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Abstract: Background: Automatic liver segmentation is a prerequisite for hepatoma treatment; 
however, the low accuracy and stability hinder its clinical application. To alleviate this limitation, we 
deeply mine the context information of different scales and combine it with deep supervision to 
improve the accuracy of liver segmentation in this paper. Methods: We proposed a new network called 
MAD-UNet for automatic liver segmentation from CT. It is grounded in the 3D UNet and leverages 
multi-scale attention and deep supervision mechanisms. In the encoder, the downsampling pooling in 
3D UNet is replaced by convolution to alleviate the loss of feature information. Meanwhile, the 
residual module is introduced to avoid gradient vanishment. Besides, we use the long-short skip 
connections (LSSC) to replace the ordinary skip connections to preserve more edge detail. In the 
decoder, the features of different scales are aggregated, and the attention module is employed to 
capture the spatial context information. Moreover, we utilized the deep supervision mechanism to 
improve the learning ability on deep and shallow information. Results: We evaluated the proposed 
method on three public datasets, including, LiTS17, SLiver07, and 3DIRCADb, and obtained Dice 
scores of 0.9727, 0.9752, and 0.9691 for liver segmentation, respectively, which outperform the other 
state-of-the-art (SOTA) methods. Conclusions: Both qualitative and quantitative experimental results 
demonstrate that the proposed method can make full use of the feature information of different stages 
while enhancing spatial data’s learning ability, thereby achieving high liver segmentation accuracy. 
Thus, it proved to be a promising tool for automatic liver segmentation in clinical assistance. 
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1. Introduction 

Liver segmentation from abdominal CT plays an essential role in various clinical applications. 
However, radiologists still predominantly perform this task in a slice-by-slice fashion, which is 
labor-intensive and prone to errors due to observer dependence. Therefore, automatic and accurate 
liver segmentation technology is highly desirable in the clinical environment. 

Currently, automatic liver segmentation methods can be divided into classical machine 
learning-based and deep learning-based approaches. The former mainly includes thresholding [1], 
region growing [2], superpixel [3], level sets [4], sparse [5], atlas [6], etc. However, although 
machine learning-based methods significantly improved the segmentation accuracy, they still require 
artificial feature engineering intervention, resulting in unsatisfactory robustness. 

Thanks to its remarkable feature learning ability, the deep learning-based method has attracted 
many scholars to the medical image process. Long et al. [7] first proposed the fully convolutional 
networks (FCN), which replaced the fully connected layer of VGG16 [8] with a convolutional layer. 
They restored the image to the original resolution through deconvolution, realizing the pixel-level 
prediction. Then, Ronneberger et al. [9] proposed the U-Net with a fully symmetric encoder and 
decoder based on FCN, which can obtain more refined results through gradual upsampling. Due to its 
excellent performance in medical image segmentation, scholars have successively developed various 
improved methods, including three categories: 1) 2D-based, 2) 3D-based, and 3) 2.5D-based methods. 

The 2D-based methods require the least memory. Liu et al. [10] introduced the residual 
module [11] into U-Net and designed a cascaded liver segmentation model to alleviate the gradient 
vanishment. Xi et al. [12] proposed U-ResNets for liver and tumor segmentation. To address the 
imbalance issue of image category, they evaluated the model with five different loss functions. Oktay 
et al. [13] proposed Attention U-Net, which adds the attention gate to the skip connection of UNet. 
The attention gate can automatically distinguish the shape and size of the target so that the network 
pays more attention to the area of interest while suppressing the irrelevant area. Hong et al. [14] 
proposed the quartet attention UNet (QAUNet). They use quartet attention to capture the intrinsic 
and cross-dimensional features between channels and spatial locations. They verified the 
effectiveness of the network in segmenting liver and tumor through extensive experiments. Finally, 
Cao et al. [15] suggested a dual-attention model for liver tumor segmentation and introduced an 
attention gate into DenseUNet to reduce the response of irrelevant regions. In addition, the attention 
in the bidirectional Long Short Term Memory (LSTM) appropriately adjusts the weights of the two 
types of features according to their contributions to the improvement of encoding and upsampling. 

For 3D-based approaches, Ji et al. [16] developed a 3D convolutional neural network (CNN) 
that extracts features from both spatial and temporal dimensions via 3D convolutions. Based on 
U-Net and 3D CNN, Cicek et al. [17] proposed 3D UNet, which replaced all 2D operations with 3D 
processes. Milletari et al. [18] proposed VNet. It deepened the network’s depth, replaced the 
downsampling pooling with convolution, and achieved superior performance compared to 3D UNet. 
In addition, Liu et al. [19] proposed an improved 3D UNet combined with graph cutting for liver 
segmentation. Lei et al. [20] designed a lightweight VNet. During the training phase, they 
employed 3D deep supervision to improve the loss function, which showed great discriminative 
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ability in dealing with liver and non-liver regions. Zhou et al. [21] proposed a novel 
memory-augmented network, the Volumetric Memory Network (VMN), for interactive segmentation 
of volumetric medical data. It solves the task by sequential label propagation while considering the 
rich 3D structures, thus avoiding costly 3D operations. Extensive experiments showed superior 
performance compared with a reasonable number of user interactions. Finally, Jin et al. [22] 
proposed a 3D hybrid residual attention-aware segmentation approach, which combines low- and 
high-level feature information and achieves Dice of 0.961/0.977 for liver segmentation on 
LiTS17/3DIRCADb datasets, respectively. 

The 2.5D-based methods can significantly reduce the memory requirement by utilizing part of 
the inter-slice information of 3D data. Han et al. [23] developed a deep CNN that takes the stack of 
adjacent slices as input and generates a segmentation map corresponding to the central slice, 
realizing the 2.5D mode of the network. Li et al. [24] proposed H-DenseUNet based on 2D and 3D 
intra- and inter-slice information for liver and liver tumor segmentation. The network first extracts 
the image information through the 2D network. It then associates the pixel probability generated by 
the 2D network with the original 3D volume. Lv et al. [25] proposed a 2.5D light liver segmentation 
network. They leverage the techniques from the residual and Inception theories, reducing the number 
of parameters by 70% compared with UNet. 

Nevertheless, each of the methods mentioned above cannot be used straightforwardly to 
generate a satisfactory result in certain challenging cases, which can be outlined as follows: (i) There 
are other issues around the liver or organs with similar intensity; (ii) There are multiple discrete 
small liver regions; (iii) The edge of the liver contains tumors. 

To effectively alleviate the above issues, we developed an end-to-end 3D network framework, 
MAD-UNet, to aggregate multi-scale attention and combined it with deep supervision. The main 
contributions are summarized as follows: 
 Use LSSC to avoid redundant processing of low-resolution information and improve the feature 

fusion of low- and high-resolution information. 
 Employ attention mechanism to aggregate multi-scale features, making full use of the contextual 

spatial information at different scales. 
 Combine the binary cross-entropy loss with Dice loss, and apply deep supervision to the features 

of different levels to improve the accuracy. 
 Validate the proposed method on three publicly available datasets. 

The rest of this paper is organized as follows. Section 2 introduces the related work; Section 3 
describes the proposed network framework; Section 4 gives the experimental results and analysis in 
detail, and the last section provides the conclusions of this paper. 

2. Materials and methods 

2.1. Attention mechanism 

Since ordinary convolution operations often failed to highlight the target features and suppress 
the hidden layer’s noise, the attention mechanism was proposed and found to be an effective model 
for alleviating such problems. For example, Squeeze-and-Excitation (SE) Block [26] could optimize 
the quality of representations by modeling the inter-dependencies between convolutional feature 
channels and thus significantly improve the performance of existing networks at a slightly increased 
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computational cost. Woo et al. [27] developed the Convolutional Block Attention Module (CBAM). 
Given an intermediate feature map, the module first infers attention maps sequentially along two 
separate dimensions, channel and spatial. Then, the attention maps are multiplied to the input 
feature map for adaptive feature refinement. The CBAM can also be seamlessly integrated into any 
CNN architecture. 

In addition, Li et al. [28] applied 3D channel attention and 3D spatial attention modules in the 
decoder to extract features from different scales and achieve competitive performance in spine 
segmentation. Zhou et al. [29] proposed a novel Motion-Attentive Transition Network (MATNet) for 
zero-shot video object segmentation. They designed an asymmetric attention block called 
Motion-Attentive Transition (MAT) in a two-stream encoder, which can convert appearance features 
to motion-attentive representations at each convolution stage. This design has the benefit of 
allowing the encoder to be deeply interleaved and to allow a tight hierarchical interaction between 
object motion and appearance. Wang et al. [30] adopted a multi-resolution attention module to 
combine local deep attention features (DAF) with global background for prostate segmentation on 
ultrasound images. They combined the local and global features in a simple attention module and 
then produced an attention map through the sigmoid function to model long-range dependencies. 

2.2. Deep supervision mechanism 

Lee et al. [31] first proposed the deeply supervised network. They improve CNN’s convergence 
speed and recognition ability in image classification by supervising the training of hidden layers. For 
medical image segmentation, effectively segmenting organs in volumetric images requires deep 
networks to extract features. However, training a deep network may cause gradient vanishment or 
explosion problems, resulting in ineffective backpropagation of loss. 

To address this issue, Dou et al. [32] proposed to utilize direct supervision to train hidden layers 
in 3D FCN. They use deconvolution to upscale the low- and mid-level features and then exert a 
softmax function on these upscaled features to obtain ultra-dense predictions. Finally, they calculated 
the classification errors of the prediction results of these branches and ground truth and verified the 
effectiveness of deep supervision on the SLiver07 dataset. Wang et al. [33] introduced deep 
supervision into 3D FCNs. It effectively alleviated the gradient exploding and vanishing problem, 
which is commonly encountered in deep model training, thereby forcing the update process of 
hidden layer filters to be conducive to high-resolution features. Yang et al. [34] developed a 
dual-path deep supervision mechanism. One is to generate multiple predictions from multiple 
semantic layers and average them to produce accurate segmentation. The other is to adjust the weight 
of the layer by monitoring the local depth of the learned features. Their deeply supervised approach 
achieves good performance in lung tumor segmentation. 

3. Methods 

3.1. Proposed network framework 

The proposed MAD-UNet1 network framework is shown in Figure 1. The overall framework 
consists of 3D UNet, multiple attention modules, and deep supervision operations. In the encoder, 

 
1 Our source code is available at https://github.com/ZhangXY-123/Model/blob/master/MAD-UNet.py 
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ordinary convolutions are replaced by residual blocks to prevent gradients vanishment. In the 
downsampling, to retain more feature information, convolution with a kernel size of 3 × 3 × 3 and a 
stride of 2 is used to replace the pooling operation. In the skip connection stage, LSSC (Figure 2) is 
used instead of ordinary skip connections to avoid the repetition of low-resolution feature 
information. In the decoder, the number of features channels before each upsampling is first halved 
to reduce the number of parameters. At the same time, the features of different resolutions of the 
decoder are upsampled to the same resolution size to form multiple SLFs (single-layer feature). Then 
MLFs (Multi-Layer Feature) are formed through splicing and convolution. Finally, the multi-scale 
fusion of MLF and SLF maps of different resolutions is used to extract regions of interest through 
the attention module (Figure 3), and multiple AFM (Attentive Feature Maps) are obtained. Then the 
liver segmentation is generated by concatenation, convolution, and the Sigmoid activation on these 
four AFMs. In this process, the small-scale feature maps have low resolution but a high level of 
semantic information. On the contrary, the large-scale feature maps have high resolution but rich 
details. MLFs are used to effectively deal with liver regions of different sizes and complex shapes. 
And four SLFs, four AFMs, and the final output image are deeply supervised. 

 

Figure 1. The proposed MAD-UNet framework. 
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3.2. Long-short skip connection 

The convolutional and pooling operations in U-Net can obtain deeper semantic features while 
reducing the image resolution. However, pooling often hinders the downward transmission of 
shallow features such as edges, resulting in most low-resolution semantic features being transmitted 
without enough edge information or small target features. Therefore, in this paper, we employed 
LSSC to improve this part of the problem. 

 

Figure 2. The structure of the LSSC. 

In Figure 2, we detailed the LSSC modules of the transition stage between the encoder and the 
decoder. “Lth” represents the transition layer between the encoder and decoder, and “L-1th” is the last 
transition layer, while “L+1th” represents the next level of the transition layer. We use a residual 
module to avoid the repetition of the low-resolution feature. The residual module consists of 
deconvolution and an activation function. It is added after downsampling. The deconvolution of the 
residual path is first restored to the feature size before downsampling. Then, the obtained target 
features are directly passed to the decoder through skip connections. To help the network obtain edge 
features that are ignored in ordinary skip connections, an extra set of convolution blocks is added to 
each skip connection, consisting of a convolution, a batch normalization, and an activation function. 
Compared with ordinary skip connections, LSSC can effectively retain the edge features of the target 
and meanwhile avoid repeated input features. 

3.3. Attention module 

Attention mechanisms have been applied in various image-processing tasks. For example, 
SENet [26] improves the representative ability of the network by establishing interdependencies 
between convolutional feature channels. CBAM [27] fuses channel attention and spatial attention, 
enabling seamless integration into any CNN network. 

In the task of liver segmentation, the shallow feature map contains detailed information about 
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the liver, and many non-liver regions as well. On the other hand, the deep feature map can obtain 
semantic details on the location information of the liver but may lose the points of the liver edge. To 
refine the information of each layer, we employed the deep attention module to generate refined 
features. The proposed attention module explores the effect of the hierarchical attention mechanism 
in liver segmentation, selectively using complementary features at all scales to refine features at 
different levels, thereby boosting segmentation accuracy. Its structure is shown in Figure 3. 

 

Figure 3. The structure of the attention module. 

First, the SLF and the MLF are concatenated as 𝐹௫, and then the attention weight 𝑊௫ is 
generated by 3 𝑓௔ operations, 

𝑊௫ ൌ 𝑓௔ሺ𝐹௫; 𝜃ሻ 

where θ represents the learning parameters of 𝑓௔, which contains three convolution layers consisting 
of two 3 × 3 × 3 convolutions and one 1 × 1 × 1 convolution. Each convolutional layer consists of 
one convolutional, one group normalization, and one PReLU. These convolution operations can 
select useful multi-level information according to the features of a single layer. The attention module 
computes the attentive map 𝐴௫ by normalizing 𝑊௫ with a Sigmoid function. Next, multiply the 
attention map by MLF to weigh the features in the MLF of each SLF. Finally, the weighted MLFs are 
merged with the corresponding features of each SLF by applying Conv + GroupNormal + PReLU 
again, which can automatically refine the SLF layer by layer and generate a given layer’s final 
attention features. In this way, we can simultaneously utilize the advantages of SLFs and MLFs. 
Specifically, it suppresses the detailed information not in the semantically salient region, captures 
more details in the semantically salient region, and enhances the boundary details. 

3.4. Loss function 

The cross-entropy loss function is commonly used for segmentation tasks since it can well retain 
boundary information; however, it is prone to produce significant errors when dealing with cost 
imbalance problems. In contrast, Dice loss has good performance for scenes with severely imbalanced 
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positive and negative samples. Still, training loss would show instability in processing small targets. 
Therefore, we utilize a combination of Dice loss and binary cross-entropy loss to take into account the 
similarity of local details and global shapes, which are defined in Eqs (1) and (2), respectively. 

𝐿஻஼ா ൌ ∑ 𝑔௜ log 𝑝௜
ே
௜ୀଵ ＋∑ ሺ1 െ 𝑔௜ሻ logሺ1 െ 𝑝௜ሻே

௜ୀଵ                  (1) 

𝐿஽௜௖௘ ൌ 1 െ
ଶ ∑ ௣೔௚೔

ಿ
೔సభ

∑ ௣೔
మಿ

೔సభ ＋∑ ௚೔
మಿ

೔సభ
                     (2) 

where 𝑁 is the voxel number of the input volume; 𝑝௜∈[0.0,1.0] represents the voxel value of the 
predicted probabilities; 𝑔௜∈{0,1} is the voxel value of the binary ground truth volume. 

In the process of training, the supervision signal of each stage adopts the combination of 
𝐿஻஼ா and 𝐿஽௜௖௘, which are defined in Eq (3). We utilize a total of nine deep supervision signals 
and the 𝐿௧௢௧௔௟  is defined as the sum of all signals, defined in Eq (4), in which, 𝑤௜  and 
𝐿௦௜௚௡௔௟

௜ represent the weight and loss of the i-th layer, respectively, while 𝑤௝  and 𝐿௦௜௚௡௔௟
௝  

represent the weight and loss of the j-th layer after the features refinement by the attention 
module, n represents the number of layers of the network, and 𝑤௙ and 𝐿௦௜௚௡௔௟

௙  denote the 

weight and loss of the output layer, respectively. In this paper, we empirically set the weights 
𝑤௜ୀଵ,ଶ,ଷ,ସ, 𝑤௝ୀଵ,ଶ,ଷ,ସand 𝑤௙ as (0.2, 0.4, 0.6, 0.8), (0.3, 0.5, 0.7, 0.9) and 1, respectively. 

𝐿௦௜௚௡௔௟ ൌ 𝐿஻஼ா＋𝐿஽௜௖௘                        (3) 

𝐿௧௢௧௔௟ ൌ ∑ 𝑤௜𝐿௦௜௚௡௔௟
௜ ൅௡

௜ୀଵ ∑ 𝑤௝𝐿௦௜௚௡௔௟
௝ ൅௡

௝ୀଵ 𝑤௙𝐿௦௜௚௡௔௟
௙              (4) 

3.5. Evaluation metrics 

In this experiment, we choose five metrics to evaluate the performance of the proposed method, 
including Dice, volumetric overlap error (VOE), relative volume difference (RVD), average 
symmetric surface distance (ASD), and root mean square symmetric surface distance (RMSD) [35]. 

In addition, to validate whether the difference in segmentation accuracy between our proposed 
method and the comparison methods was statistically significant, we performed paired t-tests on two 
key metrics (Dice and ASD) with a significance level of p < 0.05. The null hypothesis is that the 
mean values of the same evaluation metric are the same for the compared methods. 

4. Experiments and results 

4.1. Datasets and implementation 

We tested the proposed method on three public datasets: LiTS172, SLiver073, and 3DIRCADb4. 
For the LiTS17 dataset, we randomly select 116 sets of data for training (3:1) and 15 sets for testing. 
For both SLiver07 and 3DIRCADb datasets, we randomly choose 12 sets of data for training and 
eight groups for testing. The details of the three datasets are listed in Table 1. 

 
2 The dataset is publicly available at https://competitions.codalab.org/competitions/17094#results 
3 The dataset is publicly available at https://sliver07.grand-challenge.org 
4 The dataset is publicly available at https://www.ircad.fr/research/3d-ircadb-01/ 
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Table 1. Detailed parameters of the three public liver CT datasets. 

Datasets Total train set In-plane resolution Inter-slice spacing Slice num Size 
LiTS17 131 0.55–1.0 mm 0.45–6.0 mm 75–987 512 × 512 
SLiver07 20 0.5–0.8 mm 1.0–3.0 mm 64–394 512 × 512 
3DIRCADb 20 0.56–0.81 mm 1.0–4.0 mm 74–260 512 × 512 

To reduce the training time and improve the computational efficiency, we set the volume of 
the input image to 16 × 256 × 256. Besides, to exclude irrelevant organs, we adjusted the greyscale 
to [-200, 200] HU by windowing process, set the z-axis spacing of all data was to 1 mm and 
removed the slices without liver were. Finally, we expanded 20 slices to the front and back of the 
area containing the liver. 

In addition, we chose Adam as the optimizer in the training process and combined BCE loss 
with Dice loss as the loss function. We set the initial learning rate to 0.001, which would update 
according to lr = initial_lr × γ. When the epoch reaches 400/650, the learning rate starts to decay, 
and the initial value of γ is set to 0.1. A total of 800 epochs were trained with a batch size of 1. We 
run the experiments on a workstation with Ubuntu 18.04, graphics card RTX2080Ti, RAM 32G, 
single CPU Intel Xeon Silver 4110, and Pytorch1.8. 

4.2. Ablation experiment 

To verify the effectiveness of the proposed model, we performed ablation experiments on the 
LiTS17 dataset. Taking 3D UNet as the baseline, we conducted qualitative comparative experiments 
with Baseline + LSSC, Baseline + LSSC + Multi-scale Attention (MA), Baseline + LSSC + MA + 
Deep Supervision (DS). 

Table 2. Ablation experiments on the LiTS17 dataset. 

Method Dice (%) VOE (%) RVD (%) ASD (mm) RMSD (mm) 
3D UNet (Baseline) 92.49 ± 5.34* 13.43 ± 9.77 1.05 ± 0.68 2.87 ± 1.43* 8.53 ± 10.78 
+LSSC 95.75 ± 1.59* 8.26 ± 2.91 0.73 ± 0.58 1.21 ± 0.88* 5.43 ± 4.76 
+LSSC+MA 96.42 ± 1.53* 7.56 ± 2.78 0.54 ± 0.31 1.17 ± 0.59* 4.95 ± 5.23 
+LSSC+MA+DS 97.27 ± 1.22 6.83 ± 2.31 0.34 ± 0.19 1.03 ± 0.37 3.74 ± 3.58 
*Note: Bold font represents the best results. * indicates a statistically significant difference between the labeled 

results and the corresponding results of our method at a significance level of 0.05. 

From Table 2, we can see that Baseline + LSSC achieves 0.9575 on Dice, which is 3.26% 
higher than the Baseline 3D UNet. By introducing a multi-scale attention module, the Dice score of 
Baseline + LSSC + MA achieved a 0.67% improvement (0.9642). Furthermore, our proposed 
MAD-UNet superimposed with deep supervision improves the Dice score by 0.85% (0.9727). 
Besides, the MAD-UNet also resulted in the best score on the other four evaluation metrics and thus 
proved the effectiveness of the proposed network. 



1306 

Mathematical Biosciences and Engineering  Volume 20, Issue 1, 1297–1316. 

4.3. Test on the LiTS17 dataset 

4.3.1. Quantitative comparison on the LiTS17 dataset 

To verify the high accuracy of the proposed method, we compared the proposed method with four 
SOTA methods, including 3D UNet [17], VNet [18], 3D ResUNet [36], and 3D DenseUNet [24]. 

Figure 4 shows the Dice and Loss values of the five models during training on the LiTS17 
dataset. For example, from Figure 4(a), we can see that the Dice of 3D UNet converge the slowest 
and has the lowest Dice value. In addition, the value of Dice of 3D ResUNet has been the highest in 
the first 400 epochs. However, after 400 and 650 epochs, as the learning rate decreases, its score is 
gradually exceeded by the proposed MAD-UNet. Finally, the proposed model outperforms the other 
four on Dice. In addition, during the training process, the loss of the proposed MAD-UNet (Figure 4(b)) 
converges in the lowest position. 

 

Figure 4. Dice and Loss of different methods during training on the LiTS17 dataset. (a) 
Dice (b) Loss. 

Table 3. Comparative results of different methods on LiTS17 dataset. 

Method Dice (%) VOE (%) RVD (%) ASD (mm) RMSD (mm) 
3D UNet [17] 92.49 ± 5.34* 13.43 ± 9.77 1.05 ± 0.68 2.87 ± 1.43* 8.53 ± 10.78 
VNet [18] 93.46 ± 3.03* 12.13 ± 5.23 -0.18 ± 0.55 2.45 ± 1.96* 6.45 ± 5.93 
3D ResUNet [36] 95.43 ± 2.04* 8.57 ± 3.29 0.29 ± 0.37 1.39 ± 0.92* 4.66 ± 4.78 
3D DenseUNet [24] 94.85 ± 2.67* 9.42 ± 4.68 -1.23 ± 0.75 1.46 ± 1.33* 5.32 ± 4.39 
Our MAD-UNet 97.27 ± 1.22 6.83 ± 2.31 0.34 ± 0.19 1.03 ± 0.37 3.74 ± 3.58 
*Note: Bold font represents the best results. * indicates a statistically significant difference between the labeled 

results and the corresponding results of our method at a significance level of 0.05. 

Table 3 shows the comparison with the segmentation results of the SOTA methods. On the 
LiTS17 dataset, the Dice of the proposed method reached 0.9727, which is 4.78, 3.81, 1.84, and 2.42% 
higher than that of 3D UNet, VNet, 3D ResUNet, and 3D DenseUNet, respectively. The 3D UNet 
showed unsatisfactory results, mainly because the pooling causes the loss of image details during the 
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downsampling. In addition, the VNet that uses convolution instead of pooling improves the accuracy 
by 0.97% compared to 3D UNet. Both 3D ResUNet and 3D DenseUNet using residual blocks and 
densely connected blocks achieve good segmentation results. Moreover, our proposed method 
achieves superior performance on other metrics except for RVD. 

4.3.2. Qualitative comparison results on the LiTS17 dataset 

 

Figure 5. 2D Visualization results of five models on the LiTS17 dataset (a) Liver 
adjacent to other tissues (b) Discontinuous liver regions (c) Liver containing tumors 
around (green represents ground truth, blue/red represents under-/over- segmentation). 

Figure 5 shows the segmentation results of the proposed method and other SOTA methods. (i) 
When segmenting liver regions with adjacent tissues (Figure 5(a)), 3D UNet, VNet, and 3D ResUNet 
mistakenly segmented the spleen as the liver. (ii) When dealing with discontinuous liver regions 
(Figure 5(b)), 3D UNet and VNet showed results in under-segmentation errors, while MAD-UNet, 3D 
ResUNet, and 3D DenseUNet accurately segmented the liver. (iii) For the liver region containing the 
tumor around (Figure 5(c)), the other four networks all produced significant segmentation errors. 
However, our proposed MAD-UNet showed a slight under-segmentation error. 
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4.4. Test on the SLiver07 dataset 

4.4.1. Quantitative comparison on the SLiver07 dataset 

Figure 6 shows the Dice and Loss curves during training on the SLiver07 dataset. Empirically 
we performed the learning rate decay at epoch 400, and the Dice curve of our proposed MAD-UNet 
showed a significant drop. However, the Dice value gradually recovered stable and was higher than 
other models with the epoch increase. The Loss of MAD-UNet also fluctuated in the first 400 epochs 
of training and then gradually stabilized and was lower than other models. 

 

Figure 6. Dice and Loss of different models during training on SLiver07 dataset (a) Dice (b) Loss. 

As shown in Table 4, on the SLiver07 dataset, our method achieves the best scores on all 
five-evaluation metrics. For example, the Dice of MAD-UNet is 4.72, 2.44, 1.5, and 1.19% 
higher than that of the other four methods, respectively. Besides, our proposed MAD-UNet also 
showed superior performance on the other four evaluation metrics and thus proved high accuracy 
and good robustness. 

Table 4. Comparative results with SOTA methods on the SLiver07 dataset. 

Method Dice (%) VOE (%) RVD (%) ASD (mm) RMSD (mm) 
3D UNet [17] 92.80 ± 4.13* 13.20 ± 2.85 1.26 ± 0.45 9.93 ± 5.86* 18.51 ± 14.83 
VNet [18] 95.08 ± 4.33* 9.12 ± 7.41 -0.93 ± 0.32 3.28 ± 5.12* 7.67 ± 11.06 
3D ResUNet [36] 96.02 ± 2.54* 7.55 ± 4.53 -0.66 ± 0.19 2.84 ± 2.56* 9.33 ± 9.43 
3D DenseUNet [24] 96.33 ± 1.52* 7.03 ± 2.81 0.58 ± 0.16 3.50 ± 2.67* 12.55 ± 10.79 
MAD-UNet  97.52 ± 0.81 4.97 ± 1.73 0.23 ± 0.17 1.13 ± 0.82 4.73 ± 5.21 
Note: Bold font represents the best results. * indicates a statistically significant difference between the labeled 

results and the corresponding results of our method at a significance level of 0.05. 
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4.4.2. Qualitative comparison on the SLiver07 dataset 

 

Figure 7. 2D Visualization results of five methods on SLiver07 dataset: (a) Liver 
containing adjacent tissues; (b) Liver CT intensity similar to that of other organs; (c) 
Liver with discontinuous regions (green represents ground truth, blue/red represents 
under-/over- segmentation). 

Figure 7 provides the visual segmentation results of different methods on the SLiver07 dataset. 
(i) When the liver region containing adjacent tissues (Figure 7(a)), 3D UNet, VNet, and 3D ResUNet 
showed obvious over-segmentation errors; on the contrary, our proposed method and 3D DenseUNet 
obtained comparable results to the ground truth. (ii) When dealing with the liver CT intensity similar 
to that of other organs (e.g., spleen, Figure7(b)), both 3D UNet and VNet showed significant 
over-segmentation errors. However, our method achieves the highest segmentation accuracy. (iii) For 
liver with discontinuous regions (Figure7(c)), MAD-UNet results in the slightest segmentation error 
compared with other methods. 
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4.5. Test results on the 3DIRCADb dataset 

4.5.1. Quantitative comparison on the 3DIRCADb dataset 

Figure 8 provides the Dice and Loss curves for different models during training on the 
3DIRCADb dataset. It can be seen that the Dice of MAD-UNet converges to the highest. Besides, its 
Loss is always located at the lowest position among all the models. 

 

Figure 8. Dice and Loss of different models during training on 3DIRCADb dataset (a) Dice (b) Loss. 

Table 5. Comparative results of different methods on the 3DIRCADb dataset. 

Method Dice (%) VOE (%) RVD (%) ASD (mm) RMSD (mm)
3D UNet [17] 89.88 ± 11.42* 16.95 ± 15.82 2.63 ± 0.98 7.21 ± 6.74* 10.24 ± 9.27 
VNet [18] 92.47 ± 5.34* 13.62 ± 8.67 1.05 ± 0.68 4.06 ± 3.30* 7.41 ± 6.43 
3D ResUNet [36] 94.61 ± 2.08* 10.16 ± 3.73 -0.18 ± 0.29 2.27 ± 1.08* 4.93 ± 3.87 
3D DenseUNet [24] 94.56 ± 2.23* 10.25 ± 3.99 1.23 ± 0.75 3.23 ± 1.96* 5.81 ± 4.63 
MAD-UNet  96.91 ± 0.68 5.64 ± 1.96 0.25 ± 0.43 1.08 ± 0.77 2.33 ± 1.15 
*Note: Bold font represents the best results. * indicates a statistically significant difference between the labeled 

results and the corresponding results of our method at a significance level of 0.05. 

As shown in Table 5, on the 3DIRCADb dataset, the effect of 3D UNet results in the worst Dice 
score (0.8988), while our proposed method obtains Dice of 0.9691. Moreover, our proposed 
MAD-UNet achieves the best segmentation results on other metrics except for slight inferiority to 3D 
ResUNet on RVD. 

4.5.2. Qualitative comparison on the 3DIRCADb dataset 

Figure 9 demonstrates some typical results on the 3DIRCADb dataset. (i) Figure 9(a) presents a 
segmentation comparison when dealing with discontinuous liver regions that contain tumors at the 
edges. It can be seen that all five methods result in some over-segmentation in the fuzzy connecting 
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area of the liver regions. Still, the MAD-UNet showed a relatively more minor error (ii) Figure 9(b) 
and Figure 9(c) give the segmentation comparison when the liver region contains adjacent organs or 
tissues. It can be seen that MAD-UNet and 3D DenseUNet achieved relatively stable and 
high-precision segmentation accuracy. 

 

Figure 9. 2D Visual results of different methods on the 3DIRCADb (a) Discontinuous 
liver region containing tumor at the edge (b) Liver containing adjacent tissue (c) Liver 
edge containing adjacent organs (green represents ground truth, blue/red represents 
under-/over- segmentation error). 

4.6. Comparison of complexity with other SOTA methods 

Table 6 lists the parameters, training, and test time of different methods on LiTS17, SLiver07, 
and 3DIRCADb datasets. As can be seen from the table, 3D UNet requires the smallest amount of 
parameters, VNet requires the largest, while deploying the proposed MAD-UNet needs slightly 
more parameters than 3D UNet and 3D ResUNet. Furthermore, on all three datasets, the training 
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time of 3D UNet is the least, while that of 3D DenseUNet is the most. Specifically, our proposed 
method requires the least time to test the three datasets. 

Table 6. Comparison of the complexity of different methods on three datasets. 

Method Parameters LiTS17 SLiver07 3DIRCADb 

Train time Test time Train time Test time Train time Test time 

3D UNet [17] 6,405,827 79h58m4s 51.54 s 25h21m12s 20.42 s 17h56m51s 16.71 s 

VNet [18] 53,782,217 119h50m21s 52.46 s 38h4m52s 19.63 s 26h48m38s 15.74 s 

3D ResUNet [36] 9,498,195 81h24m18m 52.01 s 25h46m45s 18.75 s 18h7m53s 14.42 s 

3D DenseUNet [24] 19,783,361 150h19m15s 58.21 s 47h22m43s 19.39 s 33h27m43m 17.89 s 

MAD-UNet 9,990,960 85h54m59s 49.68 s 27h16m23s 18.55 s 19h31m51s 13.72 s 

4.7. Limitation 

 

Figure 10. Illustrations of some limitations of proposed MAD-UNet. (a) Liver with 
blood vessels around (b) Liver with large tumors around (For 2D error, red/blue 
represents the ground truth and our results, respectively. For 3D error, green represents 
the ground truth, and blue/red indicates the under-/over- segmentation error). 

To illustrate the proposed method’s limitation, we present the visualizations of 2D and 3D 
segmentation errors in some typical cases of the proposed MAD-UNet in Figure 10. (i) From 
Figure 10(a), we can see that MAD-UNet showed obvious over-segmentation errors in liver regions 
containing blood vessels. The main reason is that the boundary between the liver and surrounding 
organs and tissues is blurred in this case. (ii) As shown in Figure 10(b), MAD-UNet produces 
obvious over-segmentation errors when processing liver regions with large tumors at the edges. This 
is because the grayscale difference between the tumor and the liver may cause the tumor located 
at the edge of the liver to be considered as other organs or tissues, resulting in segmentation errors. 
To alleviate this limitation, we would focus more on strategies to address blurred boundaries, e.g., 
Zhang et al. [37] effectively suppressed the inconsistency of data distribution by removing mean 
energy in the preprocessing stage. 
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5. Conclusions 

This paper proposes a new framework by aggregating multi-scale attention and combining it 
with deep supervision. We aim to improve the liver segmentation accuracy from CT by the proposal 
of (i) the residual and skip connections, which avoid the repetition of low-resolution feature 
information and can effectively preserve the edge information of the target. (ii) the attention module, 
which fully aggregates feature information of different scales and dimensions. It guides the refined 
attention module to filter out noisy areas, helping the network to pay more attention to areas of 
interest. (iii) the deep supervision signals, which are used to improve the network’s learning ability at 
different levels. 

We extensively validated the proposed method on three publicly available datasets. The 
experimental results demonstrated that: 1) Compared with the existing SOTA models, our method 
achieves the best results in four evaluation metrics (Dice, VOE, ASD, and RMSD), with the least 
test time. 2) The proposed MAD-UNet obtains more satisfactory segmentation performance in 
dealing with cases, including (i) discontinuous liver regions and (ii) livers containing adjacent 
tissues or organs. 

Nevertheless, the proposed method still shows certain limitations when processing the liver 
with blood vessels around or containing large tumors at the liver edge. Moreover, the 3D mode 
requires large memory. Therefore, we will focus on optimizing the network composition to 
improve the accuracy and robustness of the proposed method via more effective learning of edge 
features information. 
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