doi.org:10.1126/sciadv.abj1771 doi: 10.1126/sciadv.abj1771
    [28] M. Swapna, U. M. Viswanadhula, R Aluvalu, V. Varadarajan, K. Kotecha, Bio-signals in medical applications and challenges using artificial intelligence, J. Sens. Actuator Netw, 11 (2022), 1–18. https://doi.org/10.3390/jsan11010017 doi: 10.3390/jsan11010017
    [29] G. Leriche, G. Budin, Z. Darwich, D. Weltin, Y. Mély, A. S. Klymchenko, et al., A FRET-based probe with a chemically deactivatable quencher, Chem. Commun., 48 (2012), 3224–3226. https://doi.org/10.1039/C2CC17542H doi: 10.1039/C2CC17542H
    [30] J. Zhang, L. Zhang, L. Chai, F. Yang, M. Du, T. Chen, Reliable measurement of the FRET sensitized-quenching transition factor for FRET quantification in living cells, Micron, 88 (2016), 7–15. https://doi.org/10.1016/j.micron.2016.04.005 doi: 10.1016/j.micron.2016.04.005
    [31] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edition, Springer New York, NY (2006). https://doi.org/10.1007/978-0-387-46312-4
    [32] S. A. E. Marras, F. R. Kramer, S. Tyagi, Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes, Nucleic Acids Res., 30 (2002), 1–10. https://doi.org/10.1093/nar/gnf121 doi: 10.1093/nar/gnf121
    [33] S. M. A. El-atty, R. Bider, S. El-Rabaie, MolCom system with Downlink/Uplink Biocyber Interface for Internet of Bio-NanoThings, Int. J. Commun. Syst., 23 (2020), 1–21. https://doi.org/10.1002/dac.4171 doi: 10.1002/dac.4171
    [34] U. A. K. Chude-Okonkwo, R. Malekian, B. T. Maharaj, Biologically inspired bio-cyber interface architecture and model for Internet of bio-nanothings applications, IEEE Trans. Commun., 64 (2020), 3444–3455. https://doi.org/10.1109/TCOMM.2016.2582870 doi: 10.1109/TCOMM.2016.2582870
    [35] S. Mohamed, J. Dong, S. M. A. El-atty, M. A. Eissa, Bio‑cyber interface parameter estimation with neural network for the Internet of Bio‑Nano Things, Wireless Pers. Commun., 123 (2022), 1245–1263. https://doi.org/10.1007/s11277-021-09177-6 doi: 10.1007/s11277-021-09177-6
    [36] A El-Fatyany, H. Wang, S. M. Abd El-atty, M. Khan, Biocyber interface-based privacy for Internet of Bio-nano Things, Wireless Pers. Commun, 114 (2020), 1465–1483. https://doi.org/10.1007/s11277-020-07433-9 doi: 10.1007/s11277-020-07433-9
    [37] S. M. A. El-atty, N. A. Arafa, A. Abouelazm, O. Alfarraj, K. A. Lizos, F. Shawki, Performance analysis of an artificial intelligence nanosystem with biological Internet of NanoThings, Comput. Mod. Eng. Sci., 133 (2022), 1–21. https://doi:10.32604/cmes.2022.020793 doi: 10.32604/cmes.2022.020793
    [38] R. Bonnett, Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy, Chem. Soc. Rev., 24 (1995), 19–35. https://doi.org/10.1039/CS99524FX001 doi: 10.1039/CS99524FX001
    [39] R Kmiecik, K. Wojcik, P. Kulakowski, A. Jajszczyk, Signal generation and storage in FRET-based nanocommunications, Nano Comm. Networks, 21 (2019), 100254. https://doi.org/10.48550/arXiv.1802.04886 doi: 10.48550/arXiv.1802.04886
    [40] R. Pepperkok, A. Squire, S. Geley, P. I. H. Bastiaens, Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy, Curr. Biol., 9 (1999), 269–274. https://doi.org/10.1016/s0960-9822(99)80117-1 doi: 10.1016/s0960-9822(99)80117-1
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1392) PDF downloads(77) Cited by(0)

Article outline

Figures and Tables

Figures(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog