Processing math: 100%
Research article Special Issues

Multi-scale attention and deep supervision-based 3D UNet for automatic liver segmentation from CT


  • Background 

    Automatic liver segmentation is a prerequisite for hepatoma treatment; however, the low accuracy and stability hinder its clinical application. To alleviate this limitation, we deeply mine the context information of different scales and combine it with deep supervision to improve the accuracy of liver segmentation in this paper.

    Methods 

    We proposed a new network called MAD-UNet for automatic liver segmentation from CT. It is grounded in the 3D UNet and leverages multi-scale attention and deep supervision mechanisms. In the encoder, the downsampling pooling in 3D UNet is replaced by convolution to alleviate the loss of feature information. Meanwhile, the residual module is introduced to avoid gradient vanishment. Besides, we use the long-short skip connections (LSSC) to replace the ordinary skip connections to preserve more edge detail. In the decoder, the features of different scales are aggregated, and the attention module is employed to capture the spatial context information. Moreover, we utilized the deep supervision mechanism to improve the learning ability on deep and shallow information.

    Results 

    We evaluated the proposed method on three public datasets, including, LiTS17, SLiver07, and 3DIRCADb, and obtained Dice scores of 0.9727, 0.9752, and 0.9691 for liver segmentation, respectively, which outperform the other state-of-the-art (SOTA) methods.

    Conclusions 

    Both qualitative and quantitative experimental results demonstrate that the proposed method can make full use of the feature information of different stages while enhancing spatial data's learning ability, thereby achieving high liver segmentation accuracy. Thus, it proved to be a promising tool for automatic liver segmentation in clinical assistance.

    Citation: Jinke Wang, Xiangyang Zhang, Liang Guo, Changfa Shi, Shinichi Tamura. Multi-scale attention and deep supervision-based 3D UNet for automatic liver segmentation from CT[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 1297-1316. doi: 10.3934/mbe.2023059

    Related Papers:

    [1] Yuhua Zhu . A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks and Heterogeneous Media, 2019, 14(4): 677-707. doi: 10.3934/nhm.2019027
    [2] Karoline Disser, Matthias Liero . On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks and Heterogeneous Media, 2015, 10(2): 233-253. doi: 10.3934/nhm.2015.10.233
    [3] L.L. Sun, M.L. Chang . Galerkin spectral method for a multi-term time-fractional diffusion equation and an application to inverse source problem. Networks and Heterogeneous Media, 2023, 18(1): 212-243. doi: 10.3934/nhm.2023008
    [4] Kexin Li, Hu Chen, Shusen Xie . Error estimate of L1-ADI scheme for two-dimensional multi-term time fractional diffusion equation. Networks and Heterogeneous Media, 2023, 18(4): 1454-1470. doi: 10.3934/nhm.2023064
    [5] Yves Achdou, Victor Perez . Iterative strategies for solving linearized discrete mean field games systems. Networks and Heterogeneous Media, 2012, 7(2): 197-217. doi: 10.3934/nhm.2012.7.197
    [6] Hirotada Honda . On Kuramoto-Sakaguchi-type Fokker-Planck equation with delay. Networks and Heterogeneous Media, 2024, 19(1): 1-23. doi: 10.3934/nhm.2024001
    [7] Leqiang Zou, Yanzi Zhang . Efficient numerical schemes for variable-order mobile-immobile advection-dispersion equation. Networks and Heterogeneous Media, 2025, 20(2): 387-405. doi: 10.3934/nhm.2025018
    [8] Yin Yang, Aiguo Xiao . Dissipativity and contractivity of the second-order averaged L1 method for fractional Volterra functional differential equations. Networks and Heterogeneous Media, 2023, 18(2): 753-774. doi: 10.3934/nhm.2023032
    [9] Shui-Nee Chow, Xiaojing Ye, Hongyuan Zha, Haomin Zhou . Influence prediction for continuous-time information propagation on networks. Networks and Heterogeneous Media, 2018, 13(4): 567-583. doi: 10.3934/nhm.2018026
    [10] Ioannis Markou . Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks and Heterogeneous Media, 2017, 12(4): 683-705. doi: 10.3934/nhm.2017028
  • Background 

    Automatic liver segmentation is a prerequisite for hepatoma treatment; however, the low accuracy and stability hinder its clinical application. To alleviate this limitation, we deeply mine the context information of different scales and combine it with deep supervision to improve the accuracy of liver segmentation in this paper.

    Methods 

    We proposed a new network called MAD-UNet for automatic liver segmentation from CT. It is grounded in the 3D UNet and leverages multi-scale attention and deep supervision mechanisms. In the encoder, the downsampling pooling in 3D UNet is replaced by convolution to alleviate the loss of feature information. Meanwhile, the residual module is introduced to avoid gradient vanishment. Besides, we use the long-short skip connections (LSSC) to replace the ordinary skip connections to preserve more edge detail. In the decoder, the features of different scales are aggregated, and the attention module is employed to capture the spatial context information. Moreover, we utilized the deep supervision mechanism to improve the learning ability on deep and shallow information.

    Results 

    We evaluated the proposed method on three public datasets, including, LiTS17, SLiver07, and 3DIRCADb, and obtained Dice scores of 0.9727, 0.9752, and 0.9691 for liver segmentation, respectively, which outperform the other state-of-the-art (SOTA) methods.

    Conclusions 

    Both qualitative and quantitative experimental results demonstrate that the proposed method can make full use of the feature information of different stages while enhancing spatial data's learning ability, thereby achieving high liver segmentation accuracy. Thus, it proved to be a promising tool for automatic liver segmentation in clinical assistance.



    In the present paper, we consider numerical solution of the time fractional Fokker-Planck equations (TFFPEs):

    {αtuΔu+p(u)+q(x,t)u=f(x,t),(x,t)Ω×(0,T],u(x,0)=u0(x),xΩ,u(x,t)=0,xΩ,t(0,T], (1.1)

    where ΩRd(d=1,2,3), x=(x1,x2,,xd), u0(x) is smooth on Ω, p:=(p1,p2,,pd) with pi:=pi(x,t)(i=1,2,,d) and q:=q(x,t) are continuous functions. αtu represents the Caputo derivative of order α(0,1). When α=1 in Eq (1.1), the corresponding equations are a class of very useful models of statistical physics to describe some practical phenomena. TFFPEs are widely used in statistical physics to describes the probability density function of position and the evolution of the velocity of a particle, see e.g., [1,2,3,4]. The TFFPEs also represent the continuous limit of a continuous time random walk with a Mittag-Leffler residence time density. For a deeper understanding of TFFPEs, we refer the readers to [5,6]. In addition, the regularity of the solutions of the TFFPE (1.1) can be found in [7].

    For the past few years, many numerical methods were used to solve the TFFPEs. For example, Deng [8] proposed an efficient predictor-corrector scheme. Vong and Wang [9] constructed a compact finite difference scheme. Mahdy [10] used two different techniques to study the approximate solution of TFFPEs, namely the fractional power series method and the new iterative method. Yang et al. [11] proposed a nonlinear finite volume format to solve the two-dimensional TFFPEs. More details can refer to [12,13,14,15]. Besides, it is difficult that analysing the convergence and stability properties of the numerical schemes for TFFPEs, when convective and diffusion terms exist at the same time. In the study of TFFPEs, the conditions imposed on p and q were somewhat restrictive. For example, for solving the one-dimensional TFFPEs, Deng [16] proved the stability and convergence under the conditions that p1 was a monotonically decreasing function and q0. Chen et al. [17] obtained the stability and convergence properties of the method with the conditions that p1 was monotone or a constant and q was a constant.

    To solve the time Caputo fractional equations, one of the keys is the treatment of the Caputo derivative, which raised challenges in both theoretical and numerical aspects. Under the initial singularity of the solutions of the equations, many numerical schemes are only proved to be of τα in temporal direction, e.g., convolution quadrature (CQ) BDF method [18], CQ Euler method [19], uniform L1 method et al. [20,21]. Here τ represents the temporal stepsize. Considering the singularity of solutions, different numerical formats were established to obtain high convergence orders, e.g., the Alikhanov scheme (originally proposed in [22]) and the L1 scheme (see e.g., [23]) by employing the graded mesh (i.e., tn=T(n/K)r,n=1,2,,K, r is mesh parameter). It was proved that the optimal convergence of those methods can be 2 and 2α iff r2/α and r(2α)/α, respectively (see e.g., [24,25,26,27,28,29]). The ¯L1 scheme studied in [30,31,32] was another high-order scheme for Caputo fractional derivative. There were also some fast schemes for Caputo fractional derivative, see [33,34,35,36]. When α was small, the grids at the beginning would become very dense. It may lead to the so-called round-off errors. Recently, taking the small α and the initial singularity into account, Li et al. [37] introduced the transformation s=tα for the time variable, and derived and analyzed the equivalent fractional differential equation. They constructed the TL1 discrete scheme, and obtained that the convergence order of the TL1 scheme is of 2α. Based on the previous research, Qin et al. [38] studied the nonlinear fractional order problem, and established the discrete fractional order Grönwall inequality. Besides, discontinuous Galerkin methods were also effective to solve the similar problems with weak singular solutions [39,40,41].

    Much of the past study of TFFPEs (i.e., in [16,17,42,43]) has been based on many restrictions on q and pi,i=1,2,,d. This reduces the versatility of the equations. In the paper, we consider the more general TFFPE (1.1), i.e., q and pi,i=1,2,,d, are variable coefficients, and q is independent of pi. We draw on the treatment of the Caputo derivative in [37], introduce variable substitution, and construct the TL1 Legendre-Galerkin spectral scheme to solve the equivalent s-fractional equation. For time discreteness, we take into account the initial singularity, and obtain that the optimal convergence order is 2α. In terms of spatial discreteness, unlike other schemes [16,17], which impose restrictions on coefficients, the Legendre-Galerkin spectral scheme does not require pi and q to be constants or to be monotonic. Besides, we obtain the following theoretical results. The order of convergence in L2-norm of the method is exponential order convergent in spatial direction and (2α)-th order convergent in the temporal direction. And the scheme is valid for equations with small parameter α.

    The structure of the paper is as follows. In Section 2, we propose the TL1 Legendre-Galerkin spectral scheme for solving TFFPEs. In Section 3, the detailed proof of our main results is presented. In Section 4, two numerical examples are given to verify our obtained theoretical results. Some conclusion remarks are shown in Section 5.

    We denote Wm,p(Ω) and ||||Wm,p(Ω) as the Sobolev space of any functions defined on Ω and the corresponding Sobolev norm, respectively, where m0 and 1p. Especially, denote L2(Ω):=W0,2(Ω) and Hm(Ω):=Wm,2(Ω). Define C0(Ω) as the space of infinitely differentiable functions which are nonzero only on a compact subset of Ω and H10(Ω) as the completion of C0(Ω). For convenience, denote ||||0:=||||L2(Ω), ||||m:=||||Hm(Ω).

    For simplicity, we suppose that Ω=(1,1)d, and u(x,t)H10(Ω)Hm(Ω) for 0tT. First of all, we introduce TL1 scheme to discrete the Caputo fractional derivative. Introducing the change of variable as follows [21,37,44]:

    t=s1/α,w(x,s)=u(x,s1/α). (2.1)

    By this, then the Caputo derivative of u(x,t) becomes

    αtu(x,t)=1Γ(1α)t0u(x,r)r1(tr)αdr=1Γ(1α)s0w(x,r)r1(s1/αr1/α)αdr=Dαsw(x,s). (2.2)

    Hence, Eq (1.1) can be rewritten as

    Dαsw(x,s)Δw+˜p(w)+˜q(x,s)w=˜f(x,s),(x,s)Ω×(0,Tα], (2.3)
    w(x,s)=0,(x,s)Ω×(0,Tα], (2.4)
    w(x,0)=u0(x),xΩ, (2.5)

    where ˜p=(˜p1,˜p2,,˜pd), ˜pd:=pd(x,s1/α),˜q:=q(x,s1/α), and ˜f(x,s)=f(x,s1/α). Let sn=Tαn/K,n=0,1,,K, and the uniform mesh on [0,Tα] with τs=snsn1. For convenience, Ki, i1 represent the positive constants independent of τs and N, where N represents polynomial degree. In addition, we define the following notations

    ˜pnd:=˜pd(x,sn),˜qn:=˜q(x,sn),˜fn:=˜f(x,sn),
    wn:=w(x,sn),˜pn:=(˜pn1,˜pn2,,˜pnd).

    Applying the TL1 approximation, we have

    Dαswn=1Γ(1α)sn0w(x,r)r1(s1/αnr1/α)αdr=1Γ(1α)nl=1wlwl1τsslsl1dr(s1/αnr1/α)α+Qn=nl=1an,nl(wlwl1)+Qn:=Dατwn+Qn. (2.6)

    Here the coefficients an,nl=1τsΓ(1α)slsl1dr(s1/αnr1/α)α, and Qn represents the truncation error. For more details, we refer to [37,38]. By Eq (2.6), then Eq (2.3) arrives at

    DατwnΔwn+˜pn(wn)+˜qnwn=˜fnQn.

    For spatial discretization, we introduce the following basis functions:

    {ψk(x)}={ψk1(x1)ψk2(x2)ψkd(xd),k1,k2,,kdIN},

    where k=(k1,k2,,kd), IN={0,1,2,,N2}. For ψki(xi),i=1,2,,d, one has

    ψki(xi)=Lki(xi)Lki+2(xi)for kiIN, (2.7)

    where {Lj(x)}Nj=0 are the Legendre orthogonal polynomials, given by the following recurrence relationship [45]:

    {(j+1)Lj+1(x)=(2j+1)xLj(x)jLj1(x)for j1,L0(x)=1,L1(x)=x. (2.8)

    Define the finite-dimensional approximation space

    XN=span{ψk(x),k1,k2,,kdIN},

    where N=(N,N,,Nd). For any function wN(x), write

    wN(x)=k1,k2,,kdINˆwkψk(x).

    By Eqs (2.7) and (2.8), we have

    wN(x)|Ω=0for wN(x)XN.

    Then, the TL1 Legendre-Galerkin spectral scheme is to seek WnXN, such that

    (DατWn,v)+(Wn,v)+(Wn,˜pnv)+(˜qnWn,v)=(˜fn,v)for vXN. (2.9)

    Here W0=πNw0, and πN is the Ritz projection operator given in Lemma 2. For instance, if d=1, we solve Eqs (2.3) and (2.4) by

    A1Dατˆwn+(A2+A3n+A4n)ˆwn=Fn, (2.10)

    where ˆwn=(ˆwn0,ˆwn1,ˆwn2,,ˆwnN2)T, A1j,h=(ψh(x),ψj(x)), j,hIN, A2j,h=(ψh(x),ψj(x)), A3nj,h=(˜pnψh(x),ψj(x)), A4nj,h=(˜qnψh(x),ψj(x)), and Fnj,1=(˜fn,ψj(x)).

    The typical solution of Eq (1.1) meets [18,46,47]

    ||ut(x,t)||0Ctα1,

    then, with the help of the changes of variable (2.1), one has (see e.g., [38])

    ||lwsl(x,s)||0C(1+s1/αl)<,l=1,2, (2.11)

    where C>0 is a constant independent of s and x. From [37, Lemma 2.2] and [38, Lemma 2.1], the solution becomes smoother at the beginning.

    Now, the convergence results of TL1 Legendre-Galerkin spectral scheme (2.9) is given as follows.

    Theorem 1. Assume that ˜q and ~pi,i=1,2,,d, in (2.3) are bounded, and that the unique solution w of Eqs (2.3) and (2.4) satisfying Eq (2.11) and w(x,s)H10(Ω)Hm(Ω). Then, there exist N0>0 and τ0>0 such that when NN0 and τsτ0, Eq (2.9) has a unique solution Wn(n=0,1,,K), which satisfies

    ||wnWn||0K(τ2αs+N1m), (2.12)

    where K>0 is a constant independent of τs and N.

    We will present the detailed proof of Theorem 1 in this section. For this, we first introduce the following several lemmas.

    Lemma 1. [37,38] For n1, we get

    0<an,n1an,n2an,0. (3.1)

    Lemma 2. If we given the Ritz projection operator πN:H10(Ω)XN by

    ((πNww),v)=0forvXN,

    then, one can get that [48]

    ||πNww||lCΩNlm||w||mforwH10(Ω)Hm(Ω)

    with dmN+1, where CΩ>0 is a constant independent of N.

    Lemma 3. [49] For any sK=Tα>0 and given nonnegative sequence {λi}K1i=0, assume that there exists a constant λ>0 independent of τs such that λK1i=0λi. Assume also that the grid function {wn|n0} satisfies

    Dατ(wn)2ni=1λni(wi)2+wn(Qn+ξ)forn1,

    where {Qn|n1} is well defined in Eq (2.6). Then, there exists a constant τs>0 such that, when τsτs,

    wj2Eα(2λsj)[w0+C1(τ2αs+ξ)]for1jK,

    where C1 is a constant and Eα(x)=k=0xkΓ(1+kα).

    We will offer the proof of Theorem 1 in this section. The projection πNwn of the exact solution wn satisfies

    (DατπNwn,v)=(πNwn,v)(πNwn,˜pnv)(˜qnπNwn,v)+(˜fn,v)(Qn,v)(Rn,v)for vXN. (3.2)

    Here Rn=Dατ(wnπNwn)Δ(wnπNwn)+˜pn(wnπNwn)+˜qn(wnπNwn), and Qn is the truncation error for approximating the fractional derivative defined in Eq (2.6).

    The error between numerical solution Wn and exact solution wn can be divided into

    ||wnWn||0||wnπNwn||0+||πNwnWn||0. (3.3)

    Let

    en:=πNwnWnfor n=0,1,,K.

    Subtracting Eq (2.9) from Eq (3.2), we get that

    (Dατen,v)=(en,v)(en,˜pnv)(˜qnen,v)(Qn,v)(Rn,v)for vXN. (3.4)

    Setting v=en in Eq (3.4), we obtain

    (Dατen,en)=(en,en)(en,˜pnen)(˜qnen,en)(Qn,en)(Rn,en). (3.5)

    By Lemma 1, we have

    (Dατen,en)=(nl=1an,nl(elel1),en)=(an,0enn1l=1(an,nl1an,nl)elan,n1e0,en)12(an,0||en||20n1l=1(an,nl1an,nl)||el||20an,n1||e0||20)=12Dατ||en||20. (3.6)

    By Cauchy-Schwartz inequality, one can obtain that

    (en,en)(en,˜pnen)(˜qnen,en)||en||20+K1|(en,en)|+K2||en||20||en||20+||en||20+K214||en||20+K2||en||20(K214+K2)||en||20. (3.7)

    Here K1=max0nK{||˜p(x,sn)||0}, and K2=max0nK{maxxΩ|˜q(x,sn)|}. Similarly, we see that

    (Qn,en)||Qn||0||en||0. (3.8)

    Noting that enXN and by Lemma 2, one has

    ((wnπNwn),en)=0.

    Then

    (Rn,en)=(Dατ(wnπNwn),en)((wnπNwn),en)((wnπNwn),pnen)(˜qn(wnπNwn),en)||Dατ(wnπNwn)||0||en||0+K1||(wnπNwn)||0||en||0+K2||wnπNwn||0||en||0CΩNm||Dατwn||m||en||0+K1CΩN1m||wn||m||en||0+K2CΩNm||wn||m||en||0K3N1m||en||0. (3.9)

    Here K3=max0nK{CΩ||Dατwn||m,K1CΩ||wn||m,K2CΩ||wn||m}, and Lemma 2 is applied. Substituting Eqs (3.6)–(3.9) into Eq (3.5), one gets

    Dατ||en||202(K214+K2)||en||20+2(||Qn||0+K3N1m)||en||0.

    Noting that e0=0 and by Lemma 3, it follows that

    ||en||04K3C1(τ2αs+N1m)Eα(4(K21/4+K2)sn).

    By Eq (3.3), we observe

    ||wnWn||0||wnπNwn||0+||en||0CΩNm||wn||m+4K3C1(τ2αs+N1m)Eα(4(K21/4+K2)sn)K(τ2αs+N1m),

    where K=max0nK{CΩ||wn||m,4K3C1Eα(4(K21/4+K2)sn)}. This completes the proof.

    In this section, two numerical examples are given to verify our theoretical results. We define the maximal L2 error and the convergence order in time, respectively, as

    e(K)=max0nK||wnWn||L2,order=log(e(K1)/e(K2))log(K2/K1). (4.1)

    Example 1. Consider the one-dimensional TFFPEs:

    αtu=uxx2ux+t2u+f(x,t),u(1,1)×(0,1], (4.2)

    where the initial-boundary conditions and the forcing term function f are choosen by the analytical solution

    u(x,t)=(t2+tα)(x3+x5)sin(πx).

    In this case, q is independent of p1, furthermore, p1 and q are not monotone functions.

    We solve this problem with the TL1 Legendre-Galerkin spectral method. Table 1 gives the maximal L2 errors, the convergence orders in time and the CPU times with N=14. The temporal convergence orders are close to 2α in Table 1. For the spatial convergence test, we set K=8192. In Figure 1, we give the errors as a function of N with α=0.3,0.5,0.7 in logarithmic scale. We can observe that the errors indicate an exponential decay.

    Table 1.  Maximal L2 errors, convergence orders in time and CPU times with N=14 for Example 1.
    α=0.1 α=0.3 α=0.5
    K e(K) order CPU(s) e(K) order CPU(s) e(K) order CPU(s)
    4 5.3660e-03 * 1.12e-02 7.5697e-03 * 9.76e-03 8.5571e-03 * 9.92e-03
    16 1.3833e-03 0.98 2.45e-02 1.1574e-03 1.35 2.19e-02 1.3367e-03 1.34 2.25e-02
    64 1.7352e-04 1.50 8.06e-02 1.3606e-04 1.54 7.53e-02 1.8311e-04 1.43 7.40e-02
    256 1.6850e-05 1.68 2.90e-01 1.4476e-05 1.62 3.00e-01 2.3859e-05 1.47 3.01e-01

     | Show Table
    DownLoad: CSV
    Figure 1.  Errors in space with α=0.3,0.5,0.7 and different N for Example 1.

    Example 2. Consider the two-dimensional TFFPEs:

    αtu=Δu+t2x2y2(ux+uy)+(2t2xy2+2t2x2y)u,u(1,1)2×(0,1], (4.3)

    where the initial-boundary conditions and the forcing term function f are choosen by the analytical solution

    u(x,y,t)=Eα(tα)sin(πx)sin(πy).

    Table 2 gives the maximal L2 errors, the convergence orders in time and the CPU times with N=14. The temporal convergence orders are close to 2α in Table 2. For the spatial convergence test, we give the errors as a function of N for α=0.3,0.5,0.7 and K=8192 in Figure 2. We use the logarithmic scale for the error-axis. Again, we observe that the errors indicate an exponential decay.

    Table 2.  Maximal L2 errors, convergence orders in time and CPU times with N=14 for Example 2.
    α=0.3 α=0.5 α=0.7
    K e(K) order CPU(s) e(K) order CPU(s) e(K) order CPU(s)
    32 7.0619e-05 * 2.08e-01 1.7386e-04 * 1.73e-01 3.1316e-04 * 1.69e-01
    256 3.3124e-06 1.47 1.34e+00 9.7836e-06 1.38 1.28e+00 2.3617e-05 1.24 1.31e+00
    2048 1.1965e-07 1.60 1.29e+01 4.6734e-07 1.46 1.28e+01 1.6199e-06 1.29 1.30e+01
    8192 1.2339e-08 1.64 8.59e+01 5.9649e-08 1.48 8.54e+01 2.6824e-07 1.30 8.83e+01

     | Show Table
    DownLoad: CSV
    Figure 2.  Errors in space with α=0.3,0.5,0.7 and different N for Example 2.

    We present a TL1 Legendre-Galerkin spectral method to solve TFFPEs in this paper. The new scheme is convergent with O(τ2αs+N1m), where τs, N and m are the time step size, the polynomial degree and the regularity of the analytical solution, respectively. In addition, this TL1 Legendre-Galerkin spectral method still holds for problems with small α and gives better numerical solutions near the initial time. The new scheme can achieve a better convergence result on a relatively sparse grid point.

    The work of Yongtao Zhou is partially supported by the NSFC (12101037) and the China Postdoctoral Science Foundation (2021M690322).

    The authors declare that they have no conflicts of interest.



    [1] H. A. Nugroho, D. Ihtatho, H. Nugroho, Contrast enhancement for liver tumor identification, in MICCAI Workshop, 41 (2008), 201. https://doi.org/10.54294/1uhwld
    [2] D. Wong, J. Liu, Y. Fengshou, Q. Tian, W. Xiong, J. Zhou, et al., A semi-automated method for liver tumor segmentation based on 2D region growing with knowledge-based constraints, MICCAI Workshop, 41 (2008), 159. https://doi.org/10.54294/25etax doi: 10.54294/25etax
    [3] Y. Yuan, Y. Chen, C. Dong, H. Yu, Z. Zhu, Hybrid method combining superpixel, random walk and active contour model for fast and accurate liver segmentation, Comput. Med. Imaging Graphics, 70 (2018), 119–134. https://doi.org/10.1016/j.compmedimag.2018.08.012 doi: 10.1016/j.compmedimag.2018.08.012
    [4] J. Wang, Y. Cheng, C. Guo, Y. Wang, S. Tamura, Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images, Int. J. Comput. Assisted Radiol. Surg., 11 (2016), 817–826. https://doi.org/10.1007/s11548-015-1332-9 doi: 10.1007/s11548-015-1332-9
    [5] C. Shi, M. Xian, X, Zhou, H. Wang, H. Cheng, Multi-slice low-rank tensor decomposition based multi-atlas segmentation: Application to automatic pathological liver CT segmentation, Med. Image Anal., 73 (2021), 102152. https://doi.org/10.1016/j.media.2021.102152 doi: 10.1016/j.media.2021.102152
    [6] Z. Yan, S. Zhang, C. Tan, H. Qin, B. Belaroussi, H. J. Yu, et al. Atlas-based liver segmentation and hepatic fat-fraction assessment for clinical trials, Comput. Med. Imaging Graphics, 41 (2015), 80–92. https://doi.org/10.1016/j.compmedimag.2014.05.012 doi: 10.1016/j.compmedimag.2014.05.012
    [7] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 39 (2015), 640–651. https://doi.org/10.1109/TPAMI.2016.2572683 doi: 10.1109/TPAMI.2016.2572683
    [8] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, preprint, arXiv: 1409.1556.
    [9] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Cham, (2015), 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
    [10] Y. Liu, N. Qi, Q. Zhu, W. Li, CR-U-Net: Cascaded U-net with residual mapping for liver segmentation in CT images, in IEEE Visual Communications and Image Processing (VCIP), (2019), 1–4. https://doi.org/10.1109/VCIP47243.2019.8966072
    [11] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2016), 770–778.
    [12] X. Xi, L. Wang, V. Sheng, Z. Cui, B. Fu, F. Hu, Cascade U-ResNets for simultaneous liver and lesion segmentation, IEEE Access, 8 (2020), 68944–68952. https://doi.org/10.1109/ACCESS.2020.2985671 doi: 10.1109/ACCESS.2020.2985671
    [13] O. Oktay, J. Schlemper, L. Folgoc, M. Lee, M. Heinrich, K. Misawa, et al., Attention u-net: Learning where to look for the pancreas, preprint, arXiv: 1804.03999.
    [14] L. Hong, R. Wang, T. Lei, X. Du, Y. Wan, Qau-Net: Quartet attention U-net for liver and liver-tumor segmentation, in IEEE International Conference on Multimedia and Expo (ICME), (2021), 1–6. https://doi.org/10.1109/ICME51207.2021.9428427
    [15] W. Cao, P. Yu, G. Lui, K. W. Chiu, H. M. Cheng, Y. Fang, et al., Dual-attention enhanced BDense-UNet for liver lesion segmentation, preprint, arXiv: 2107.11645.
    [16] S. Ji, W. Xu, M. Yang, K. Yu, 3D convolutional neural networks for human action recognition, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2012), 221–231. https://doi.org/10.1109/TPAMI.2012.59 doi: 10.1109/TPAMI.2012.59
    [17] Ö. Çiçek, A. Abdulkadir, S. Lienkamp, T. Brox, O. Ronneberger, 3D U-Net: Learning dense volumetric segmentation from sparse annotation, in International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Cham, (2016), 424–432. https://doi.org/10.1007/978-3-319-46723-8_49
    [18] F. Milletari, N. Navab, S. Ahmadi, V-net: Fully convolutional neural networks for volumetric medical image segmentation, in International Conference on 3D Vision (3DV), (2016), 565–571. https://doi.org/10.1109/3DV.2016.79
    [19] Z. Liu, Y. Song, V. Sheng, L. Wang, R. Jiang, X. Zhang, et al., Liver CT sequence segmentation based with improved U-Net and graph cut, Expert Syst. Appl., 126 (2019), 54–63. https://doi.org/10.1016/j.eswa.2019.01.055 doi: 10.1016/j.eswa.2019.01.055
    [20] T. Lei, W. Zhou, Y. Zhang, R. Wang, H. Meng, A. Nandi, Lightweight v-net for liver segmentation, in ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2020), 1379–1383. https://doi.org/10.1109/ICASSP40776.2020.9053454
    [21] T. Zhou, L. Li, G. Bredell, J. Li, E. Konukoglu, Volumetric memory network for interactive medical image segmentation, Med. Image Anal., 2022 (2022), 102599. https://doi.org/10.1016/j.media.2022.102599 doi: 10.1016/j.media.2022.102599
    [22] Q. Jin, Z. Meng, C. Sun, H. Cui, R. Su, RA-UNet: A hybrid deep attention-aware network to extract liver and tumor in CT scans, Front. Bioeng. Biotechnol., 2020 (2020), 1471. https://doi.org/10.3389/fbioe.2020.605132 doi: 10.3389/fbioe.2020.605132
    [23] X. Han, Automatic liver lesion segmentation using a deep convolutional neural network method, preprint, arXiv: 1704.07239.
    [24] X. Li, H. Chen, X. Qi, Q. Dou, C. Fu, P. Heng, H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes, IEEE Trans. Med. Imaging, 37 (2018), 2663–2674. https://doi.org/10.1109/TMI.2018.2845918 doi: 10.1109/TMI.2018.2845918
    [25] P. Lv, J. Wang, H. Wang, 2.5D lightweight RIU-Net for automatic liver and tumor segmentation from CT, Biomed. Signal Process. Control, 75 (2022), 103567. https://doi.org/10.1016/j.bspc.2022.103567 doi: 10.1016/j.bspc.2022.103567
    [26] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2018), 7132–7141.
    [27] S. Woo, J. Park, J. Lee, I. Kweon, Cbam: Convolutional block attention module, in Proceedings of the European Conference on Computer Vision (ECCV), (2018), 3–19. https://doi.org/10.1007/978-3-030-01234-2_1
    [28] W. Li, Y. Tang, Z. Wang, K. Yu, S. To, Atrous residual interconnected encoder to attention decoder framework for vertebrae segmentation via 3D volumetric CT images, Eng. Appl. Artif. Intell., 114 (2022), 105102. https://doi.org/10.1016/j.engappai.2022.105102 doi: 10.1016/j.engappai.2022.105102
    [29] T. Zhou, J. Li, S. Wang, R. Tao, J. Shen, Matnet: Motion-attentive transition network for zero-shot video object segmentation, IEEE Trans. Image Process., 29 (2020), 8326–8338. https://doi.org/10.1109/TIP.2020.3013162 doi: 10.1109/TIP.2020.3013162
    [30] Y. Wang, H. Dou, X. Hu, L. Zhu, X. Yang, M. Xu, et al., Deep attentive features for prostate segmentation in 3D transrectal ultrasound, IEEE Trans. Med. Imaging, 38 (2019), 2768–2778. https://doi.org/10.1109/TMI.2019.2913184 doi: 10.1109/TMI.2019.2913184
    [31] C. Lee, S. Xie, P. Gallagher, Z. Zhang, Z. Tu, Deeply-supervised nets, in Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, PMLR, (2015), 562–570.
    [32] Q. Dou, L. Yu, H. Chen, Y. Jin, X. Yang, J. Qin, et al., 3D deeply supervised network for automated segmentation of volumetric medical images, Med. Image Anal., 41 (2017), 40–54. https://doi.org/10.1016/j.media.2017.05.001 doi: 10.1016/j.media.2017.05.001
    [33] B. Wang, Y. Lei, S. Tian, T. Wang, Y. Liu, P. Patel, et al., Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation, Med. Phys., 46 (2019), 1707–1718. https://doi.org/10.1002/mp.13416 doi: 10.1002/mp.13416
    [34] J. Yang, B. Wu, L. Li, P. Cao, O. Zaiane, MSDS-UNet: A multi-scale deeply supervised 3D U-Net for automatic segmentation of lung tumor in CT, Comput. Med. Imaging Graphics, 92 (2021), 101957. https://doi.org/10.1016/j.compmedimag.2021.101957 doi: 10.1016/j.compmedimag.2021.101957
    [35] T. Heimann, B. Van Ginneken, M. Styner, Y. Arzhaeva, V. Aurich, C. Bauer, et al. Comparison and evaluation of methods for liver segmentation from CT datasets, IEEE Trans. Med. Imaging, 28 (2009), 1251–1265. https://doi.org/10.1109/TMI.2009.2013851 doi: 10.1109/TMI.2009.2013851
    [36] W. Xu, H. Liu, X. Wang, Y. Qian, Liver segmentation in CT based on ResUNet with 3D probabilistic and geometric post process, in IEEE 4th International Conference on Signal and Image Processing (ICSIP), (2019), 685–689. https://doi.org/10.1109/SIPROCESS.2019.8868690
    [37] C. Zhang, Q. Hua, Y. Chu, P. Wang, Liver tumor segmentation using 2.5D UV-Net with multi-scale convolution, Comput. Biol. Med., 133 (2021), 104424. https://doi.org/10.1016/j.compbiomed.2021.104424 doi: 10.1016/j.compbiomed.2021.104424
  • This article has been cited by:

    1. Yanping Chen, Jixiao Guo, Unconditional error analysis of the linearized transformed L1 virtual element method for nonlinear coupled time-fractional Schrödinger equations, 2025, 457, 03770427, 116283, 10.1016/j.cam.2024.116283
    2. Yongtao Zhou, Mingzhu Li, Error estimate of a transformed L1 scheme for a multi-term time-fractional diffusion equation by using discrete comparison principle, 2024, 217, 03784754, 395, 10.1016/j.matcom.2023.11.010
    3. Asghar Ali, Jamshad Ahmad, Sara Javed, Rashida Hussain, Mohammed Kbiri Alaoui, Muhammad Aqeel, Numerical simulation and investigation of soliton solutions and chaotic behavior to a stochastic nonlinear Schrödinger model with a random potential, 2024, 19, 1932-6203, e0296678, 10.1371/journal.pone.0296678
    4. Zemian Zhang, Yanping Chen, Yunqing Huang, Jian Huang, Yanping Zhou, A continuous Petrov–Galerkin method for time-fractional Fokker–Planck equation, 2025, 03770427, 116689, 10.1016/j.cam.2025.116689
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3677) PDF downloads(247) Cited by(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog