Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

A SEIARQ model combine with Logistic to predict COVID-19 within small-world networks

  • Received: 26 September 2022 Revised: 13 November 2022 Accepted: 06 December 2022 Published: 16 December 2022
  • Since the COVID-19 epidemic, mathematical and simulation models have been extensively utilized to forecast the virus's progress. In order to more accurately describe the actual circumstance surrounding the asymptomatic transmission of COVID-19 in urban areas, this research proposes a model called Susceptible-Exposure-Infected-Asymptomatic-Recovered-Quarantine in a small-world network. In addition, we coupled the epidemic model with the Logistic growth model to simplify the process of setting model parameters. The model was assessed through experiments and comparisons. Simulation results were analyzed to explore the main factors affecting the spread of the epidemic, and statistical analysis that was applied to assess the model's accuracy. The results are consistent well with epidemic data from Shanghai, China in 2022. The model can not only replicate the real virus transmission data, but also anticipate the development trend of the epidemic based on available data, so that health policy-makers can better understand the spread of the epidemic.

    Citation: Qinghua Liu, Siyu Yuan, Xinsheng Wang. A SEIARQ model combine with Logistic to predict COVID-19 within small-world networks[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 4006-4017. doi: 10.3934/mbe.2023187

    Related Papers:

    [1] Cameron J. Browne, Chang-Yuan Cheng . Age-structured viral dynamics in a host with multiple compartments. Mathematical Biosciences and Engineering, 2020, 17(1): 538-574. doi: 10.3934/mbe.2020029
    [2] Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369
    [3] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
    [4] Ran Zhang, Shengqiang Liu . Global dynamics of an age-structured within-host viral infection model with cell-to-cell transmission and general humoral immunity response. Mathematical Biosciences and Engineering, 2020, 17(2): 1450-1478. doi: 10.3934/mbe.2020075
    [5] Jinliang Wang, Xiu Dong . Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences and Engineering, 2018, 15(3): 569-594. doi: 10.3934/mbe.2018026
    [6] Andrey V. Melnik, Andrei Korobeinikov . Global asymptotic properties of staged models with multiple progression pathways for infectious diseases. Mathematical Biosciences and Engineering, 2011, 8(4): 1019-1034. doi: 10.3934/mbe.2011.8.1019
    [7] Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li . Global stability of an age-structured cholera model. Mathematical Biosciences and Engineering, 2014, 11(3): 641-665. doi: 10.3934/mbe.2014.11.641
    [8] Jinhu Xu . Dynamic analysis of a cytokine-enhanced viral infection model with infection age. Mathematical Biosciences and Engineering, 2023, 20(5): 8666-8684. doi: 10.3934/mbe.2023380
    [9] Xichao Duan, Sanling Yuan, Kaifa Wang . Dynamics of a diffusive age-structured HBV model with saturating incidence. Mathematical Biosciences and Engineering, 2016, 13(5): 935-968. doi: 10.3934/mbe.2016024
    [10] Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
  • Since the COVID-19 epidemic, mathematical and simulation models have been extensively utilized to forecast the virus's progress. In order to more accurately describe the actual circumstance surrounding the asymptomatic transmission of COVID-19 in urban areas, this research proposes a model called Susceptible-Exposure-Infected-Asymptomatic-Recovered-Quarantine in a small-world network. In addition, we coupled the epidemic model with the Logistic growth model to simplify the process of setting model parameters. The model was assessed through experiments and comparisons. Simulation results were analyzed to explore the main factors affecting the spread of the epidemic, and statistical analysis that was applied to assess the model's accuracy. The results are consistent well with epidemic data from Shanghai, China in 2022. The model can not only replicate the real virus transmission data, but also anticipate the development trend of the epidemic based on available data, so that health policy-makers can better understand the spread of the epidemic.



    In the early 1930s, in order to generalize the formula of quantum mechanics, Jordan et al. introduced an important commutative non-associative algebra [1], which was initially called "r-order digital system". In 1947, Albert renamed this kind of algebra Jordan algebra and studied their structural theory [2]. Since then, Jordan algebras have attracted extensive attention. Particularly, Jacobson developed the representation theory of Jordan algebras [3,4]. Jordan superalgebras were first studied by Kac, who classified simple finite dimensional Jordan superalgebras over an algebraically closed field of characteristic zero [5]. Jordan superalgebras also have significant applications in quantum mechanics [6,7]. More results on Jordan superalgebras are available in [8,9].

    Hom-type algebras were first introduced to study the q-deformation of Witt and Virasoro algebras [10,11], which played an important role in physics, mainly in conformal field theory. Bihom-type algebras are generalizations of Hom-type algebras, which were presented by Graziani et al. from the categorical point and applied to study certain deformations of quantum groups [12]. Up to now, the (Bi)hom-structures of various algebras have been intensively investigated. The construction relationship between Hom-type algebras and the module structure on them can be found in the literature [13,14,15,16,17]. Naturally, the construction between Bihom-type algebras is studied in the literature [18,19], and the results of representation and deformation can be found in [20,21,22]. In this paper, we first generalize bimodules and representations of Bihom-Jordan algebras [23,24] to Bihom-Jordan superalgebras and then develop the theory of representations and O-operators on Bihom-Jordan superalgebras.

    The outline of the paper is presented as follows: In Section 2, we review some basics about Bihom-superalgebras, Bihom-Jordan superalgebras; we study Bihom-super modules and give some easy constructions of Bihom-Jordan superalgebras. In Section 3, we mainly study super-bimodules on Bihom-Jordan superalgebras and obtain some new constructions under the view of module. In Section 4, we study the representation of Bihom-Jordan superalgebra and give the definitions of O-operator and Rota–Baxter operator. At the same time, we also give the definition of Bihom-pre-Jordan superalgebra. Finally, the relationship between O-operator and Bihom-pre-Jordan superalgebra is studied. Actually, on the basis of this section, we can also continue to study cohomology theory.

    Throughout the paper, all algebraic systems are supposed to be over a field of characteristic 0. Let A be a linear superspace over K that is a Z2-graded linear space with a direct sum A=A¯0A¯1. The elements of Aj,j=0,1, are said to be homogenous and of parity j. The parity of a homogeneous element x is denoted by |x|. In the sequel, we will denote by H(A) the set of all homogeneous elements of A. In this paper, we need to use the elements, all of which are not specified, are homogeneous.

    In this section, we recall some basic definitions about Bihom-Jordan superalgebras, provide some construction results. A Bihom-superalgebra is a quadruple (J,μ,α,β), where μ:JJJ is an even bilinear map and α,β:JJ are even linear maps such that αμ=μα and βμ=μβ (multiplicativity).

    Definition 2.1. [25] Let (J,μ,α,β) be a Bihom-superalgebra.

    The Bihom-associator of J is an even trilinear map asα,β:J3J defined by

    asα,β=μ(μβαμ). (2.1)

    For any ε,γ,δH(J), asα,β(ε,γ,δ)=μ(μ(ε,γ),β(δ))μ(α(ε),μ(γ,δ)).

    In particular, when α=β=Id, Bihom-superalgebra is to degenerate to the superalgebra, so is Bihom-associator degenerates to the original associator. If α=β, Bihom-associator degenerates to the Hom-associator.

    Definition 2.2. Let (J,μ,α,β) be a Bihom-superalgebra. Then

    A Bihom-sub-superalgebra of J is a Z2-graded linear subspace BJ, which satisfies μ(ε,γ)B,α(ε)B and β(ε)B, for all ε,γH(J). Furthermore, if μ(ε,γ),μ(γ,ε)B, for all (ε,γ)J×B, then B is called a two-sided Bihom-ideal of J.

    J is regular if α and β are algebra automorphisms.

    J is involutive if α and β are two involutions, that is α2=β2=Id.

    Definition 2.3. Let (J,μ,α,β) and (J,μ,αβ) be two Bihom-superalgebras. If a homomorphism f:JJ satisfies the following conditions:

    fμ=μ(ff),fα=αfandfβ=βf.

    Then f is called Bihom-superalgebra morphism. And we call the set Γf={ε+f(ε)|εH(J)}JJ the graph of f.

    Proposition 2.1. Let (J,μJ,αJ,βJ) and (B,μB,αB,βB) be two Bihom-Jordan superalgebras. Then an even linear map f:JB is a morphism if and only if its graph Γf is a Bihom-subalgebra of (JB,μ=μJ+μB,α=αJ+αB,β=βJ+βB).

    Proof. Suppose that f is a morphism of Bihom-Jordan superalgebras. Clearly, Γf is a subspace of JB, we only need to prove the Γf is closed under the μ,α,β. For all ε,γH(J),

    μ(ε+f(ε),γ+f(γ))=μJ(ε,γ)+μB(f(ε),f(γ))=μJ(ε,γ)+fμJ(ε,γ).

    Moreover, by fαJ=αBf and fβJ=βBf,

    α(ε+f(ε))=αJ(ε)+αB(f(ε))=αJ(ε)+fαJ(ε),β(ε+f(ε))=βJ(ε)+βB(f(ε))=βJ(ε)+fβJ(ε).

    It follows that Γf is a Bihom-subalgebra of JB.

    Conversely, Γf is a Bihom-subalgebra of JB, so

    μ(ε+f(ε),γ+f(γ))=μJ(ε,γ)+μB(f(ε),f(γ))Γf,

    which implies that μB(f(ε),f(γ))=fμJ(ε,γ). Similarly, we also obtain αBf=fαJ and βBf=fβJ from α(Γf)Γf and β(Γf)Γf, respectively. Thus, f is a morphism of Bihom-Jordan superalgebras.

    Definition 2.4. [25] A Bihom-associative superalgebra is a quadruple (J,μ,α,β), where α,β:JJ are even linear maps and μ:J×JJ is an even bilinear map such that αβ=βα,αμ=μα2, βμ=μβ2 and satisfying Bihom-associator is zero:

    asα,β(ε,γ,δ)=0,forallε,γ,δH(J). (Bihom-associativity condition)

    Clearly, when α=β, we obtain a Hom-associative superalgebra.

    Definition 2.5. [19] A BiHom superalgebra (J,μ,α,β) is called a Bihom-Jordan superalgebra if for all ε,γ,δ,tH(J):

    (i) αβ=βα,(ii) μ(β(ε),α(γ))=(1)|ε||γ|μ(β(γ),α(ε)),(Bihom-super commutativity condition)(iii) ε,γ,t(1)|t|(|ε|+|δ|)~asα,β(μ(β2(ε),αβ(γ)),α2β(δ),α3(t))=0.(Bihom-Jordan super-identity)

    In particular, it is reduced to a Jordan superalgebra when α=β=Id.

    Next, we give some common construction methods. Let (J,μ,α,β) be a Bihom-superalgebra. Define its plus Bihom-superalgebra as the Bihom-superalgebra J+=(J,,α,β), where

    εγ=12(μ(ε,γ)+(1)|ε||γ|μ(α1β(γ),αβ1(ε))).

    Note that product is Bihom-supercommutative. In fact, for all ε,γH(J),

    β(ε)α(γ)=12(β(ε)α(γ)+(1)|ε||γ|β(γ)α(ε))=(1)|ε||γ|12(β(γ)α(ε)+β(ε)α(γ))=(1)|ε||γ|β(γ)α(ε).

    Moreover, the plus Bihom-superalgebra J+=(J,,α,β) is a Bihom-Jordan superalgebra. Naturally, we define

    εγ=μ(ε,γ)+(1)|ε||γ|μ(α1β(γ),αβ1(ε)),

    the is also Bihom-supercommutative. Then J=(J,,α,β) is also a Bihom-Jordan superlagebra.

    Besides that, Bihom-Jordan superalgebra (J,μα,β=μ(αβ),α,β) can be obtained from Jordan superalgebra (J,μ). We also consider the quotient algebra obtained by modulo Bihom-ideal, given a Bihom-Jordan superalgebra (J,μ,α,β) and I is a Bihom-ideal. Define ˉμ,ˉα,ˉβ on J/I as follows:

    ˉμ(ˉε,ˉγ)=¯μ(ε,γ),ˉα(ˉε)=¯α(ε),ˉβ(ˉε)=¯β(ε).

    Then (J/I,ˉμ,ˉα,ˉβ) is also a Bihom-Jordan superalgebra.

    Example 2.1. Given a 3-dimensional Jordan superalgebra (J=Jˉ0Jˉ1,μ) in [5], the bases of Jˉ0 and Jˉ1 are {ε} and {u,v}, respectively. The nontrivial multiplication is defined as follows:

    μ(ε,ε)=ε,μ(ε,u)=12u,μ(ε,v)=12v,μ(u,v)=ε.

    We consider two even endomorphisms α and β, which satisfy α(ε)=ε,α(u)=u,α(v)=v, and β(ε)=ε,β(u)=u,β(v)=v. Then we obtain a Bihom-Jordan superalgebra (J,μ=μ(αβ),α,β).

    Example 2.2. In [5], let (J=Jˉ0Jˉ1,μ) be a Jordan superalgebra with the nontrivial multiplication as follows:

    μ(ε,ε)=2ε,μ(ε,u)=u,μ(ε,v)=v,μ(u,v)=1+kx,

    kK and k12, where {1,ε} and {u,v} are bases of Jˉ0 and Jˉ1, respectively. We define two even endomorphisms α and β satisfies α(1)=1,α(ε)=ε,α(u)=u,α(v)=v and β(1)=1,β(ε)=ε,β(u)=u,β(v)=v. Then we obtain a Bihom-Jordan superalgebra (J,μ=μ(αβ),α,β).

    Definition 2.6. Let (J,μ,α,β) be a Bihom-superalgebra.

    1) A Bihom-super-module (V,ϕ,ψ) is called an J-super-bimodule if it is equipped with an even left structure ρl and an even right structure map ρr on Z2-graded vector space V, ρl and ρr are given by

    ρl:(JV,αϕ,βψ)(V,ϕ,ψ),ρl(a,v)=av,

    ρr:(VJ,ϕα,ψβ)(V,ϕ,ψ),ρr(v,a)=va.

    2) An even linear map f:(V,ϕ,ψ,ρl,ρr)(V,ϕ,ψ,ρl,ρr) is a morphism of the Bihom-super-modules such that the following commutative diagrams

    3) Let (V,ϕ,ψ,ρl,ρr) be an J-super-bimodule. Then the module Bihom-associator asVϕ,ψ of V is defined as:

    asVϕ,ψIdVJJ=ρr(ρrβ)ρr(ϕμ), (2.2)
    asVϕ,ψIdJVJ=ρr(ρlβ)ρl(αρr), (2.3)
    asVϕ,ψIdJJV=ρl(μψ)ρl(αρl). (2.4)

    Definition 2.7. Let (J,μ,α,β) be a Bihom-associative superalgebra and (V,ϕ,ψ) be a Bihom-super-module. Then

    1) A left Bihom-associative J-super-module structure consists of an even morphism ρl:JVV satisfies asVϕ,ψ=0 in (2.4).

    2) A right Bihom-associative J-super-module structure consists of an even morphism ρr:VJV satisfies asVϕ,ψ=0 in (2.2).

    3) A Bihom-associative J-super-bimodule structure consists of an even morphism ρl:JVV and an even morphism ρr:VJV such that (V,ϕ,ψ,ρl) is a left Bihom-associative J-super-module, (V,ϕ,ψ,ρr) is a right Bihom-associative J-super-module, and satisfies asVϕ,ψ=0 in (2.3).

    In this section, we introduce super-bimodules of Bihom-Jordan superalgebras and give some of their constructions. Finally, we define an abelian extension in order to give an application in the next section. For convenience, the sign will subsequently be omitted from the product operation of elements in J.

    Definition 3.1. Let (J,μ,α,β) be a Bihom-Jordan superalgebra. For all ε,γ,δH(J),vH(V),

    A left Bihom-Jordan J-super-module is a Bihom-super-module (V,ϕ,ψ) that is equipped with an even left structure map ρl:JVV,ρl(av)=av such that ψ is invertible and the following conditions hold:

    ε,γ,δ(1)|γ||δ|β2α2(δ)(αβ(ε)α2(γ)ϕ3(v))=ε,γ,δ(1)|ε||δ|αβ2(ε)α2β(γ)(βα2(δ)ϕ3(v)), (3.1)
    β2α2(δ)(βα2(γ)(α2(ε)ψ1ϕ3(v)))+(1)|ε||γ|+|ε||δ|+|γ||δ|β2α2(ε)(βα2(γ)(α2(δ)ψ1ϕ3(v)))+(1)|ε||δ|+|ε||γ|((β2(ε)βα(δ))βα2(γ))ϕ3ψ(v)=(1)|γ||δ|β2α(γ)βα2(δ)(βα2(ε)ϕ3(v))+(1)|γ||δ|+|ε||δ|β2α(γ)βα2(ε)(βα2(δ)ϕ3(v))+(1)|ε||δ|+|ε||γ|β2α(ε)βα2(δ)(βα2(γ)ϕ3(v)). (3.2)

    A right Bihom-Jordan J-super-module is a Bihom-super-module (V,ϕ,ψ) that is equipped with an even right structure map ρr:VJV,ρr(va)=va such that the following conditions hold:

    ε,γ,δ(1)|ε||δ|(ϕψ2(v)αβ(ε)α2(γ))βα3(δ)=ε,γ,δ(1)|γ||δ|(ϕψ2(v)βα2(δ))α2β(ε)α3(γ). (3.3)
    ((ψ2(v)βα(ε))βα2(γ))βα3(δ)+(1)|ε||γ|+|ε||δ|+|γ||δ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)+(1)|γ||δ|ϕ2ψ2(v)(βα(ε)α2(δ))α3(γ)=(ϕψ2(v)βα2(ε))α2β(γ)α3(δ)+(1)|δ||ε|+|δ||γ|+|ε||γ|(ϕψ2(v)βα2(δ))α2β(γ)α3(ε)+(1)|ε||γ|(ϕψ2(v)βα2(γ))α2β(ε)α3(δ). (3.4)

    Theorem 3.1. Let (J,μ,α,β) be a Bihom-Jordan superalgebra, (V,ϕ,ψ) be a Bihom-super-module and ρr:VJV,ρr(va)=va be an even linear map, which satisfies the following conditions: for all ε,γH(J),vH(V),

    ϕρr=ρr(ϕα),ψρr=ρr(ψβ), (3.5)
    ϕ(v)β(ε)α(γ)=(vβ(ε))βα(γ)+(1)|ε||γ|(vβ(γ))αβ(ε). (3.6)

    Then (V,ϕ,ψ,ρr) is a right Bihom-Jordan J-super-module, called a right special Bihom-Jordan J-super-module.

    Proof. For any ε,γ,δH(J),vH(V),

    ε,γ,δ(1)|δ||γ|(ϕψ2(v)βα2(δ))α2β(ε)α3(γ)=ε,γ,δ(1)|δ||γ|ϕ(ψ2(v)βα(δ))α2β(ε)α3(γ)(by(3.5))=ε,γ,δ(1)|δ||γ|((ψ2(v)βα(δ))βα2(ε))βα3(γ)+ε,γ,δ(1)|δ||γ|+|ε||γ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)(by(3.6))=ε,γ,δ(1)|δ||γ|(ϕψ2(v)βα(δ)α2(ε))βα2(γ)ε,γ,δ(1)|δ||γ|+|δ||ε|((ψ2(v)βα(ε))βα2(δ))βα3(γ)+ε,γ,δ(1)|δ||γ|+|ε||γ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)(by(3.6))=ε,γ,δ(1)|ε||δ|(ϕψ2(v)βα(ε)α2(γ))βα2(δ).

    So Eq (3.3) holds. On the other hand,

    (ϕψ2(v)βα2(ε))βα2(γ)α3(δ)+(1)|ε||γ|(ϕψ2(v)βα2(γ))βα2(ε)α3(δ)+(1)|δ||ε|+|δ||γ|+|ε||γ|(ϕψ2(v)βα2(δ))βα2(γ)α3(ε)=ϕ(ψ2(v)βα(ε))βα2(γ)α3(δ)+(1)|ε||γ|ϕ(ψ2(v)βα(γ))βα2(ε)α3(δ)+(1)|δ||ε|+|δ||γ|+|ε||γ|ϕ(ψ2(v)βα(δ))βα2(γ)α3(ε)(by(3.5))=((ψ2(v)βα(ε))βα2(γ))βα3(δ)+(1)|γ||δ|((ψ2(v)βα(ε))βα2(δ))βα3(γ)+(1)|δ||ε|+|δ||γ|+|ε||γ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)+(1)|δ||ε|+|δ||γ|((ψ2(v)βα(δ))βα2(ε))βα3(γ)+(1)|ε||γ|((ψ2(v)βα(γ))βα2(ε))βα3(δ)+(1)|ε||γ|+|ε||δ|((ψ2(v)βα(γ))βα2(δ))βα3(ε)(by(3.6))=((ψ2(v)βα(ε))βα2(γ))βα3(δ)+(1)|γ||δ|((ϕψ2(v)βα(ε)α2(δ))α3β(γ)(1)|γ||δ|+|ε||δ|((ψ2(v)βα(δ))βα2(ε))βα3(γ)+(1)|δ||ε|+|δ||γ|+|ε||γ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)+(1)|δ||ε|+|δ||γ|((ψ2(v)βα(δ))βα2(ε))βα3(γ)+(1)|ε||γ|((ψ2(v)βα(γ))βα2(ε))βα3(δ)+(1)|ε||γ|+|ε||δ|((ψ2(v)βα(γ))βα2(δ))βα3(ε)(by(3.6))=((ψ2(v)βα(ε))βα2(γ))βα3(δ)+(1)|γ||δ|((ϕψ2(v)βα(ε)α2(δ))α3β(γ)+(1)|δ||ε|+|δ||γ|+|ε||γ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)+(1)|ε||γ|((ψ2(v)βα(γ))βα2(ε))βα3(δ)+(1)|ε||γ|+|ε||δ|((ψ2(v)βα(γ))βα2(δ))βα3(ε)=((ψ2(v)βα(ε))βα2(γ))βα3(δ)+(1)|γ||δ|ϕ2ψ2(v)(βα(ε)α2(δ))α3(δ)(1)|ε||γ|(ϕψ2(v)βα2(γ))βα2(ε)α3(δ)+(1)|δ||ε|+|δ||γ|+|ε||γ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)+(1)|ε||γ|((ψ2(v)βα(γ))βα2(ε))βα3(δ)+(1)|ε||γ|+|ε||δ|((ψ2(v)βα(γ))βα2(δ))βα3(ε)(by(3.6))=((ψ2(v)βα(ε))βα2(γ))βα3(δ)+(1)|γ||δ|ϕ2ψ2(v)(βα(ε)α2(δ))α3(δ)+(1)|δ||ε|+|δ||γ|+|ε||γ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)(by(3.6)).

    It follows Eq (3.4).

    Similarly, we have the following result.

    Theorem 3.2. Let (J,μ,α,β) be a Bihom-Jordan superalgebra, (V,ϕ,ψ) be a Bihom-super-module such that ψ is invertible, and ρl:JVV be an even linear map given by ρl(av)=av such that the following conditions hold:

    ϕρl=ρl(αϕ),ψρl=ρl(βψ), (3.7)
    β(ε)α(γ)ψ(v)=βα(ε)(α(γ)v)+(1)|ε||γ|βα(γ)(α(ε)v). (3.8)

    Then (V,ϕ,,ψ,ρl) is a left Bihom-Jordan J-super-module called a left special super-module.

    Proof. Similar to the proof of Theorem 3.1, the conclusion can be proved by repeatedly using Eqs (3.7) and (3.8).

    Now, we give the definition super-bimodule of a BiHom-Jordan superalgebra.

    Definition 3.2. Let (J,μ,α,β) be a Bihom-Jordan superalgebra. A Bihom-Jordan J-super-bimodule is a Bihom-super-module (V,ϕ,ψ) with an even left structure map ρl:JVV,ρl(av)=av and an even right structure map ρr:VJV,ρr(va)=va satisfying three conditions:

    ρl(βϕ)=ρr(ψα)τ1, (3.9)
    ε,γ,δ(1)|δ|(|ε|+|v|)asVϕ,ψ(μ(β2(ε),αβ(γ)),ϕ2ψ(v),α3(δ))=0, (3.10)
    (1)|γ||δ|asVϕ,ψ(ψ2(v)αβ(ε),βα2(γ),α3(δ))+(1)|ε||γ|+|ε||δ|asVϕ,ψ(ψ2(v)αβ(δ),βα2(γ),α3(ε))+(1)|v||ε|+|v||γ|+|v||δ|asVϕ,ψ(μ(β2(ε),αβ(δ)),βα2(γ),ϕ3(v))=0. (3.11)

    Remark 3.1. 1) If α=β=IdJ and ϕ=ψ=IdV then V is reduced to the so-called Jordan supermodule of the Jordan superalgebra (J,μ).

    2) Clearly, a Bihom-Jordan A-super-bimodule is a right Bihom-Jordan super-module. Furthermore, it is a left Bihom-Jordan super-module if ψ is invertible.

    Example 3.1. Here are some examples of Bihom-Jordan super-bimodules.

    1) Let (J,μ,α,β) be a Bihom-Jordan superalgebra. Then (J,α,β) is a Bihom-Jordan J-super-bimodule where the structure maps are ρl=ρr=μ. More generally, if B is a Bihom-ideal of (J,μ,α,β), then (B,α,β) is a Bihom-Jordan J-super-bimodule where the structure maps are ρl(a,ε)=μ(a,ε)=μ(ε,a)=ρr(ε,a), for all (a,ε)H(J)×H(B).

    2) If (J,μ) is a Jordan superalgebra and M is a Jordan J-super-bimodule in the usual sense, then (M,IdM,IdM) is a BiHom-Jordan J-super-bimodule where (J,μ,IdJ,IdJ) is a Bihom-Jordan superalgebra.

    Theorem 3.3. Let (J,μ,α,β) be a Bihom-Jordan superalgebra and (V,ϕ,ψ,ρl,ρr) be a Bihom-Jordan J-super-bimodule. Define even linear maps ˜μ,˜α and ˜β on JV,

    ˜μ:(JV)2JV,˜μ(ε+u,γ+v):=μ(ε,γ)+εv+uγ,

    ˜α,˜β:(JV)JV,

    ˜α(ε+u):=α(ε)+ϕ(v) and ˜β(ε+u):=β(ε)+ψ(v).

    Then (JV,˜μ,˜α,˜β) is a Bihom-Jordan superalgebra.

    Proof. We omitted the calculation process; it is straightforward to see Bihom-super commutativity condition and Bihom-Jordan super-identity by Definition 3.2.

    The next result shows that a special left and right Bihom-Jordan super-module has a Bihom-Jordan super-bimodule structure under a specific condition.

    Theorem 3.4. Let (J,μ,α,β) be a regular Bihom-Jordan superalgebra, (V,ϕ,ψ) be both a left and a right special BiHom-Jordan J-module with the structure maps ρ1 and ρ2 respectively, such that ϕ is invertible, and the Bihom-associativity condition holds

    ρ2(ρ1β)=ρ1(αρ2). (3.12)

    Define two even bilinear maps ρl:JVV and ρr:VJV by

    ρl=ρ1+ρ2(ψϕ1αβ1)τ1andρr=ρ1(βα1ϕψ1)τ2+ρ2. (3.13)

    Then (V,ϕ,ψ,ρl,ρr) is a Bihom-Jordan J-super-bimodule.

    Proof. ρl and ρr are even structure maps from ρ1 and ρ2. We need to check out (3.9)–(3.11). First, for any (ε,v)H(J)×H(V),

    ρl(β(ε),ϕ(v))=β(ε)ϕ(v)+(1)|a||v|ψϕ1(ϕ(v))αβ1(β(ε))=β(ε)ϕ(v)+(1)|a||v|ψ(v)α(ε),
    ρr(ψα)τ1(εv)=(1)|a||v|ρr(ψ(v),α(ε))=(1)|a||v|ψ(v)α(ε)+βα1(α(ε))ϕψ1(ϕ(v))=β(ε)ϕ(v)+(1)|a||v|ψ(v)α(ε).

    So ρl(βϕ)=ρr(ψα)τ1. Next, for any ε,γ,δH(J),vH(V)

    asVϕ,ψ(μ(β2(ε),αβ(γ)),ϕ2ψ(v),α3(δ))=ρr(ρl(μ(β2(ε),αβ(γ)),ϕ2ψ(v)),βα3(δ))ρl(αβ2(ε)α2β(γ),ρr(ϕ2ψ(v),α3(δ)))=ρr(β2(ε)αβ(γ)ϕ2ψ(v),βα3(δ))+(1)|ε||v|+|γ||v|ρr(ϕψ2(v)αβ(ε)α2(γ),βα3(δ))(1)|v||δ|ρl(αβ2(ε)α2β(γ),βα2(δ)ϕ3(v))ρl(αβ2(ε)α2β(γ),ϕ2ψ(v)α3(δ))(by(3.13))=(β2(ε)αβ(γ)ϕ2ψ(v))βα3(δ)+(1)|δ||ε|+|δ||γ|+|δ||v|α2β2(δ)(αβ(ε)α2(γ)ϕ3(v))+(1)|ε||v|+|γ||v|(ϕψ2(v)αβ(ε)α2(γ))βα3(δ)+(1)|ε||v|+|γ||v|+|δ||v|+|δ||ε|+|δ||γ|α2β2(δ)(ϕ2ψ(v)α2(ε)α3β1(γ))(1)|v||δ|αβ2(ε)α2β(γ)(βα2(δ)ϕ3(v))(1)|v||δ|+|δ||ε|+|δ||γ|+|v||ε|+|v||γ|(β2α(δ)ψϕ2(v))α2β(ε)α3(γ)αβ2(ε)α2β(γ)(ϕ2ψ(v)α3(δ))(1)|v||ε|+|v||γ|+|δ||ε|+|δ||γ|(ϕψ2(v)α2β(δ))α2β(ε)α3(γ)(by(3.13))=(1)|ε||v|+|γ||v|(ϕψ2(v)αβ(ε)α2(γ))βα3(δ)(1)|v||ε|+|v||γ|+|δ||ε|+|δ||γ|(ϕψ2(v)α2β(δ))α2β(ε)α3(γ)+(1)|δ||ε|+|δ||γ|+|δ||v|α2β2(δ)(αβ(ε)α2(γ)ϕ3(v))(1)|v||δ|αβ2(ε)α2β(γ)(βα2(δ)ϕ3(v))(by(3.12)).

    So

    ε,γ,δ(1)|δ|(|ε|+|v|)asVϕ,ψ(β2(ε)αβ(γ),ϕ2ψ(v),α3(δ))=(1)|v|(|ε|+|γ|+|δ|){ε,γ,δ(1)|ε||δ|(ϕψ2(v)αβ(ε)α2(γ))βα3(δ)ε,γ,δ(1)|δ||γ|(ϕψ2(v)βα2(δ))α2β(ε)α3(γ)}+ε,γ,δ(1)|δ||γ|α2β2(δ)(αβ(ε)α2(γ)ϕ3(v))ε,γ,δ(1)|δ||ε|αβ2(ε)α2β(γ)(βα2(δ)ϕ3(v))=(1)|v|(|ε|+|γ|+|δ|)0+0=0.

    Finally, to prove (3.11), let us compute each of its three terms.

    (1)|γ||δ|asVϕ,ψ(ρr(ψ2(v),βα(ε)),βα2(γ),α3(δ))=(1)|γ||δ|asVϕ,ψ(ψ2(v)βα(ε),βα2(γ),α3(δ))+(1)|γ||δ|+|ε||v|asVϕ,ψ(β2(ε)ϕψ(v),βα2(γ),α3(δ))(by(3.13))=(1)|γ||δ|ρr(ρr(ψ2(v)βα(ε),βα2(γ)),α3β(δ))(1)|γ||δ|ρr(ϕψ2(v)βα2(ε),βα2(γ)α3(δ))+(1)|γ||δ|+|ε||v|ρr(ρr(β2(ε)ϕψ(v),βα2(γ)),α3β(δ))(1)|γ||δ|+|ε||v|ρr(αβ2(ε)ϕ2ψ(v),βα2(γ)α3(δ))=(1)|γ||δ|ρr((ψ2(v)βα(ε))βα2(γ),α3β(δ))+(1)|γ||δ|+|γ||v|+|ε||γ|ρr(β2α(γ)(ϕψ(v)α2(ε)),α3β(δ)(1)|γ||δ|(ϕψ2(v)βα2(ε))βα2(γ)α3(δ)(1)|γ||δ|+|γ||v|+|γ||ε|+|δ||v|+|δ||ε|β2α(γ)βα2(δ)(ϕ2ψ(v)α3(ε))+(1)|γ||δ|+|ε||v|ρr((β2(ε)ϕψ(v))βα2(γ),α3β(δ))+(1)|γ||δ|+|ε||v|+|γ||ε|+|γ||v|ρr(β2α(γ)(αβ(ε)ϕ2(v)),α3β(δ))(1)|γ||δ|+|ε||v|(αβ2(ε)ϕ2ψ(v))βα2(γ)α3(δ)(1)|γ||δ|+|ε||v|+|γ||ε|+|γ||v|+|δ||ε|+|δ||v|β2α(γ)βα2(δ)(α2β(γ)ϕ3(v))(by(3.13))=(1)|γ||δ|((ψ2(v)βα(ε))βα2(γ))α3β(δ)+(1)|δ||ε|+|δ||v|α2β2(δ)((ϕψ(v)α2(ε))α3(γ))+(1)|γ||δ|+|γ||v|+|ε||γ|(β2α(γ)(ϕψ(v)α2(ε)))α3β(δ)+(1)|γ||v|+|ε||γ|+|δ||v|+|δ||ε|α2β2(δ)(βα2(γ)(ϕ2(v)α3β1(ε)))+(1)|γ||δ|+|ε||v|((β2(ε)ϕψ(v))βα2(γ))α3β(δ)+(1)|ε||v|+|δ||ε|+|δ||v|α2β2(δ)((αβ(ε)ϕ2(v))α3(γ))+(1)|γ||δ|+|ε||v|+|γ||ε|+|γ||v|(β2α(γ)(αβ(ε)ϕ2(v)))α3β(δ)+(1)|ε||v|+|γ||ε|+|γ||v|+|δ||ε|+|δ||v|α2β2(δ)(α2β(γ)(α2(ε)ϕ3ψ1(v)))(1)|γ||δ|(ϕψ2(v)βα2(ε))βα2(γ)α3(δ)(1)|γ||δ|+|γ||v|+|γ||ε|+|δ||v|+|δ||ε|β2α(γ)βα2(δ)(ϕ2ψ(v)α3(ε))B(1)|γ||δ|+|ε||v|(αβ2(ε)ϕ2ψ(v))βα2(γ)α3(δ)J(1)|γ||δ|+|ε||v|+|γ||ε|+|γ||v|+|δ||ε|+|δ||v|β2α(γ)βα2(δ)(α2β(γ)ϕ3(v)).(by(3.13)andrearranging)

    Observe that

    J=(1)|γ||δ|+|ε||v|ϕ(β2(ε)ϕψ(v))β(α2(γ))α(α2(δ))=(1)|γ||δ|+|ε||v|((β2(ε)ϕψ(v))βα2(γ))βα3(δ)+(1)|ε||v|((β2(ε)ϕψ(v))βα2(δ))βα3(γ)(by(3.6))=(1)|γ||δ|+|ε||v|((β2(ε)ϕψ(v))βα2(γ))βα3(δ)+(1)|ε||v|(αβ2(ε)(ϕψ(v)α2(δ)))βα3(γ)(by(3.12))=(1)|γ||δ|+|ε||v|((β2(ε)ϕψ(v))βα2(γ))βα3(δ)J1+(1)|ε||v|α2β2(ε)((ϕψ(v)α2(δ))α3(γ))J2.(by(3.12))
    B=(1)|γ||δ|+|γ||v|+|γ||ε|+|δ||v|+|δ||ε|β(αβ(γ))α(αβ(δ))ψ(ϕ2(v)α3β1(ε))=(1)|γ||δ|+|γ||v|+|γ||ε|+|δ||v|+|δ||ε|α2β2(γ)(α2β(δ)(ϕ2(v)α3β1(ε)))+(1)|γ||v|+|γ||ε|+|δ||v|+|δ||ε|α2β2(δ)(α2β(γ)(ϕ2(v)α3β1(ε)))(by(3.8))=(1)|γ||δ|+|γ||v|+|γ||ε|+|δ||v|+|δ||ε|α2β2(γ)((αβ(δ)ϕ2(v))α3(ε))+(1)|γ||v|+|γ||ε|+|δ||v|+|δ||ε|α2β2(δ)(α2β(γ)(ϕ2(v)α3β1(ε)))(by(3.12))=(1)|γ||δ|+|γ||v|+|γ||ε|+|δ||v|+|δ||ε|(αβ2(γ)(αβ(δ)ϕ2(v)))α3β(ε)B1+(1)|γ||v|+|γ||ε|+|δ||v|+|δ||ε|α2β2(δ)(α2β(γ)(ϕ2(v)α3β1(ε)))B2.(by(3.12))

    We substitute J1+J2 and B1+B2 for J and B to obtain

    (1)|γ||δ|asVϕ,ψ(ρr(ψ2(v),βα(ε)),βα2(γ),α3(δ))=(1)|γ||δ|((ψ2(v)βα(ε))βα2(γ))α3β(δ)+(1)|δ||ε|+|δ||v|α2β2(δ)((ϕψ(v)α2(ε))α3(γ))+(1)|γ||δ|+|γ||v|+|ε||γ|(β2α(γ)(ϕψ(v)α2(ε)))α3β(δ)+(1)|ε||v|+|δ||ε|+|δ||v|α2β2(δ)((αβ(ε)ϕ2(v))α3(γ))+(1)|γ||δ|+|ε||v|+|γ||ε|+|γ||v|(β2α(γ)(αβ(ε)ϕ2(v)))α3β(δ)+(1)|ε||v|+|γ||ε|+|γ||v|+|δ||ε|+|δ||v|α2β2(δ)(α2β(γ)(α2(ε)ϕ3ψ1(v)))(1)|γ||δ|(ϕψ2(v)βα2(ε))βα2(γ)α3(δ)B1J2(1)|γ||δ|+|ε||v|+|γ||ε|+|γ||v|+|δ||ε|+|δ||v|β2α(γ)βα2(δ)(α2β(γ)ϕ3(v)).

    Similarly, we have

    (1)|ε||γ|+|ε||δ|asVϕ,ψ(ρr(ψ2(v)βα(δ)),βα2(γ),α3(ε))=(1)|ε||γ|+|ε||δ|((ψ2(v)βα(δ))βα2(γ))α3β(ε)+(1)|ε||v|α2β2(ε)((ϕψ(v)α2(δ))α3(γ))+(1)|γ||v|+|δ||γ|+|ε||γ|+|ε||δ|(β2α(γ)(ϕψ(v)α2(δ)))α3β(ε)+(1)|δ||v|+|ε||v|α2β2(ε)((αβ(δ)ϕ2(v))α3(γ))+(1)|δ||v|+|γ||δ|+|γ||v|+|ε||δ|+|ε||γ|(β2α(γ)(αβ(δ)ϕ2(v)))α3β(ε)+(1)|δ||v|+|γ||δ|+|γ||v|+|ε||v|α2β2(ε)(α2β(γ)(α2(δ)ϕ3ψ1(v)))(1)|ε||γ|+|ε||δ|(ϕψ2(v)βα2(δ))βα2(γ)α3(ε)(1)|ε||v|+|δ||v|+|ε||γ|+|ε||δ|α2β2(δ)((ϕψ(v)α2(ε))α3(γ))(1)|γ||v|+|γ||δ|+|ε||v|+|ε||γ|(αβ2(γ)(αβ(ε)ϕ2(v)))α3β(δ)(1)|ε||v|+|δ||v|+|γ||δ|+|γ||v|+|ε||γ|β2α(γ)α2β(ε)(α2β(δ)ϕ3(v)).

    In addition,

    (1)|v||ε|+|v||γ|+|v||δ|asVϕ,ψ(β2(ε)βα(δ),βα2(γ),ϕ3(v))=(1)|v||ε|+|v||γ|+|v||δ|ρl((β2(ε)βα(δ))βα2(γ),ϕ3ψ(v))(1)|v||ε|+|v||γ|+|v||δ|ρl(β2α(ε)βα2(δ),ρl(βα2(γ),ϕ3(v))=(1)|v||ε|+|v||γ|+|v||δ|((β2(ε)βα(δ))βα2(γ))ϕ3ψ(v)+ϕ2ψ2(v)((αβ(ε)α2(δ))α3(γ))(1)|v||ε|+|v||γ|+|v||δ|ρl(β2α(ε)βα2(δ),βα2(γ)ϕ3(v))(1)|v||ε|+|v||δ|ρl(β2α(ε)βα2(δ),ψϕ2(v)α3(γ))(by(3.13))=(1)|v||ε|+|v||γ|+|v||δ|((β2(ε)βα(δ))βα2(γ))ϕ3ψ(v)+ϕ2ψ2(v)((αβ(ε)α2(δ))α3(γ))(1)|v||ε|+|v||γ|+|v||δ|(β2α(ε)βα2(δ))(βα2(γ)ϕ3(v))(1)|v||γ|+|γ||ε|+|γ||δ|(β2α(γ)ϕ2ψ(v))βα2(ε)α3(δ)D(1)|v||ε|+|v||δ|β2α(ε)βα2(δ)(ψϕ2(v)α3(γ))C(1)|γ||ε|+|γ||δ|(ψ2ϕ(v)α2β(γ))α2β(ε)α3(δ).(by(3.13))

    The same way, we replace C and D as follows

    C=(1)|v||ε|+|v||δ|β(αβ(ε))α(αβ(δ))ψ(ϕ2(v)α3β1(γ))=(1)|v||ε|+|v||δ|β2α2(ε)(α2β(δ)(ϕ2(v)α3β1(γ)))+(1)|v||ε|+|v||δ|+|ε||δ|β2α2(δ)(α2β(ε)(ϕ2(v)α3β1(γ)))(by3.8)=(1)|v||ε|+|v||δ|β2α2(ε)((αβ(δ)ϕ2(v))α3(γ))C1+(1)|v||ε|+|v||δ|+|ε||δ|β2α2(δ)((αβ(ε)ϕ2(v))α3(γ))C2,(by3.12)
    D=(1)|v||γ|+|γ||ε|+|γ||δ|ϕ(β2(γ)ϕψ(v))β(α2(ε))α(α2(δ))=(1)|v||γ|+|γ||ε|+|γ||δ|((β2(γ)ϕψ(v))α2β(ε))βα3(δ)+(1)|v||γ|+|γ||ε|+|γ||δ|+|ε||δ|((β2(γ)ϕψ(v))α2β(δ))βα3(ε)(by3.6)=(1)|v||γ|+|γ||ε|+|γ||δ|(αβ2(γ)(ϕψ(v)α2(ε)))βα3(δ)D1+(1)|v||γ|+|γ||ε|+|γ||δ|+|ε||δ|(αβ2(γ)(ϕψ(v)α2(δ)))βα3(ε)D2.(by3.12)

    Finally, we have

    (1)|γ||δ|asVϕ,ψ(ψ2(v)αβ(ε),βα2(γ),α3(δ))+(1)|ε||γ|+|ε||δ|asVϕ,ψ(ψ2(v)αβ(δ),βα2(γ),α3(ε))+(1)|v||ε|+|v||γ|+|v||δ|asVϕ,ψ(μ(β2(ε),αβ(δ)),βα2(γ),ϕ3(v))=(1)|γ||δ|(3.2)+(1)|v||ε|+|γ||ε|+|γ||v|+|δ||ε|+|δ||v|(3.4)=0.

    Hence, we prove that (V,ϕ,ψ,ρl,ρr) is a Bihom-Jordan J-super-bimodule.

    Lemma 3.1. Let (J,μ,α,β) be a Bihom-associative superalgebra and (V,ϕ,ψ) be a Bihom-super-module.

    1) If (V,ϕ,ψ) is a right Bihom-associative J-super-module with the structure map ρr, then (V,ϕ,ψ) is a right special Bihom-Jordan J-super-module with the same structure map ρr.

    2) If (V,ϕ,ψ) is a left Bihom-associative J-super-module with the structure map ρl such that ψ is invertible, then (V,ϕ,ψ) is a left special Bihom-Jordan J-super-module with the same structure map ρl.

    Proof. It also suffices to prove Eqs (3.6) and (3.8).

    1) If (V,ϕ,ψ) is a right Bihom-associative J-super-module with the structure map ρr then for all (ε,γ,v)H(J)×H(J)×H(V). ϕ(v)(β(ε)α(γ))=ϕ(v)(β(ε)α(γ)+(1)|ε||γ|β(γ)α(ε))=(vβ(ε))αβ(γ)+(1)|ε||γ|(vβ(γ))αβ(ε). Then (V,ϕ,ψ) is a right special Bihom-Jordan J-super-module by Theorem 3.1.

    2) Similarly, it is easy to obtain by Theorem 3.2.

    End of lemma proof.

    By Lemma 3.1 and Theorem 3.4, we obtain the following conclusion.

    Proposition 3.1. Let (J,μ,α,β) be a Bihom-associative superalgebra and (V,ϕ,ψ,ρ1,ρ2) be a Bihom-associative J-super-bimodule such that ϕ and ψ are inversible. Then (V,ϕ,ψ,ρl,ρr) is a Bihom-Jordan J-super-bimodule where ρl and ρr are defined as in Eq (3.13).

    That is, a Bihom-associative J-super-bimodule gives rise to a Bihom-Jordan super-bimodule for J.

    Proposition 3.2. Let (J,μ,α,β) be a Bihom-Jordan superalgebra and Vϕ,ψ=(V,ϕ,ψ,ρl,ρr) be a Bihom-Jordan J-super-bimodule. Then for each nN such that ϕn=ψn=IdV, the maps

    ρ(n)l=ρl(αnψn), (3.14)

    and

    ρ(n)r=ρr(ϕnβn). (3.15)

    as structure maps, (V,ϕ,ψ,ρ(n)l,ρ(n)r) is given to be a Bihom-Jordan J-super-bimodule. Denoted it by V(n)ϕ,ψ.

    Proof. ρl and ρn are easy to prove special left and right super-modules, respectively, which are also left and right super-modules, and Eq (3.9) holds in V(n)ϕ,ψ. By direct calculation, we can convert asV(n)ϕ,ψ in V(n)ϕ,ψ to asVϕ,ψ in Vϕ,ψ, that is

    asV(n)ϕ,ψ(β2(ε)αβ(γ),ϕ2ψ(v),α3(δ))=asVϕ,ψ(β2(αn(ε))αβ(αn(γ)),ϕ2ψ(v),α3(βn(δ)))

    , furthermore, we have

    ε,γ,δ(1)|δ|(|ε|+|v|)asV(n)ϕ,ψ(β2(ε)αβ(γ),ϕ2ψ(v),α3(δ))=αn(ε),αn(γ),βn(δ)(1)|δ|(|ε|+|v|)asVϕ,ψ(β2(αn(ε))αβ(αn(γ)),ϕ2ψ(v),α3(βn(δ)))=0.

    Then we obtain Eq (3.10) in V(n)ϕ,ψ. Similarly, Eq (3.11) also holds in V(n)ϕ,ψ, which implies that V(n)ϕ,ψ is a Bihom-Jordan J-super-bimodule.

    In the sequel, we present some results of Bihom-Jordan super-bimodules constructed by Jordan super-bimodules via endomorphisms.

    Theorem 3.5. Let (J,μ) be a Jordan superalgebra, (V,ρl,ρr) be a Jordan J-super-bimodule, α,β be endomorphisms of J, which satisfies αβ=βα and ϕ,ψ be even linear self-maps of V such that ϕρl=ρl(αϕ), ϕρr=ρr(ϕα), ψρl=ρl(βψ) and ψρr=ρr(ψβ). Denote Jα,β for the Bihom-Jordan superalgebra (J,μα,β=μ(αβ),α,β) and Vϕ,ψ for the Bihom-super-module (V,ϕ,ψ). Define two structure maps as follows:

    ~ρl=ρl(αψ)and~ρr=ρr(ϕβ). (3.16)

    Then Vϕ,ψ=(V,ϕ,ψ,~ρl,~ρr) is a Bihom-Jordan Jα,β-super-bimodule.

    Proof. By direct calculation, it is easy to get asVϕ,ψ(μα,β(β2(ε),αβ(γ)),ϕ2ψ(v),α3(δ))=asV(α3β2(ε)α3β2(γ),ϕ3ψ2(v),α3β2(δ)), So it is clear Eqs (3.10) and (3.11) hold in Vϕ,ψ. Thus, (V,ϕ,ψ,~ρl,~ρr) is a Bihom-Jordan Jα,β-super-bimodule.

    From Proposition 3.2 and Theorem 3.5, we have the following

    Corollary 3.1. Let (J,μ) be a Jordan superalgebra, (V,ρl,ρr) be a Jordan J-super-bimodule, α,β be endomorphisms of J, which satify αβ=βα and ϕ,ψ be even linear self-maps of V such that ϕρl=ρl(αϕ), ϕρr=ρr(ϕα), ψρl=ρl(βψ) and ψρr=ρr(ψβ). Denote Jα,β for the Bihom-Jordan superalgebra (J,μα,β=μ(αβ),α,β) and Vϕ,ψ for the Bihom-super-module (V,ϕ,ψ). Define two structure maps as follows:

    ~ρl(n)=ρl(αn+1ψ)and~ρr(n)=ρr(ϕβn+1). (3.17)

    Then Vϕ,ψ=(V,ϕ,ψ,~ρl(n),~ρr(n)) is a Bihom-Jordan Jα,β-super-bimodule for each nN.

    Definition 3.3. An abelian extension of Bihom-Jordan superalgebra is a short exact sequence of Bihom-Jordan superalgebra:

    0(V,ϕ,ψ)i(J,μJ,αJ,βJ)π(B,μB,αB,βB)0.

    where (V,ϕ,ψ) is a trivial Bihom-Jordan superalgebra, i and π are even morphisms of Bihom-superalgebras. If there exists an even morphism s:(B,μB,αB,βB)(J,μJ,αJ,βJ) satisfies πs=IdB. Then the abelian extension is said to be split and s is called a section of π.

    In this section, we study the representation and O-operator. Meanwhile, we characterize Bihom-pre-Jordan superalgebras by using O-operator.

    Definition 4.1. Let (J,μ,α,β) be a Bihom-Jordan superalgebra, V be a Z2-graded vector spaces, ρ:JEnd(V), ϕ,ψAug(V). Then (V,ρ,ϕ,ψ) is a representation of (J,μ,α,β), if the following conditions hold:

    ϕψ=ψϕ, (4.1)
    ρ(μ(μ(β2(ε),αβ(γ)),α2β(δ)))ϕ3ψ+(1)|δ||γ|ρ(α2β2(ε))ϕψ1ρ(αβ2(δ))ϕψ1ρ(β2(γ))ϕψ+(1)|γ||ε|+|δ||ε|ρ(α2β2(γ))ϕψ1ρ(αβ2(δ))ϕψ1ρ(β2(ε))ϕψρ(μ(αβ2(ε),α2β(γ)))ρ(α2β(δ))ϕ3(1)|ε||δ|+|δ||γ|ρ(μ(αβ2(δ),α2β(ε)))ϕ2ψ1ρ(β2(γ))ϕψ(1)|ε||δ|+|δ||γ|+|ε||γ|ρ(μ(αβ2(δ),α2β(γ)))ϕ2ψ1ρ(β2(ε))ϕψ=0. (4.2)
    ε,γ,δ(1)|ε||δ|ρ(α2β2(ε))ϕψ1ρ(μ(β2(γ),αβ(δ)))ϕ2ψ=ε,γ,δ(1)|ε||δ|ρ(μ(αβ2(ε),α2β(γ)))ρ(α2β(δ))ϕ3. (4.3)

    Example 4.1. Let (J,μ,α,β) be a regular Bihom-Jordan superalgebra. Define ad:JEnd(J), for any ε,γH(J), ad(ε)γ=μ(ε,γ). Then (J,ad,α,β) is a representation of (J,μ,α,β), which is called adjoint representation.

    Proposition 4.1. Let (J,μ,α,β) be a Bihom-Jordan superalgebra. (V,ρ,ϕ,ψ) be a representation, define an even bilinear map μ and two even linear maps α and β on JV as follows: for any ε,γH(J),a,bH(V),

    μ(ε+a,γ+b)=μ(ε,γ)+ρ(ε)b+ρ(α1β(γ))ϕψ1(a),
    (α+ϕ)(ε+a)=α(ε)+ϕ(a),(β+ψ)(ε+a)=β(a)+ψ(a).

    Then (JV,μ,α+ϕ,β+ψ) is a Bihom-Jordan superalgebra, denoted by JV and called semidirect product.

    Proof. It can be verified directly by Definition 4.1.

    We also consider the split null extension on JV in Proposition 4.1.

    Remark 4.1. Write elements a+v of JV as (a,v). There is an injective homomorphism and a surjective homomorphism of Bihom-modules, respectively, as follows:

    i:VJV, i(v)=(0,v),

    π:JV, π(a,v)=a.

    Moreover, i(V) is a Bihom-ideal of JV such that JV/i(V)J. On the other hand, there is an even morphisms σ:JJV given by σ(a)=(a,0), which is clearly a section of π. Therefore, we obtain the abelian split exact sequence:

    Definition 4.2. A BiHom superalgebra (J,,α,β) is called a Bihom-pre-Jordan superalgebra if for all ε,γ,δ,tH(J):

    1) αβ=βα, both α and β are reversible,

    1)

    ((β2(ε)αβ(γ))α2β(δ))α3β(w)+(1)|ε||γ|((β2(γ)αβ(ε))α2β(δ))α3β(w)+(1)|δ|(|ε|+|γ|)(αβ2(δ)(αβ(ε)α2(γ)))α3β(w)+(1)|δ|(|ε|+|γ|)+|ε||γ|(αβ2(δ)(αβ(γ)α2(ε)))α3β(w)+(1)|δ||γ|α2β2(ε)(α2β(δ)(α2(γ)α3β1(w)))+(1)|δ||ε|+|γ||ε|α2β2(γ)(α2β(δ)(α2(ε)α3β1(w)))(αβ2(ε)α2β(γ))(α2β(δ)α3(w))(1)|ε||γ|(αβ2(γ)α2β(ε))(α2β(δ)α3(w))(1)|ε||δ|+|δ||γ|(αβ2(δ)α2β(ε))(α2β(γ)α3(w))(1)|δ||γ|(αβ2(ε)α2β(δ))(α2β(γ)α3(w))(1)|γ||δ|+|δ||ε|+|γ||ε|(αβ2(δ)α2β(γ))(α2β(ε)α3(w))(1)|δ||ε|+|γ||ε|(αβ2(γ)α2β(δ))(α2β(ε)α3(w))=0, (4.4)

    3)

    (1)|w||γ|α2β2(w)((αβ(ε)α2(γ))α3(δ))+(1)|ε||γ|+|w||γ|α2β2(w)((αβ(γ)α2(ε))α3(δ))+(1)|ε||w|α2β2(ε)((αβ(γ)α2(w))α3(δ))+(1)|ε||w|+|γ||w|α2β2(ε)((αβ(w)α2(γ))α3(δ))+(1)|γ||ε|α2β2(γ)((αβ(w)α2(ε))α3(δ))+(1)|γ||ε|+|w||ε|α2β2(γ)((αβ(ε)α2(w))α3(δ))(1)|w||ε|(αβ2(ε)α2β(γ))(α2β(w)α3(δ))(1)|ε||γ|+|w||ε|(αβ2(γ)α2β(ε))(α2β(w)α3(δ))(1)|ε||γ|(αβ2(γ)α2β(w))(α2β(ε)α3(δ))(1)|γ||w|+|ε||γ|(αβ2(w)α2β(γ))(α2β(ε)α3(δ))(1)|γ||w|(αβ2(w)α2β(ε))(α2β(γ)α3(δ))(1)|w||ε|+|γ||w|(αβ2(ε)α2β(w))(α2β(γ)α3(δ)). (4.5)

    Actually, condition 3 is equivalent to

    ε,γ,w{(1)|ε||w|α2β2(ε)((αβ(γ)α2(w))α3(δ))+(1)|ε||w|+|γ||w|α2β2(ε)((αβ(w)α2(γ))α3(δ))}=ε,γ,w{(1)|ε||w|(αβ2(ε)α2β(γ))(α2β(w)(δ))+(1)|ε||w|+|ε||γ|(αβ2(γ)α2β(ε))(α2β(w)(δ))}.

    Theorem 4.1. Let (J,,α,β) be a Bihom-pre-Jordan superalgebra, define an even bilinear operator μ: for all ε,γH(J)

    μ(ε,γ)=εγ+(1)|ε||γ|α1β(γ)αβ1(ε), (4.6)

    then (J,,α,β) is a Bihom-Jordan superalgebra.

    Proof. By Eq (4.6), we get

    μ(β(ε),α(γ))=β(ε)α(γ)+(1)|ε||γ|β(γ)α(ε)=(1)|ε||γ|μ(β(γ),α(ε)).

    That is to say the Bihom-super commutativity condition holds. Next, by direct calculation,

    (1)|w|(|ε|+|δ|)~asα,β(μ(β2(ε),αβ(γ)),α2β(δ),α3(w))=(1)|w|(|ε|+|δ|)((β2(ε)αβ(γ))α2β(δ))α3β(w)_+(1)|w||γ|α2β2(w)((αβ(ε)α2(γ))α3(δ))1+(1)|w|(|ε|+|δ|)+|δ|(|ε|+|γ|)(αβ2(δ)(αβ(ε)α2(γ)))α3β(w)_+(1)|w||γ|+|δ|(|ε|+|γ|)α2β2(w)(α2β(δ)(α2(ε)α3β1(γ)))(1)|w|(|ε|+|δ|)(αβ2(ε)α2β(γ))(α2β(δ)α3(w))_(1)|w|(|δ|+|γ|)+|δ|(|ε|+|γ|)(αβ2(δ)α2β(w))(α2β(ε)α3(γ))(1)|w||ε|(αβ2(ε)α2β(γ))(α2β(w)α3(δ))2(1)|w||γ|+|δ|(|ε|+|γ|)(αβ2(w)α2β(δ))(α2β(ε)α3(γ))+(1)|w|(|ε|+|δ|)+|ε||γ|((β2(γ)αβ(ε))α2β(δ))α3β(w)_+(1)|w||γ|+|ε||γ|α2β2(w)((αβ(γ)α2(ε))α3(δ))3+(1)|w|(|ε|+|δ|)+|δ|(|ε|+|γ|)+|ε||γ|(αβ2(δ)(αβ(γ)α2(ε)))α3β(w)_+(1)|w||γ|+|δ|(|ε|+|γ|)+|ε||γ|α2β2(w)(α2β(δ)(α2(γ)α3β1(ε)))(1)|w|(|ε|+|δ|)+|ε||γ|(αβ2(γ)α2β(ε))(α2β(δ)α3(w))_(1)|w|(|δ|+|γ|)+|δ|(|ε|+|γ|)+|ε||γ|(αβ2(δ)α2β(w))(α2β(γ)α3(ε))(1)|w||ε|+|ε||γ|(αβ2(γ)α2β(ε))(α2β(w)α3(δ))4(1)|w||γ|+|δ|(|ε|+|γ|)+|ε||γ|(αβ2(w)α2β(δ))(α2β(γ)α3(ε)),
    (1)|ε|(|γ|+|δ|)~asα,β(μ(β2(γ),αβ(w)),α2β(δ),α3(ε))=(1)|ε|(|γ|+|δ|)((β2(γ)αβ(w))α2β(δ))α3β(ε)+(1)|ε||w|α2β2(ε)((αβ(γ)α2(w))α3(δ))5+(1)|ε|(|γ|+|δ|)+|δ|(|w|+|γ|)(αβ2(δ)(αβ(γ)α2(w)))α3β(ε)+(1)|ε||w|+|δ|(|γ|+|w|)α2β2(ε)(α2β(δ)(α2(γ)α3β1(w)))_(1)|ε|(|γ|+|δ|)(αβ2(γ)α2β(w))(α2β(δ)α3(ε))(1)|ε|(|δ|+|w|)+|δ|(|γ|+|w|)(αβ2(δ)α2β(ε))(α2β(γ)α3(w))_(1)|ε||γ|(αβ2(γ)α2β(w))(α2β(ε)α3(δ))6(1)|ε||w|+|δ|(|γ|+|w|)(αβ2(ε)α2β(δ))(α2β(γ)α3(w))_+(1)|ε|(|γ|+|δ|)+|γ||w|((β2(w)αβ(γ))α2β(δ))α3β(ε)+(1)|ε||w|+|γ||w|α2β2(ε)((αβ(w)α2(γ))α3(δ))7+(1)|ε|(|γ|+|δ|)+|δ|(|γ|+|w|)+|γ||w|(αβ2(δ)(αβ(w)α2(γ)))α3β(ε)+(1)|w||γ|+|δ|(|γ|+|w|)+|ε||w|α2β2(ε)(α2β(δ)(α2(w)α3β1(γ)))(1)|ε|(|γ|+|δ|)+|γ||w|(αβ2(w)α2β(γ))(α2β(δ)α3(ε))(1)|ε|(|δ|+|w|)+|δ|(|γ|+|w|)+|γ||w|(αβ2(δ)α2β(ε))(α2β(w)α3(γ))(1)|w||γ|+|ε||γ|(αβ2(w)α2β(γ))(α2β(ε)α3(δ))8(1)|w||γ|+|δ|(|γ|+|w|)+|ε||w|(αβ2(ε)α2β(δ))(α2β(w)α3(γ)),
    (1)|γ|(|w|+|δ|)~asα,β(μ(β2(w),αβ(ε)),α2β(δ),α3(γ))=(1)|γ|(|w|+|δ|)((β2(w)αβ(ε))α2β(δ))α3β(γ)+(1)|γ||ε|α2β2(γ)((αβ(w)α2(ε))α3(δ))9+(1)|γ|(|w|+|δ|)+|δ|(|w|+|ε|)(αβ2(δ)(αβ(w)α2(ε)))α3β(γ)+(1)|γ||ε|+|δ|(|w|+|ε|)α2β2(γ)(α2β(δ)(α2(w)α3β1(ε)))(1)|γ|(|w|+|δ|)(αβ2(w)α2β(ε))(α2β(δ)α3(γ))(1)|γ|(|δ|+|ε|)+|δ|(|w|+|ε|)(αβ2(δ)α2β(γ))(α2β(w)α3(ε))(1)|γ||w|(αβ2(w)α2β(ε))(α2β(γ)α3(δ))10(1)|γ||ε|+|δ|(|w|+|ε|)(αβ2(γ)α2β(δ))(α2β(w)α3(ε))+(1)|γ|(|w|+|δ|)+|w||ε|((β2(ε)αβ(w))α2β(δ))α3β(γ)+(1)|w||ε|+|ε||γ|α2β2(γ)((αβ(ε)α2(w))α3(δ))11+(1)|γ|(|w|+|δ|)+|δ|(|w|+|ε|)+|w||ε|(αβ2(δ)(αβ(ε)α2(w)))α3β(γ)+(1)|w||ε|+|δ|(|w|+|ε|)+|ε||γ|α2β2(γ)(α2β(δ)(α2(ε)α3β1(w)))_(1)|γ|(|w|+|δ|)+|w||ε|(αβ2(ε)α2β(w))(α2β(δ)α3(γ))(1)|γ|(|δ|+|ε|)+|δ|(|w|+|ε|)+|w||ε|(αβ2(δ)α2β(γ))(α2β(ε)α3(w))_(1)|w||ε|+|γ||w|(αβ2(ε)α2β(w))(α2β(γ)α3(δ))12(1)|w||ε|+|δ|(|w|+|ε|)+|ε||γ|(αβ2(γ)α2β(δ))(α2β(ε)α3(w))_,

    By Eq (4.4), we have ++=0, and by Eq (4.5), 1++12=0, Analogously, the conclusion that the sum is zero can be obtained by recombining the remaining unmarked formulas, which implies

    ε,γ,w(1)|w|(|ε|+|δ|)~asα,β(μ(β2(ε),αβ(γ)),α2β(δ),α3(w))=0.

    This completes the proof.

    Definition 4.3. Let (J,μ,α,β) be a Bihom-Jordan superalgebra, and (V,ρ,ϕ,ψ) be its representation. If even the linear map T:JV satisfies the following conditions: for all a,bH(V),

    μ(T(a),T(b))=T(ρ(T(a))b+(1)|a||b|ρ(T(ϕ1ψ(b)))ϕψ1(a)),
    Tϕ=αT,Tψ=βT,

    then T is called O-operator with respect to representation.

    Definition 4.4. Let (J,μ,α,β) be a Bihom-Jordan superalgebra and α,β be reversible, Rgl(J), R is called Rota–Baxter operator on J, if for all ε,γH(J), the following conditions hold:

    μ(R(ε),R(γ))=R(μ(R(ε),γ)+(1)|ε||γ|μ(R(α1β(γ)),αβ1(ε))),
    Rα=αR,Rβ=βR.

    Theorem 4.2. Let (J,μ,α,β) be a Bihom-Jordan superalgebra, (V,ρ,ϕ,ψ) be its representation, and T be an O-operator with respect to representation. Define bilinear operation on V:

    ab=ρ(T(a))b,a,bH(V).

    Then (V,,ϕ,ψ) is a Bihom-pre-Jordan superalgebra.

    Proof. Actually, it can be calculated directly from Definition 4.1.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research is supported by NNSF of China (Nos. 12271085 and 12071405). The authors would like to thank the reviewers for valuable suggestions to improve the paper.

    The authors declare there are no conflicts of interest.



    [1] M. EI-Doma, Analysis of an age-dependent SI epidemic model with disease-induced mortality and proportionate mixing assumption: The case of vertically transmitted diseases, J. Appl. Math., 2004 (2004), 235–254. https://doi.org/10.1155/S1110757X0430118X doi: 10.1155/S1110757X0430118X
    [2] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc R. Soc. Lond. B Biol. Sci., 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118E. doi: 10.1098/rspa.1927.0118E
    [3] I. Mimmo, M. Y. Kim, J. Park, Asymptotic behavior for an SIS epidemic model and its approximation, Nonlinear Anal. Theory Methods Appl., 35 (1999), 797–814. https://doi.org/10.1016/S0362-546X(97)00597-X doi: 10.1016/S0362-546X(97)00597-X
    [4] I. B. Schwartz, H. L. Smith, Infinite subharmonic bifurcation in an SEIR epidemic model, J. Math. Biol., 18 (1983), 233–253. https://doi.org/10.1007/BF00276090 doi: 10.1007/BF00276090
    [5] R. A. Brown, A simple model for control of COVID-19 infections on an urban campus, Proc. Natl. Acad. Sci. U S A, 118 (2021), e2105292118. https://doi.org/10.1073/pnas.2105292118 doi: 10.1073/pnas.2105292118
    [6] X. X. Liu, S. J. Fong, N. Dey, R. G. Crespo, E. H. Viedma, A new SEAIRD pandemic prediction model with clinical and epidemiological data analysis on COVID-19 outbreak, Appl. Intell., 51 (2021), 4162–4198. https://doi.org/10.1007/s10489-020-01938-3 doi: 10.1007/s10489-020-01938-3
    [7] D. J. Watts, S. H. Strogatz, Collective dynamics of small-world9 networks, Nature, 393 (1998), 440–442. https://doi.org/10.1038/30918 doi: 10.1038/30918
    [8] L. A. Amaral, A. Scala, M. Barthelemy, H. E. Stanley, Classes of small-world networks, Proc. Natl. Acad. Sci. U S A, 97 (2000), 11149–11152. https://doi.org/10.1073/pnas.200327197 doi: 10.1073/pnas.200327197
    [9] M. Liu, Y. Xiao, Modeling and analysis of epidemic diffusion within small-world network, J. Appl. Math., 2012 (2012), 841531. https://doi.org/10.1155/2012/841531 doi: 10.1155/2012/841531
    [10] F. Z. Younsi, A. Bounnekar, D. Hamdadou, O. Boussaid, SEIR-SW, simulation model of influenza spread based on the Small World network, Tsinghua Sci. Technol., 20 (2015), 460–473. https://doi.org/10.1109/TST.2015.7297745 doi: 10.1109/TST.2015.7297745
    [11] J. Saramäki, K. Kaski, Modelling development of epidemics with dynamic small-world networks, J. Theor. Biol., 234 (2005), 413–421. https://doi.org/10.1016/j.jtbi.2004.12.003 doi: 10.1016/j.jtbi.2004.12.003
    [12] S. Ren, W. Wang, R. Gao, A. Zhou, Omicron variant (B.1.1.529) of SARS-COV-2: Mutation, infectivity, transmission, and vaccine resistance, World J. Clin. Cases, 10 (2022), 1–11. https://doi.org/10.12998/wjcc.v10.i1.1
    [13] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653, https://doi.org/10.1137/S0036144500371907. doi: 10.1137/S0036144500371907
    [14] P. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [15] O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
    [16] E. Y. Boateng, D. A. Abaye, A review of the Logistic Regression model with emphasis on medical research, J. Data Anal. Inform. Proc., 7 (2019), 190–207. https://doi.org/10.4236/jdaip.2019.74012 doi: 10.4236/jdaip.2019.74012
    [17] S. A. Morsi, M. E. Alzahrani, Advanced computing approach for modeling and prediction COVID-19 pandemic, Appl. Bionics and Biomech., 2022 (2022), 6056574. https://doi.org/10.1155/2022/6056574 doi: 10.1155/2022/6056574
    [18] Shanghai Municipal Health Commission, Shanghai Municipal Bureau Statistics: From epidemic notification. Available from: https://wsjkw.sh.gov.cn.
    [19] Y. Ma, S. Xu, Q. An, M. Qin, S. Li, K. Lu, et al., Coronavirus disease 2019 epidemic prediction in Shanghai under the dynamic zero-COVID policy using time-dependent SEAIQR model, J. Biosaf. Biosecur., 4 (2022), 105–113. https://doi.org/10.1016/j.jobb.2022.06.002 doi: 10.1016/j.jobb.2022.06.002
    [20] World Health Organization: WHO Coronavirus (COVID-19) Dashboard with Vaccination Data, 2022. Available from: https://covid19.who.int.
  • This article has been cited by:

    1. Eric Avila-Vales, Ángel G. C. Pérez, Global properties of an age-structured virus model with saturated antibody-immune response, multi-target cells, and general incidence rate, 2021, 27, 1405-213X, 10.1007/s40590-021-00315-5
    2. Yu Yang, Lan Zou, Yasuhiro Takeuchi, Global analysis of a multi-group viral infection model with age structure, 2020, 0003-6811, 1, 10.1080/00036811.2020.1721471
    3. Huaqiao Zhang, Hong Chen, Cuicui Jiang, Kaifa Wang, Effect of explicit dynamics of free virus and intracellular delay, 2017, 104, 09600779, 827, 10.1016/j.chaos.2017.09.038
    4. Shaoli Wang, Tengfei Wang, Yuming Chen, Bifurcations and Bistability of an Age-Structured Viral Infection Model with a Nonmonotonic Immune Response, 2022, 32, 0218-1274, 10.1142/S0218127422501516
    5. Peng Wu, Hongyong Zhao, Mathematical analysis of multi-target cells and multi-strain age-structured model with two HIV infection routes, 2021, 14, 1793-5245, 10.1142/S1793524521500571
    6. Junmei Liu, Yonggang Ma, Global stability of a HIV-1 CCR5 gene therapy with suicide gene, 2024, 12, 2164-2583, 10.1080/21642583.2023.2291407
    7. A. Yu. Shcheglov, S. V. Netessov, An Inverse Problem for an Age-Structured Population Dynamics Model with Migration Flows, 2024, 17, 1995-4239, 93, 10.1134/S1995423924010099
    8. S. V. Netesov, A. Yu. Shcheglov, Inverse Problem for a Nonlinear Model of Population Dynamics with the Age Structure of Individuals and Overpopulation, 2024, 48, 0278-6419, 20, 10.3103/S0278641924010072
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2338) PDF downloads(87) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog