By upgrading medical facilities with internet of things (IoT), early researchers have produced positive results. Isolated COVID-19 patients in remote areas, where patients are not able to approach a doctor for the detection of routine parameters, are now getting feasible. The doctors and families will be able to track the patient's health outside of the hospital utilizing sensors, cloud storage, data transmission, and IoT mobile applications. The main purpose of the proposed research-based project is to develop a remote health surveillance system utilizing local sensors. The proposed system also provides GSM messages, live location, and send email to the doctor during emergency conditions. Based on artificial intelligence (AI), a feedback action is taken in case of the absence of a doctor, where an automatic injection system injects the dose into the patient's body during an emergency. The significant parameters catering to our project are limited to ECG monitoring, SpO2 level detection, body temperature, and pulse rate measurement. Some parameters will be remotely shown to the doctor via the Blynk application in case of any abrupt change in the parameters. If the doctor is not available, the IoT system will send the location to the emergency team and relatives. In severe conditions, an AI-based system will analyze the parameters and injects the dose.
Citation: Muhammad Zia Ur Rahman, Ali Hassan Raza, Abeer Abdulaziz AlSanad, Muhammad Azeem Akbar, Rabia Liaquat, Muhammad Tanveer Riaz, Lulwah AlSuwaidan, Halah Abdulaziz Al-Alshaikh, Hatoon S Alsagri. Real-time artificial intelligence based health monitoring, diagnosing and environmental control system for COVID-19 patients[J]. Mathematical Biosciences and Engineering, 2022, 19(8): 7586-7605. doi: 10.3934/mbe.2022357
[1] | Tyson Loudon, Stephen Pankavich . Mathematical analysis and dynamic active subspaces for a long term model of HIV. Mathematical Biosciences and Engineering, 2017, 14(3): 709-733. doi: 10.3934/mbe.2017040 |
[2] | A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059 |
[3] | Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341 |
[4] | Yicang Zhou, Yiming Shao, Yuhua Ruan, Jianqing Xu, Zhien Ma, Changlin Mei, Jianhong Wu . Modeling and prediction of HIV in China: transmission rates structured by infection ages. Mathematical Biosciences and Engineering, 2008, 5(2): 403-418. doi: 10.3934/mbe.2008.5.403 |
[5] | Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022 |
[6] | Nara Bobko, Jorge P. Zubelli . A singularly perturbed HIV model with treatment and antigenic variation. Mathematical Biosciences and Engineering, 2015, 12(1): 1-21. doi: 10.3934/mbe.2015.12.1 |
[7] | A. M. Elaiw, N. H. AlShamrani . Analysis of an HTLV/HIV dual infection model with diffusion. Mathematical Biosciences and Engineering, 2021, 18(6): 9430-9473. doi: 10.3934/mbe.2021464 |
[8] | B. M. Adams, H. T. Banks, Hee-Dae Kwon, Hien T. Tran . Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches. Mathematical Biosciences and Engineering, 2004, 1(2): 223-241. doi: 10.3934/mbe.2004.1.223 |
[9] | Sophia Y. Rong, Ting Guo, J. Tyler Smith, Xia Wang . The role of cell-to-cell transmission in HIV infection: insights from a mathematical modeling approach. Mathematical Biosciences and Engineering, 2023, 20(7): 12093-12117. doi: 10.3934/mbe.2023538 |
[10] | Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa . A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences and Engineering, 2005, 2(4): 811-832. doi: 10.3934/mbe.2005.2.811 |
By upgrading medical facilities with internet of things (IoT), early researchers have produced positive results. Isolated COVID-19 patients in remote areas, where patients are not able to approach a doctor for the detection of routine parameters, are now getting feasible. The doctors and families will be able to track the patient's health outside of the hospital utilizing sensors, cloud storage, data transmission, and IoT mobile applications. The main purpose of the proposed research-based project is to develop a remote health surveillance system utilizing local sensors. The proposed system also provides GSM messages, live location, and send email to the doctor during emergency conditions. Based on artificial intelligence (AI), a feedback action is taken in case of the absence of a doctor, where an automatic injection system injects the dose into the patient's body during an emergency. The significant parameters catering to our project are limited to ECG monitoring, SpO2 level detection, body temperature, and pulse rate measurement. Some parameters will be remotely shown to the doctor via the Blynk application in case of any abrupt change in the parameters. If the doctor is not available, the IoT system will send the location to the emergency team and relatives. In severe conditions, an AI-based system will analyze the parameters and injects the dose.
[1] | K. Perumal, M. Manohar, A survey on internet of things: case studies, applications, and future directions, in Internet of Things: Novel Advances and Envisioned Applications, Springer, Cham, (2017), 281–297. https://doi.org/10.1007/978-3-319-53472-5_14 |
[2] |
A. Rahaman, M. M. Islam, M. R. Islam, M. S. Sadi, S. Nooruddin, Developing IoT based smart health monitoring systems: a review, Rev. Intell. Artif., 33 (2019), 435–440. https://doi.org/10.18280/ria.330605 doi: 10.18280/ria.330605
![]() |
[3] |
S. M. R. Islam, D. Kwak, M. D. H. Kabir, M. Hossain, K. S. Kwak, The internet of things for health care: a comprehensive survey, IEEE Acces, 3 (2015), 678–708. https://doi.org/10.1109/ACCESS.2015.2437951 doi: 10.1109/ACCESS.2015.2437951
![]() |
[4] |
T. Lin, H. Rivano, F. Le Mouël, A survey of smart parking solutions, IEEE Trans. Intell. Transp. Syst., 18 (2017), 3229–3253. https://doi.org/10.1109/TITS.2017.2685143 doi: 10.1109/TITS.2017.2685143
![]() |
[5] |
A. R. Al-Ali, I. A. Zualkernan, M. Rashid, R. Gupta, M. Alikarar, A smart home energy management system using IoT and big data analytics approach, IEEE Trans. Consum. Electron., 63 (2017), 426–434. https://doi.org/10.1109/TCE.2017.015014 doi: 10.1109/TCE.2017.015014
![]() |
[6] |
A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, Internet of things for smart cities, IEEE Internet Things J., 1 (2014), 22–32. https://doi.org/10.1109/JIOT.2014.2306328 doi: 10.1109/JIOT.2014.2306328
![]() |
[7] |
G. Mois, S. Folea, T. Sanislav, Analysis of three IoT-based wireless sensors for environmental monitoring, IEEE Trans. Instrum. Meas., 66 (2017), 2056–2064. https://doi.org/10.1109/TIM.2017.2677619 doi: 10.1109/TIM.2017.2677619
![]() |
[8] |
B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, B. Yin, Smart factory of industry 4.0: key technologies, application case, and challenges, IEEE Access, 6 (2018), 6505–6519. https://doi.org/10.1109/ACCESS.2017.2783682 doi: 10.1109/ACCESS.2017.2783682
![]() |
[9] |
M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, E. H. M. Aggoune, Internet-of-things (IoT)-based smart agriculture: toward making the felds talk, IEEE Access, 7 (2019), 129551–129583. https://doi.org/10.1109/ACCESS.2019.2932609 doi: 10.1109/ACCESS.2019.2932609
![]() |
[10] |
M. Hasan, M. M. Islam, M. I. I. Zarif, M. M. A. Hashem, Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches, Internet Things, 7 (2019), 100059. https://doi.org/10.1016/j.iot.2019.100059 doi: 10.1016/j.iot.2019.100059
![]() |
[11] |
S. Nooruddin, M. M. Islam, F. A. Sharna, An IoT based device-type invariant fall detection system, Internet Things, 9 (2020), 100130. https://doi.org/10.1016/j.iot.2019.100130 doi: 10.1016/j.iot.2019.100130
![]() |
[12] |
M. Islam, N. Neom, M. Imtiaz, S. Nooruddin, M. Islam, M. Islam, A review on fall detection systems using data from smartphone sensors, Ingénierie des systèmes d Inf., 24 (2019), 569–576. https://doi.org/10.18280/isi.240602 doi: 10.18280/isi.240602
![]() |
[13] | S. Mahmud, X. Lin, J. H. Kim, H. Iqbal, M. Rahat-Uz-Zaman, S. Reza, et al., A multi-modal human machine interface for controlling a smart wheelchair, in: 2019 IEEE 7th Conference on Systems, Process and Control (ICSPC), (2019), 10–13. https://doi.org/10.1109/ICSPC47137.2019.9068027 |
[14] | S. Mahmud, X. Lin, J. H. Kim, Interface for human machine interaction for assistant devices: a review, in: 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), (2020), 768–773. https://doi.org/10.1109/CCWC47524.2020.9031244 |
[15] | X. Lin, S. Mahmud, E. Jones, A. Shaker, A. Miskinis, S. Kanan, et al., Virtual reality-based musical therapy for mental health management, in 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), (2020), 948–952. https://doi.org/10.1109/CCWC47524.2020.9031157 |
[16] | A. Mdhaffar, T. Chaari, K. Larbi, M. Jmaiel, B. Freisleben, IoT-based health monitoring via LoRaWAN, in IEEE EUROCON 2017-17th International Conference on Smart Technologies, (2017), 519–524. https://doi.org/10.1109/EUROCON.2017.8011165 |
[17] | L. You, C. Liu, S. Tong, Community medical network (CMN): architecture and implementation, in 2011 Global Mobile Congress (GMC), (2011), 1–6. https://doi.org/10.1109/GMC.2011.6103930 |
[18] |
G. Yang, L. Xie, M. Mantysalo, X. Zhou, Z. Pang, L. D. Xu, et al., A health-IoT platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box, IEEE Trans. Ind. Inf., 10 (2014), 2180–2191. http://dx.doi.org/10.1109/TII.2014.2307795 doi: 10.1109/TII.2014.2307795
![]() |
[19] | P. Serikul, N. Nakpong, N. Nakjuatong, Smart farm monitoring via the Blynk IoT platform: case study: humidity monitoring and data recording, in 2018 16th International Conference on ICT and Knowledge Engineering (ICT & KE), (2018), 1–6. https://doi.org/10.1109/ICTKE.2018.8612441 |
[20] | World Health Organization, WHO coronavirus disease (COVID-19) dashboard with vaccination data, 2021. Available from: https://covid19.who.int/region/emro/country/pk. |
[21] | A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, Wireless sensor networks for habitat monitoring, in Proceedings of the 10th Annual International Conference on Mobile Computing and Networking, (2002), 88–97. https://doi.org/10.1145/570738.570751 |
[22] |
M. T. Riaz, A. A. AlSanad, S. Ahmad, M. A. Akbar, L. AlSuwaidan, H. A. AL-ALShaikh, et al., wireless controlled intelligent healthcare system for diplegia patients, Math. Biosci. Eng., 19 (2022), 456–472. https://doi.org/10.3934/mbe.2022022 doi: 10.3934/mbe.2022022
![]() |
[23] |
M. Hamza, M. A. Akbar, A. A. Alsanad, L. Alsuwaidan, H. S. AlSagri, et al., Decision-making framework of requirement engineering barriers in the domain of global healthcare information systems, Math. Prob. Eng., 2022 (2022). https://doi.org/10.1155/2022/8276662 doi: 10.1155/2022/8276662
![]() |
[24] |
M.A. Akbar, A. Alsanad, S. Mahmood, A. Alothaim, A multicriteria decision making taxonomy of IoT security challenging factors, IEEE Access, 9 (2021), 128841–128861. https://doi.org/10.1109/ACCESS.2021.3104527 doi: 10.1109/ACCESS.2021.3104527
![]() |
[25] |
P. Magaña-Espinoza, R. Aquino-Santos, N. Cárdenas-Benítez, J. Aguilar-Velasco, C. Buenrostro-Segura, A. Edwards-Block, et al., WiSPH: a wireless sensor network-based home care monitoring system, Sensors, 14 (2014), 7096–7119. https://doi.org/10.3390/s140407096 doi: 10.3390/s140407096
![]() |
[26] |
C. A. Palacios, J. A. Reyes-Suárez, L. A. Bearzotti, V. Leiva, C. Marchant, Knowledge discovery for higher education student retention based on data mining: machine learning algorithms and case study in Chile, Entropy, 23 (2021), 85. https://doi.org/10.3390/e23040485 doi: 10.3390/e23040485
![]() |
[27] | N. Bustos, M. Tello, G. Droppelmann, N. García, F. Feijoo, V. Leiva. Machine learning techniques as an efficient alternative diagnostic tool for COVID-19 cases, Signa Vitae, 18 (2022), 23–33. https://www.signavitae.com/articles/10.22514/sv.2021.110 |
[28] |
M. Z. Ur-Rahman, M. T. Riaz, M. M. S. Al-Mahmud, M. Rizwan, M. A. Choudhry, The prescribed fixed structure intelligent robust control of an electrohydraulic servo system, Math. Prob. Eng., 2022 (2022). https://doi.org/10.1155/2022/5144602 doi: 10.1155/2022/5144602
![]() |
[29] |
M. W. Li, D. Y. Xu, J. Geng, W. C. Hong, A ship motion forecasting approach based on empirical mode decomposition method hybrid deep learning network and quantum butterfly optimization algorithm, Nonlinear Dyn., 107 (2022), 2447–2467. https://doi.org/10.1007/s11071-021-07139-y doi: 10.1007/s11071-021-07139-y
![]() |
[30] |
J. Pan, W. J. Tompkins, A real-time QRS detection algorithm, IEEE Trans. Biomed. Eng., 3 (1985), 230–236. https://doi.org/10.1109/TBME.1985.325532.PMID3997178 doi: 10.1109/TBME.1985.325532.PMID3997178
![]() |
[31] |
K. S. Oh, K. Jung, GPU implementation of neural networks, Pattern Recognit., 37 (2004), 1311–1314. https://doi.org/10.1016/j.patcog.2004.01.013 doi: 10.1016/j.patcog.2004.01.013
![]() |
[32] | P. Valsalan, T. A. B. Baomar, A. H. O. Baabood, IoT based health monitoring system, J. Crit. Rev., 7 (2020), 739–743. http://dx.doi.org/10.31838/jcr.07.04.137 |
[33] |
K. Guk, G. Han, J. Lim, K. Jeong, T. Kang, E. K. Lim, et al., Evolution of wearable devices with real-time disease monitoring for personalized healthcare, Nanomaterials, 9 (2019), 813. https://doi.org/10.3390/nano9060813 doi: 10.3390/nano9060813
![]() |
[34] | D. S. R. Krishnan, S. C. Gupta, T. Choudhury, An IoT based patient health monitoring system, in 2018 International Conference on Advances in Computing and Communication Engineering (ICACCE), 2018, 1–7. https://doi.org/10.1109/ICACCE.2018.8441708 |
[35] | N. Misran, M. S. Islam, G. K. Beng, N. Amin, M. T. Islam, IoT based health monitoring system with LoRa communication technology, in 2019 International Conference on Electrical Engineering and Informatics (ICEEI), 2019,514–517. https://doi.org/10.1109/ICEEI47359.2019.8988869 |
[36] |
M. Manas, A. Sinha, S. Sharma, M. R. Mahboob, A novel approach for IoT based wearable health monitoring and messaging system, J. Ambient Intell. Humanized Comput., 10 (2019), 2817–2828. https://doi.org/10.1007/s12652-018-1101-z doi: 10.1007/s12652-018-1101-z
![]() |
[37] |
M. M. Khan, S. Mehnaz, A. Shaha, M. Nayem, S. Bourouis, IoT-Based Smart Health Monitoring System for COVID-19 Patients, Comput. Math. Methods Med., 2021 (2021). https://doi.org/10.1155/2021/8591036 doi: 10.1155/2021/8591036
![]() |
[38] |
M. T. Riaz, E. M. Ahmed, F. Durrani, M. A. Mond, Wireless android-based home automation system, Adv. Sci. Technol. Eng. Syst. J., 2 (2017), 234–239. https://doi.org/10.25046/aj020128 doi: 10.25046/aj020128
![]() |
[39] | J. P. Queralta, T. N. Gia, H. Tenhunen, T. Westerlund, Edge-AI in LoRa-based health monitoring: fall detection system with fog computing and LSTM recurrent neural networks, in 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), (2019), 601–604. https://doi.org/10.1109/TSP.2019.8768883 |
[40] | U. Dampage, C. Balasuriya, S. Thilakarathna, D. Rathnayaka, L. Kalubowila, AI-based heart monitoring system, in 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), (2021), 1–6. https://doi.org/10.1109/GUCON50781.2021.9573888 |
[41] |
G. J. Joyia, R. M. Liaqat, A. Farooq, S. Rehman, Internet of medical things (IoMT): Applications, benefits and future challenges in healthcare domain, J. Commun., 12 (2017), 240–247. https://doi.org/10.12720/jcm.12.4.240-247 doi: 10.12720/jcm.12.4.240-247
![]() |
[42] | T. T. Chhowa, M. A. Rahman, A. K. Paul, R. Ahmmed, A narrative analysis on deep learning in IoT based medical big data analysis with future perspectives, in 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), 2019, 1–6. https://doi.org/10.1109/ECACE.2019.8679200 |
1. | Marios M. Hadjiandreou, Raúl Conejeros, D. Ian Wilson, Planning of patient-specific drug-specific optimal HIV treatment strategies, 2009, 64, 00092509, 4024, 10.1016/j.ces.2009.06.009 | |
2. | Hassan Zarei, Ali Vahidian Kamyad, Sohrab Effati, Maximizing of Asymptomatic Stage of Fast Progressive HIV Infected Patient Using Embedding Method, 2010, 01, 2153-0653, 48, 10.4236/ica.2010.11006 | |
3. | Xinqi Xie, Junling Ma, P. van den Driessche, Backward bifurcation in within-host HIV models, 2021, 00255564, 108569, 10.1016/j.mbs.2021.108569 | |
4. | Esteban A. Hernandez-Vargas, Dhagash Mehta, Richard H. Middleton, Towards Modeling HIV Long Term Behavior, 2011, 44, 14746670, 581, 10.3182/20110828-6-IT-1002.00685 | |
5. | I Hosseini, F Mac Gabhann, Mechanistic Models Predict Efficacy of CCR5‐Deficient Stem Cell Transplants in HIV Patient Populations, 2016, 5, 2163-8306, 82, 10.1002/psp4.12059 | |
6. | Esteban A. Hernandez-Vargas, Richard H. Middleton, Modeling the three stages in HIV infection, 2013, 320, 00225193, 33, 10.1016/j.jtbi.2012.11.028 | |
7. | M. M. Hadjiandreou, R. Conejeros, D. Ian Wilson, 2012, Controlling AIDS progression in patients with rapid HIV dynamics, 978-1-4577-1096-4, 4078, 10.1109/ACC.2012.6314737 | |
8. | Esteban A. Hernandez-Vargas, Richard H. Middleton, Patrizio Colaneri, Franco Blanchini, 2010, Dynamic optimization algorithms to mitigate HIV escape, 978-1-4244-7745-6, 827, 10.1109/CDC.2010.5717251 | |
9. | Robert J. Smith, B. D. Aggarwala, Can the viral reservoir of latently infected CD4+ T cells be eradicated with antiretroviral HIV drugs?, 2009, 59, 0303-6812, 697, 10.1007/s00285-008-0245-4 | |
10. | YUEPING DONG, WANBIAO MA, GLOBAL PROPERTIES FOR A CLASS OF LATENT HIV INFECTION DYNAMICS MODEL WITH CTL IMMUNE RESPONSE, 2012, 10, 0219-6913, 1250045, 10.1142/S0219691312500452 | |
11. | Hassan Zarei, Ali Vahidian Kamyad, Sohrab Effati, Multiobjective Optimal Control of HIV Dynamics, 2010, 2010, 1024-123X, 1, 10.1155/2010/568315 | |
12. | M. Arantxa Colchero, Yanink N. Caro-Vega, Gilberto Sánchez-González, Sergio Bautista-Arredondo, A literature review of reporting standards of HIV progression models, 2012, 26, 0269-9370, 1335, 10.1097/QAD.0b013e3283533ae2 | |
13. | G. Bocharov, V. Chereshnev, I. Gainova, S. Bazhan, B. Bachmetyev, J. Argilaguet, J. Martinez, A. Meyerhans, Human Immunodeficiency Virus Infection : from Biological Observations to Mechanistic Mathematical Modelling, 2012, 7, 0973-5348, 78, 10.1051/mmnp/20127507 | |
14. | Elizabeth Gross, Brent Davis, Kenneth L. Ho, Daniel J. Bates, Heather A. Harrington, Numerical algebraic geometry for model selection and its application to the life sciences, 2016, 13, 1742-5689, 20160256, 10.1098/rsif.2016.0256 | |
15. | 2019, 9780128130520, 221, 10.1016/B978-0-12-813052-0.00023-3 | |
16. | Tyson Loudon, Stephen Pankavich, Mathematical analysis and dynamic active subspaces for a long term model of HIV, 2017, 14, 1551-0018, 709, 10.3934/mbe.2017040 | |
17. | Marcos A. Capistrán, A study of latency, reactivation and apoptosis throughout HIV pathogenesis, 2010, 52, 08957177, 1011, 10.1016/j.mcm.2010.03.022 | |
18. | Marios M. Hadjiandreou, Raul Conejeros, D. Ian Wilson, Long-term HIV dynamics subject to continuous therapy and structured treatment interruptions, 2009, 64, 00092509, 1600, 10.1016/j.ces.2008.12.010 | |
19. | 2019, 9780128130520, 105, 10.1016/B978-0-12-813052-0.00017-8 | |
20. | Ali Heydari, S.N. Balakrishnan, Optimal multi-therapeutic HIV treatment using a global optimal switching scheme, 2013, 219, 00963003, 7872, 10.1016/j.amc.2013.01.070 | |
21. | Esteban A. Hernandez-Vargas, Modeling Kick-Kill Strategies toward HIV Cure, 2017, 8, 1664-3224, 10.3389/fimmu.2017.00995 | |
22. | Emiliano Mancini, Rick Quax, Andrea De Luca, Sarah Fidler, Wolfgang Stohr, Peter M. A. Sloot, Siddappa N. Byrareddy, A study on the dynamics of temporary HIV treatment to assess the controversial outcomes of clinical trials: An in-silico approach, 2018, 13, 1932-6203, e0200892, 10.1371/journal.pone.0200892 | |
23. | 2019, 9780128130520, 129, 10.1016/B978-0-12-813052-0.00018-X | |
24. | Esteban Hernandez-Vargas, Patrizio Colaneri, Richard Middleton, Franco Blanchini, Discrete-time control for switched positive systems with application to mitigating viral escape, 2011, 21, 10498923, 1093, 10.1002/rnc.1628 | |
25. | H. Zarei, A. V. Kamyad, M. H. Farahi, Optimal Control of HIV Dynamic Using Embedding Method, 2011, 2011, 1748-670X, 1, 10.1155/2011/674318 | |
26. | Matthias Haering, Andreas Hördt, Michael Meyer-Hermann, Esteban A. Hernandez-Vargas, Computational Study to Determine When to Initiate and Alternate Therapy in HIV Infection, 2014, 2014, 2314-6133, 1, 10.1155/2014/472869 | |
27. | Esteban A. Hernandez-Vargas, Richard H. Middleton, Patrizio Colaneri, Optimal and MPC Switching Strategies for Mitigating Viral Mutation and Escape, 2011, 44, 14746670, 14857, 10.3182/20110828-6-IT-1002.01137 | |
28. | Charlotte Lew, 2022, Neural Network Modeling of HIV Acute and Chronic Phases With and Without Antiretroviral Intervention, 978-1-6654-7184-8, 47, 10.1109/TransAI54797.2022.00014 | |
29. | Qiang-hui Xu, Ji-cai Huang, Yue-ping Dong, Yasuhiro Takeuchi, A Delayed HIV Infection Model with the Homeostatic Proliferation of CD4+ T Cells, 2022, 38, 0168-9673, 441, 10.1007/s10255-022-1088-2 | |
30. | Konstantin E. Starkov, Anatoly N. Kanatnikov, Eradication Conditions of Infected Cell Populations in the 7-Order HIV Model with Viral Mutations and Related Results, 2021, 9, 2227-7390, 1862, 10.3390/math9161862 | |
31. | Huseyin Tunc, Murat Sari, Seyfullah Kotil, Machine learning aided multiscale modelling of the HIV-1 infection in the presence of NRTI therapy, 2023, 11, 2167-8359, e15033, 10.7717/peerj.15033 | |
32. | A. N. Kanatnikov, O. S. Tkacheva, Behavior of Trajectories of a Four-Dimensional Model of HIV Infection, 2023, 59, 0012-2661, 1451, 10.1134/S00122661230110022 | |
33. | Cameron Clarke, Stephen Pankavich, Three-stage modeling of HIV infection and implications for antiretroviral therapy, 2024, 88, 0303-6812, 10.1007/s00285-024-02056-1 | |
34. | A. N. Kanatnikov, O. S. Tkacheva, Behavior of Trajectories of a Four-Dimensional Model of HIV Infection, 2023, 59, 0374-0641, 1451, 10.31857/S037406412311002X | |
35. | A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Analysis of HHV-8/HIV-1 co-dynamics model with latency, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05202-2 | |
36. | A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Stability of HHV-8 and HIV-1 co-infection model with latent reservoirs and multiple distributed delays, 2024, 9, 2473-6988, 19195, 10.3934/math.2024936 | |
37. | Yueping Dong, Jicai Huang, Yasuhiro Takeuchi, Qianghui Xu, 2024, Chapter 2, 978-981-97-7849-2, 11, 10.1007/978-981-97-7850-8_2 | |
38. | A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Modeling the co-infection of HTLV-2 and HIV-1 in vivo, 2024, 32, 2688-1594, 6032, 10.3934/era.2024280 | |
39. | Xia Wang, Yue Wang, Yueping Dong, Libin Rong, Dynamics of a delayed HIV infection model with cell-to-cell transmission and homeostatic proliferation, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05845-1 | |
40. | A.M. Elaiw, E.A. Almohaimeed, A.D. Hobiny, Stability analysis of a diffusive HTLV-2 and HIV-1 co-infection model, 2025, 116, 11100168, 232, 10.1016/j.aej.2024.11.074 | |
41. | Jing Cai, Jun Zhang, Kai Wang, Zhixiang Dai, Zhiliang Hu, Yueping Dong, Zhihang Peng, Evaluating the long-term effects of combination antiretroviral therapy of HIV infection: a modeling study, 2025, 90, 0303-6812, 10.1007/s00285-025-02196-y | |
42. | Jun Zhang, Jing Cai, Yasuhiro Takeuchi, Yueping Dong, Zhihang Peng, Rich dynamics induced by homeostatic proliferation of both CD4+ T cells and macrophages in HIV infection and persistence, 2025, 2025, 2731-4235, 10.1186/s13662-025-03941-9 | |
43. | A. M. Elaiw, E. A. Almohaimeed, Within-host dynamics of HTLV-2 and HIV-1 co-infection with delay, 2025, 19, 1751-3758, 10.1080/17513758.2025.2506536 | |
44. | A. M. Elaiw, E. Dahy, H. Z. Zidan, A. A. Abdellatif, Stability of an HIV-1 abortive infection model with antibody immunity and delayed inflammatory cytokine production, 2025, 140, 2190-5444, 10.1140/epjp/s13360-025-06475-x |