Research article

Using rheological monitoring to determine the gelation kinetics of chitosan-based systems


  • Received: 19 July 2022 Revised: 21 August 2022 Accepted: 22 August 2022 Published: 26 October 2022
  • The modeling of polymeric reactions is a topic of large interest. The gelation reactions that may result from self-crosslinking or hybrid (agent based-) crosslinking are examples with interest specially in biomaterials applications. The composition of polymer entities during the reaction is hard to follow, and their concentration is not a good measure of the system dynamics. One alternative is monitoring the rheological behavior of the reacting mass, and relate the elastic modulus of the mixture with the rheological degree of conversion. In this paper we use rheological data to fit Malkin and Kulichikin (1996) [1] based models to describe the crosslinking of chitosan. First, the self-crosslinking of chitosan is considered. Then, the agent-based crosslinking reaction promoted by genipin is addressed. We use dynamical rheological data to fit the reaction models. The model fitting problem generated using Maximum Likelihood principle with heteroscedastic prediction error variance is formulated as a Dynamic Optimization problem and subsequently solved with a sequential approach. Parametric confidence regions are computed using the linear approximation of the covariance matrix at the optimum. Further, the parameters correlation matrix is also determined and used to qualitatively infer about the practical identifiability. The reaction order obtained for self-crosslinking kinetics is 1.3375 ± (0.0151) – approximately of first order –, and is 2.2402 ± (0.0373) for hybrid crosslinking (approximately of second order). In both cases we prove the error variance model is heteroskedastic and the model is identifiable. The approach proposed herein can be extended to other polymer systems.

    Citation: Belmiro P. M. Duarte, Maria J. Moura. Using rheological monitoring to determine the gelation kinetics of chitosan-based systems[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 1176-1194. doi: 10.3934/mbe.2023054

    Related Papers:

  • The modeling of polymeric reactions is a topic of large interest. The gelation reactions that may result from self-crosslinking or hybrid (agent based-) crosslinking are examples with interest specially in biomaterials applications. The composition of polymer entities during the reaction is hard to follow, and their concentration is not a good measure of the system dynamics. One alternative is monitoring the rheological behavior of the reacting mass, and relate the elastic modulus of the mixture with the rheological degree of conversion. In this paper we use rheological data to fit Malkin and Kulichikin (1996) [1] based models to describe the crosslinking of chitosan. First, the self-crosslinking of chitosan is considered. Then, the agent-based crosslinking reaction promoted by genipin is addressed. We use dynamical rheological data to fit the reaction models. The model fitting problem generated using Maximum Likelihood principle with heteroscedastic prediction error variance is formulated as a Dynamic Optimization problem and subsequently solved with a sequential approach. Parametric confidence regions are computed using the linear approximation of the covariance matrix at the optimum. Further, the parameters correlation matrix is also determined and used to qualitatively infer about the practical identifiability. The reaction order obtained for self-crosslinking kinetics is 1.3375 ± (0.0151) – approximately of first order –, and is 2.2402 ± (0.0373) for hybrid crosslinking (approximately of second order). In both cases we prove the error variance model is heteroskedastic and the model is identifiable. The approach proposed herein can be extended to other polymer systems.



    加载中


    [1] A. Malkin, S. Kulichikin, Rheokinetics, Huethig & Wepf, 1996.
    [2] N. Iqbal, A. S. Khan, A. Asif, M. Yar, J. W. Haycock, I. U. Rehman, Recent concepts in biodegradable polymers for tissue engineering paradigms: a critical review, Int. Mater. Rev., 64 (2019), 91–126. https://doi.org/10.1080/09506608.2018.1460943 doi: 10.1080/09506608.2018.1460943
    [3] N. Asadi, A. Del Bakhshayesh, S. Davaran, A. Akbarzadeh, Common biocompatible polymeric materials for tissue engineering and regenerative medicine, Mater. Chem. Phys., 242 (2020), 122528. https://doi.org/10.1016/j.matchemphys.2019.122528 doi: 10.1016/j.matchemphys.2019.122528
    [4] A. Pearce, R. O'Reilly, Polymers for biomedical applications: the importance of hydrophobicity in directing biological interactions and application efficacy, Biomacromolecules, 22 (2021), 4459–4469. https://doi.org/10.1021/acs.biomac.1c00434 doi: 10.1021/acs.biomac.1c00434
    [5] A. Mahmood, D. Patel, B. Hickson, J. DesRochers, X. Hu. Recent progress in biopolymer-based hydrogel materials for biomedical applications, Int. J. Mol. Sci., 23 (2022), 1415. https://doi.org/10.3390/ijms23031415 doi: 10.3390/ijms23031415
    [6] R. Chakravorty, B. Nath, S. Das, Review on: recent advances in the state of the art of in situ forming injectable hydrogel systems for therapeutic applications, Int. J. Adv. Res., 6 (2018), 287–300. https://doi.org/10.21474/IJAR01/6439 doi: 10.21474/IJAR01/6439
    [7] M. Ravi Kumar, R. Muzzarelli, C. Muzzarelli, H. Sashiwa, A. Domb, Chitosan chemistry and pharmaceutical perspectives, Chem. Rev., 104 (2004), 6017–6084. https://doi.org/10.1021/cr030441b doi: 10.1021/cr030441b
    [8] V. Alexeev, G. Evmenenko, Salt-free chitosan solutions: thermodynamics, structure and intramolecular force balance, Polym. Sci. Ser. A, 41 (1999), 966–974.
    [9] I. Singha, A. Basu, Chitosan based injectable hydrogels for smart drug delivery applications, Sens. Int., 3 (2022), 100168. https://doi.org/10.1016/j.sintl.2022.100168 doi: 10.1016/j.sintl.2022.100168
    [10] S. Ahsan, M. Thomas, K. Reddy, S. Sooraparaju, A. Asthana, I. Bhatnagar, Chitosan as biomaterial in drug delivery and tissue engineering, Int. J. Biol. Macromol., 110 (2018), 97–10. https://doi.org/10.1016/j.ijbiomac.2017.08.140 doi: 10.1016/j.ijbiomac.2017.08.140
    [11] B. Sultankulov, D. Berillo, K. Sultankulova, T. Tokay, A. Saparov, Progress in the development of chitosan-based biomaterials for tissue engineering and regenerative medicine, Biomolecules, 9 (2019), 470. https://doi.org/10.3390/biom9090470 doi: 10.3390/biom9090470
    [12] N. Kildeeva, A. Chalykh, M. Belokon, T. Petrova, V. Matveev, E. Svidchenko, et al., Influence of genipin crosslinking on the properties of chitosan-based films, Polymers, 12 (2020), 1086. https://doi.org/10.3390/polym12051086 doi: 10.3390/polym12051086
    [13] R. Cunha, J. Silva Neto, B. Leite, J. Rodrigues, M. Pinto, M. Fook, Obtaining, characterizing and using genipin as a crosslinking agent for chitosan hydrogels, Res. Soc. Dev., 10 (2021). https://doi.org/10.33448/rsd-v10i10.18711 doi: 10.33448/rsd-v10i10.18711
    [14] Y. Yu, S. Xu, S. Li, H. Pan, Genipin-cross-linked hydrogels based on biomaterials for drug delivery: a review, Biomater. Sci., 9 (2021), 1583–1597. https://doi.org/10.1039/D0BM01403F doi: 10.1039/D0BM01403F
    [15] E. Merkovich, M. L. Carruette, V. Babak, G. Vikhoreva, L. Gal'braikh, V. E. Kim, Kinetics of the initial stage of gelation in chitosan solutions containing glutaric aldehyde: viscometric study, Colloid J., 63 (2021), 350–354. https://doi.org/10.1023/A:1016608630105 doi: 10.1023/A:1016608630105
    [16] N. Vo, L. Huang, H. Lemos, A. Mellor, K. Novakovic, Poly (ethylene glycol)-interpenetrated genipin-crosslinked chitosan hydrogels: structure, pH, responsiveness, gelation kinetics, and rheology, J. Appl. Polym. Sci., 137 (2020), 49259. https://doi.org/10.1002/app.49259 doi: 10.1002/app.49259
    [17] D. Calvet, J. Wong, S. Giasson, Rheological monitoring of polyacrylamide gelation: importance of cross-link density and temperature, Macromolecules, 37 (2004), 7762–7771. https://doi.org/10.1021/ma049072r doi: 10.1021/ma049072r
    [18] M. Moura, M. Figueiredo, M. Gil, Rheological study of genipin cross-linked chitosan hydrogels, Biomacromolecules, 8 (2007), 3823–3829. https://doi.org/10.1021/bm700762w doi: 10.1021/bm700762w
    [19] B. Espinosa-García, W. Argüelles-Monal, J. Hernández, L. Félix-Valenzuela, N. Acosta, F. Goycoolea, Molecularly imprinted chitosan-genipin hydrogels with recognition capacity toward o-xylene, Biomacromolecules, 8 (2007), 3355–3364. https://doi.org/10.1021/bm700458a doi: 10.1021/bm700458a
    [20] M. Moura, M. Figueiredo, M. Gil, Rheology of chitosan and genipin solutions, Mater. Sci. Forum, 587 (2008), 27–31. https://doi.org/10.4028/www.scientific.net/MSF.587-588.27 doi: 10.4028/www.scientific.net/MSF.587-588.27
    [21] S. Dimida, C. Demitri, V. De Benedictis, F. Scalera, F. Gervaso, A. Sannino, Genipin-cross-linked chitosan-based hydrogels: reaction kinetics and structure-related characteristics, J. Appl. Polym. Sci., 132 (2015). https://doi.org/10.1002/app.42256 doi: 10.1002/app.42256
    [22] C. Thévenot, A. Khoukh, S. Reynaud, J. Desbrières, B. Grassl, Kinetic aspects, rheological properties and mechanoelectrical effects of hydrogels composed of polyacrylamide and polystyrene nanoparticles, Soft Matter, 3 (2007), 437–447. https://doi.org/10.1039/B614166H doi: 10.1039/B614166H
    [23] X. Liu, P. Sawant, Mechanism of the formation of self-organized microstructures in soft functional materials, Adv. Mater., 14 (2002), 421–426. https://doi.org/10.1002/1521-4095(20020318)14:6<421::AID-ADMA421>3.0.CO;2-7 doi: 10.1002/1521-4095(20020318)14:6<421::AID-ADMA421>3.0.CO;2-7
    [24] D. O'Brien, S. White, Cure kinetics, gelation, and glass transition of a bisphenol Fepoxide, Polym. Eng. Sci., 43 (2003), 863–874, 2003. https://doi.org/10.1002/pen.10071 doi: 10.1002/pen.10071
    [25] I. B. Tjoa, L. T. Biegler, Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems, Ind. Eng. Chemistry Res., 30 (1991), 376–385. https://doi.org/10.1021/ie00050a015 doi: 10.1021/ie00050a015
    [26] H. Samaniego, M. San Román, I. Ortiz, Kinetics of zinc recovery from spent pickling effluents, Ind. Eng. Chemistry Res., 46 (2007), 906–912. https://doi.org/10.1021/ie060836w doi: 10.1021/ie060836w
    [27] O. Levenspiel, Chemical Reaction Engineering, John Wiley & Sons, 1998.
    [28] D. Himmelblau, C. Jones, K. Bischoff, Determination of rate constants for complex kinetics models, Ind. Eng. Chem. Fundamen., 6 (1967), 539–543. https://doi.org/10.1021/i160024a008 doi: 10.1021/i160024a008
    [29] Y. Bard, Nonlinear Parameter Estimation, Academic Press, Inc., New York, NY, 1974.
    [30] S. Madbouly, T. Ougizawa, Binary miscible blends of poly (methyl methacrilate) /poly ($\alpha$-methyl styrene-co-acrilonitrile). i. rheological behavior, J. Macromol. Sci. Part B Phys., 41 (2002), 255–269. https://doi.org/10.1081/MB-120003084 doi: 10.1081/MB-120003084
    [31] M. Butler, Y. F. Ng, P. Pudney, Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin, J. Polym. Sci. Part A Polym. Chem., 41 (2003), 3941–3953. https://doi.org/10.1002/pola.10960 doi: 10.1002/pola.10960
    [32] S. Ross-Murphy, Incipient behaviour of gelatine gels, Rheologica Acta, 30 (1991), 401–411. https://doi.org/10.1007/BF00396526 doi: 10.1007/BF00396526
    [33] R. Faber, P. Li, G. Wozny, Sequential parameter estimation for large-scale systems with multiple data sets. 1. computational framework, Ind. Eng. Chem. Res., 42 (2003), 5850–5860. https://doi.org/10.1021/ie030296s doi: 10.1021/ie030296s
    [34] L. Ljung, System Identification - Theory for the user. Prentice Hall PTR, New Jersey, 1999.
    [35] W. Stewart, M. Caracotsios, J. Sorensen, Parameter estimation from multiresponse data, AIChE J., 38 (1992), 641–650. https://doi.org/10.1002/aic.690380502 doi: 10.1002/aic.690380502
    [36] R. Bindlich, J. Rawlings, R. Young, Parameter estimation for industrial polymerization processes, AIChE J., 49 (2003), 2071–2078. https://doi.org/10.1002/aic.690490816 doi: 10.1002/aic.690490816
    [37] V. Zavala, L. Biegler, Large-scale parameter estimation in low-density polyethylene tubular reactors, Ind. Eng. Chem. Res., 45 (2006), 7867–7881. https://doi.org/10.1021/ie060338n doi: 10.1021/ie060338n
    [38] V. Vassiliadis, R. Sargent, C. Pantelides, Solution of a class of multistage dynamic optimization problems. 1. problems without path constraints, Ind. Eng. Chem. Res., 33 (1994), 2111–2122. https://doi.org/10.1021/ie00033a014 doi: 10.1021/ie00033a014
    [39] V. Vassiliadis, W. Kähm, E. del Rio Chanona, Y. Yuan, Optimization for Chemical and Biochemical Engineering: theory, algorithms, modeling and applications, Cambridge University Press, 2021. https://doi.org/10.1017/9781316227268
    [40] S. Li, L. Petzold, Software and algorithms for sensitivity analysis of large-scale differential-algebraic systems, J. Comput. Appl. Math., 125 (2000), 131–145. https://doi.org/10.1016/S0377-0427(00)00464-7 doi: 10.1016/S0377-0427(00)00464-7
    [41] R. Byrd, P. Lu, J. Nocedal, C. Zhu, A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16 (1995), 1190–1208. https://doi.org/10.1137/0916069 doi: 10.1137/0916069
    [42] M. Joshi, A. Seidel-Morgenstern, A. Kremling, Exploiting the bootstrap method for quantifying parameter confidence intervals in dynamical systems, Metab. Eng., 8 (2006), 447–455. https://doi.org/10.1016/j.ymben.2006.04.003 doi: 10.1016/j.ymben.2006.04.003
    [43] A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmüller, et al., Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood, Bioinformatics, 25 (2009), 1923–1929. https://doi.org/10.1093/bioinformatics/btp358 doi: 10.1093/bioinformatics/btp358
    [44] E. Balsa-Canto, A. A Alonso, J. R Banga, An iterative identification procedure for dynamic modeling of biochemical networks, BMC Syst. Biol., 4 (2010), 1–18. https://doi.org/10.1186/1752-0509-4-11 doi: 10.1186/1752-0509-4-11
    [45] E. Walter, Identifiability of Parametric Models, Pergamon Press, USA, 1987.
    [46] H. Melcer, Methods for Wastewater Characterization in Activated Sludge Modelling, IWA Publishing, 2004.
    [47] J. Berger, M. Reist, J. Mayer, O. Felt, N. Peppas, R. Gurny, Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications, Eur. J. Pharm. Biopharm., 57 (2004), 19–34. https://doi.org/10.1016/S0939-6411(03)00161-9 doi: 10.1016/S0939-6411(03)00161-9
    [48] F. L. Mi, S. S. Shyu, C. K. Peng, Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin, J. Poym. Sci. Part A Chem., 43 (2005), 1983–2000. https://doi.org/10.1002/pola.20669 doi: 10.1002/pola.20669
    [49] V. Crescenzi, M. Dentini, D. Bontempo, G. Masci, Hydrogels based on pullulan derivatives crosslinked via a "living" free radical process, Macromol. Chem. Phys., 203 (2002), 1285–1291. https://doi.org/10.1002/1521-3935(200207)203:10/11<1285::AID-MACP1285>3.0.CO;2-2 doi: 10.1002/1521-3935(200207)203:10/11<1285::AID-MACP1285>3.0.CO;2-2
    [50] K. Anseth, C. Bowman, L. Brannon Peppas, Mechanical properties of hydrogels and their experimental determination, Biomaterials, 17 (1996), 1647–1657. https://doi.org/10.1016/0142-9612(96)87644-7 doi: 10.1016/0142-9612(96)87644-7
    [51] A. Malkin, S. Kulichikhin, Polymer Compositions Stabilizers/Curing, Springer, (1991), 217–257. https://doi.org/10.1007/BFb0018003
    [52] X. Bao, L. Yu, G. Simon, S. Shen, F. Xie, H. Liu, et al., Rheokinetics of graft copolymerization of acrylamide in concentrated starch and rheological behaviors and microstructures of reaction products, Carbohydr. Polym., 192 (2018), 1–9. https://doi.org/10.1016/j.carbpol.2018.03.040 doi: 10.1016/j.carbpol.2018.03.040
    [53] A. Chenite, M. Buschmann, D. Wang, C. Chaput, N. Kandani, Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions, Carbohydr. Polym., 46 (2001), 39–47. https://doi.org/10.1016/S0144-8617(00)00281-2 doi: 10.1016/S0144-8617(00)00281-2
    [54] H. Han, D. Nam, D. Seo, T. Kim, B. Shin, H. Choi, Preparation and biodegradation of thermosensitive chitosan hydrogel as a function of pH and temperature, Macromol. Res., 12 (2004), 507–511. https://doi.org/10.1007/BF03218435 doi: 10.1007/BF03218435
    [55] M. Moura, M. Gil, M. Figueiredo, Delivery of cisplatin from thermosensitive co-cross-linked chitosan hydrogels, Eur. Polym. J., 49 (2013), 2504–2510. https://doi.org/10.1016/j.eurpolymj.2013.02.032 doi: 10.1016/j.eurpolymj.2013.02.032
    [56] M. Moura, J. Brochado, M. Gil, M. Figueiredo, In situ forming chitosan hydrogels: preliminary evaluation of the in vivo inflammatory response, Mater. Sci. Eng. C, 75 (2017), 279–285. https://doi.org/10.1016/j.msec.2017.02.050 doi: 10.1016/j.msec.2017.02.050
    [57] E. Szymańska, K. Sosnowska, W. Miltyk, M. Rusak, A. Basa, K. Winnicka, The effect of $\beta$-glycerophosphate crosslinking on chitosan cytotoxicity and properties of hydrogels for vaginal application, Polymers, 7 (2015), 2223–2244. https://doi.org/10.3390/polym7111510 doi: 10.3390/polym7111510
    [58] A. Zlatanic, B. Dunjic, J. Djonlagic, Rheological study of the copolymerization reactionof acrylate-terminated unsaturated copolyesters with styrene, Macromol. Chem. Phys., 200 (1999), 2048–2058. https://doi.org/10.1002/(SICI)1521-3935(19990901)200:9<2048::AID-MACP2048>3.0.CO;2-V doi: 10.1002/(SICI)1521-3935(19990901)200:9<2048::AID-MACP2048>3.0.CO;2-V
    [59] S. Madbouly, T. Ougizawa, Thermal cross-linking of poly(Vynil Methyl Ether). ⅲ. rheological kinetics of cross-linking reaction, J. Macromol. Sci. Part B Phys., 43 (2004), 819–832. https://doi.org/10.1081/MB-120030027 doi: 10.1081/MB-120030027
    [60] Y. Lipatov, T. Alekseeva, Interpenetrating polymer networks based on polyurethane and poly (butil methacrilate): interrelation between reaction kinetics and microphase structure, Polym. Adv. Technol., 7 (1996), 234–246. https://doi.org/10.1002/(SICI)1099-1581(199604)7:4<234::AID-PAT528>3.0.CO;2-3 doi: 10.1002/(SICI)1099-1581(199604)7:4<234::AID-PAT528>3.0.CO;2-3
    [61] V. Normand, S. Muller, J. C. Ravey, A. Parker, Gelation kinetics of gelatine: a master curve and network modeling, Macromolecules, 33 (2000), 1063–1071. https://doi.org/10.1021/ma9909455 doi: 10.1021/ma9909455
    [62] G. Franks, B. Moss, D. Phelan, Chitosan tissue scaffolds by emulsion templating, J. Biomater. Sci. Polym. Ed., 17 (2006), 1439–1450. https://doi.org/10.1163/156856206778937271 doi: 10.1163/156856206778937271
    [63] E. Wilder, C. Hall, S. Khan, R. Spontak, Effects of composition and matrix polarity on network development in organogels of poly(ethylene glycol) and dibenzylidene sorbitol, Langmuir, 19 (2003), 6004–6013. https://doi.org/10.1021/la027081s doi: 10.1021/la027081s
    [64] L. Félix, J. Hernandez, W. Argüelles-Monal, F. Goycoolea, Kinetics of gelation and thermal sensitivity of n-isobutyryl chitosan hydrogels, Biomacromolecules, 6 (2005), 2408–2415. https://doi.org/10.1021/bm0501297 doi: 10.1021/bm0501297
    [65] K. Burnham, D. Anderson, Model Selection and Inference. A Practical Information-Theoretic Approach, Springer Verlag, New York, 1998.
    [66] S. Ross-Murphy, Reversible and irreversible biopolymer gels: structure and mechanical properties, Ber. Bunsenges. Phys. Chem., 102 (1998), 1534–1539. https://doi.org/10.1002/bbpc.19981021104 doi: 10.1002/bbpc.19981021104
    [67] F. Fraga, V. Soto, J. Blanco-Méndez, A. Luzardo-Alvarez, E. Rodríguez-Núñez, J. Martínez-Ageitos, et al., Kinetic study of chitosane/genipin system using DSC, J. Therm. Anal. Calorim., 87 (2007), 233–236. https://doi.org/10.1007/s10973-006-7824-7 doi: 10.1007/s10973-006-7824-7
    [68] S. Sourour, M. R. Kamal, Differential scanning calorimetry of epoxy cure: isothermal cure kinetics, Thermochim. Acta, 14 (1976), 41–59. https://doi.org/10.1016/0040-6031(76)80056-1 doi: 10.1016/0040-6031(76)80056-1
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1157) PDF downloads(88) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog