
Zagreb indices are well-known and historical indices that are very useful to calculate the properties of compounds. In the last few years, various kinds of Zagreb and Randic indices are investigated and defined to fulfil the demands of various engineering applications. Phenylenes are a class of conjugated hydrocarbons composed of a special arrangement of six- and four-membered rings. This special chain, produced by zeroth-order Markov process has been commonly appeared in the field of pharmacology and materials. Here, we compute the expected values of a multiplicative versions of the geometric arithmetic and atomic bond connectivity indices for these special hydrocarbons. Moreover, we make comparisons in the form of explicit formulae and numerical tables between the expected values of these indices in the random polyphenyl Pn and spiro Sn chains.
Citation: Zahid Raza, Juan LG Guirao, Ghada Bassioni. The comparative analysis of two molecular indices in random polyphenyl and spiro chains[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 12500-12517. doi: 10.3934/mbe.2022583
[1] | Syeda Nadiah Fatima Nahri, Shengzhi Du, Barend J. van Wyk, Oluwaseun Kayode Ajayi . A comparative study on time-delay estimation for time-delay nonlinear system control. AIMS Electronics and Electrical Engineering, 2025, 9(3): 314-338. doi: 10.3934/electreng.2025015 |
[2] | José M. Campos-Salazar, Pablo Lecaros, Rodrigo Sandoval-García . Dynamic analysis and comparison of the performance of linear and nonlinear controllers applied to a nonlinear non-interactive and interactive process. AIMS Electronics and Electrical Engineering, 2024, 8(4): 441-465. doi: 10.3934/electreng.2024021 |
[3] | José M. Campos-Salazar, Roya Rafiezadeh, Felipe Santander, Juan L. Aguayo-Lazcano, Nicolás Kunakov . Comprehensive GSSA and D-Q frame dynamic modeling of dual-active-bridge DC-DC converters. AIMS Electronics and Electrical Engineering, 2025, 9(3): 288-313. doi: 10.3934/electreng.2025014 |
[4] | Jun Yoneyama . H∞ disturbance attenuation of nonlinear networked control systems via Takagi-Sugeno fuzzy model. AIMS Electronics and Electrical Engineering, 2019, 3(3): 257-273. doi: 10.3934/ElectrEng.2019.3.257 |
[5] | Thanh Tung Pham, Chi-Ngon Nguyen . Adaptive PID sliding mode control based on new Quasi-sliding mode and radial basis function neural network for Omni-directional mobile robot. AIMS Electronics and Electrical Engineering, 2023, 7(2): 121-134. doi: 10.3934/electreng.2023007 |
[6] | José M. Campos-Salazar, Juan L. Aguayo-Lazcano, Roya Rafiezadeh . Non-ideal two-level battery charger—modeling and simulation. AIMS Electronics and Electrical Engineering, 2025, 9(1): 60-80. doi: 10.3934/electreng.2025004 |
[7] | Qichun Zhang, Xuewu Dai . Special Issue "Uncertainties in large-scale networked control systems". AIMS Electronics and Electrical Engineering, 2020, 4(4): 345-346. doi: 10.3934/ElectrEng.2020.4.345 |
[8] | Yanming Wu, Zelun Wang, Guanglei Meng, Jinguo Liu . Neural networks-based event-triggered consensus control for nonlinear multiagent systems with communication link faults and DoS attacks. AIMS Electronics and Electrical Engineering, 2024, 8(3): 332-349. doi: 10.3934/electreng.2024015 |
[9] | Rasool M. Imran, Kadhim Hamzah Chalok, Siraj A. M. Nasrallah . Innovative two-stage thermal control of DC-DC converter for hybrid PV-battery system. AIMS Electronics and Electrical Engineering, 2025, 9(1): 26-45. doi: 10.3934/electreng.2025002 |
[10] | Qichun Zhang . Performance enhanced Kalman filter design for non-Gaussian stochastic systems with data-based minimum entropy optimisation. AIMS Electronics and Electrical Engineering, 2019, 3(4): 382-396. doi: 10.3934/ElectrEng.2019.4.382 |
Zagreb indices are well-known and historical indices that are very useful to calculate the properties of compounds. In the last few years, various kinds of Zagreb and Randic indices are investigated and defined to fulfil the demands of various engineering applications. Phenylenes are a class of conjugated hydrocarbons composed of a special arrangement of six- and four-membered rings. This special chain, produced by zeroth-order Markov process has been commonly appeared in the field of pharmacology and materials. Here, we compute the expected values of a multiplicative versions of the geometric arithmetic and atomic bond connectivity indices for these special hydrocarbons. Moreover, we make comparisons in the form of explicit formulae and numerical tables between the expected values of these indices in the random polyphenyl Pn and spiro Sn chains.
This work is motivated by the networked control system (NCS) or remote control system where the media that connects the controller and actuator causes random packet delays or dropouts. This type of control systems are anticipated to have vast applications. The readers are referred to the review paper [1]. The common features of NCS are random packet delays or dropouts, competition of multiple nodes in the network, data quantization, etc., and this makes the modeling and stability analysis very challenging. Markovian type regime switching models have been proved to be very successful in modeling NCS [2,3]. However, the stability of such systems still remains a challenge. Most stability criteria are given as complicated LMI conditions [4,5] via Lyapunov function approach, or dwell time [6], or delay Riccati equations [7]. A stability condition using hybrid system analysis is found in [8], which is again a sufficient condition and is not easy to verify. A neat sufficient and necessary condition is in great need.
In order to overcome the constraints of NCS, such as random packet delays or dropouts, it is a natural idea to estimate system state and compensate for packet disorders [9]. One believes that in this way better system performance and better system stability can be achieved. Predictive control has been effectively applied to NCS [10,11,12,13]. This control method generates a sequence of future control variables, which can be used to compensate for packet disorder or dropouts [14], and to estimate unknown system state as well [15,16]. However, as mentioned earlier, the stability conditions are usually hard to verify. To analyze the stability issue, one must have a thorough understanding of the dynamics of NCS with random time delays and state estimate.
In this paper we propose a predictive control method of NCS with random packet delays and state estimate/compensation, and clearly show the structure of this system. This control method has much less computational burden compared to classical predictive control method. Then the system is modeled as a regime switching system, and an upper bound on the number of regimes is provided. By the word ``scale'' we mean the number of distinct regimes (denoted by
Throughout this paper we use
Unlike most NCSs where the objective systems on the actuator side are time invariant, here we assume that the objective system is a regime switching system with Markovian jumps, and we call it a Markov Jump System (MJS). The application of switching systems in engineering can be found, for example, in [17,18,19]. We let
We begin with simple and practically reasonable assumptions on this system.
● The actuator receives signals with random delays.
The actuator receives control signals from the controller and performs the required actions. Due to the random packet delays, the actuator might receive no signal, or receive a packet that is randomly delayed, or receive multiple packets. If more than one packet arrive at the same time, the actuator executes the most recent one.
● Obsolete signals are discarded.
If, at a certain time instant, a control variable has been applied, then any control signal older than it but arrives at later times will be discarded. For example, if
● The delay times are bounded.
The backward time delay
● The controller sends out signals at every discrete instant.
The controller receives state feedback from the actuator via randomly delayed packets, and the controller estimates the future system state and sends out a new control signal. If no state feedback is received at a certain time instant, the controller simply sends a zero control signal.
● Past control signals are recorded.
The controller keeps a record of past control signals that have been sent. This information is used to calculate a new control signal whenever a feedback packet arrives.
● Packet size is limited.
The network bandwidth is very limited so that each time the controller and actuator just send out one small packet to the other party. That means, sending out a large packet containing a long sequence of controls or system states is not applicable. (Otherwise this system reduces to classical control system without time delay.)
The controlled system on the actuator side becomes
xk+1=a(ik)xk+b(j)(ik)uk−τ2, | (1.1) |
where
The NCS is a special dynamical system that might be easy to describe in words, but is hard to understand because its dynamics looks chaotic. One must get down to the bottom and have a careful dissemination to obtain a clear understanding. In what follows we shall do this work.
We use the triplet
If no control signal arrives at time
The expression
We use a similar mechanism to represent the situation at the controller side. The pair
Notice that the received information depends on the sequence of the past states
Proposition 2.1. An upper bound on the number of different regimes of this problem (denoted by
m2+T1⋅(1+T2)2+T1⋅(2+T2)/2⋅(1+T1)⋅(2+T1)/2 | (2.1) |
Proof. On the controller side we consider the pair
Similarly, on the actuator side, any pair
Due to the feedback delay, a sequence with length
The controller then calculates and sends out a new control variable
However, recall that not all the transitions
m⋅(1+T2)⋅(2+T2)/2⋅[m⋅(1+T2)]1+T1=m2+T1⋅(1+T2)2+T1⋅(2+T2)/2. |
Now the proof is complete.
It is clear that to represent the complete system scenario, we need
In each scenario in
zk=[xk(ik),xk−1(ik−1),...,xk−T1(ik−T1),uk−1,uk−2,...,uk−T1−T2]T, | (3.1) |
where the superscript
zk+1=A(C(k)2,τ(k)2,ik)zk+B(C(k)2,τ(k)2,ik)uk, | (3.2) |
which is an extension of (1.1). Since each entry in (3.1) is necessary to describe the system dynamics in a certain regime, we are clear that
If
A(C(k)2,τ(k)2,ik)=(a(ik) 0 0 0 0⋯1 0 0 0 0⋯0 1 0 0 0⋯⋯⋯⋯⋯⋯⋯0(∗)⋯ 0 0 0⋯0⋯ 0 1 0⋯⋯⋯⋯⋯⋯⋯),B(C(k)2,τ(k)2,ik)=[0 0 0⋯ 1(∗) 0 0⋯]T, |
where
If
If
A(0,τ(k)2,ik)=(a(ik) 0⋯b(ik) 0 0⋯1 0 0 0 0 0⋯0 1 0 0 0 0⋯⋯⋯⋯⋯⋯⋯⋯0(∗)⋯ 0 0 0 0⋯0⋯ 0 1 0 0⋯⋯⋯⋯⋯⋯⋯⋯),B(0,τ(k)2,ik)=[0 0 0⋯ 1(∗) 0 0⋯]T, |
where the position of
On the controller side we have
uk=−F(C(k)1,τ(k)1,C(k−τ(k)1−1)2,τ(k−τ(k)1−1)2,ik−τ(k)1−1)zk. | (3.3) |
If
uk−τ(k)1−τ(k−τ(k)1−1)2,uk−τ(k)1−τ(k−τ(k)1−1)2+1,...,uk−1, | (3.4) |
the controller is able to estimate the system state
Recall that if the controller does not receive any feedback packet at present time
We need to point out that there is much flexibility in calculating the new control variable, which might be the most resourceful research in NCS. In this paper we present our control method as follows. Firstly, based on the most recent information
ˆxk−τ(k)1+1=a(ˆik−τ(k)1)xk−τ(k)1+b(ˆik−τ(k)1)uk−τ(k)1−τ(k−τ(k)1−1)2, | (3.5) |
and
ˆxk−τ(k)1+2=a(ˆik−τ(k)1+1)ˆxk−τ(k)1+1+b(ˆik−τ(k)1+1)uk−τ(k)1−τ(k−τ(k)1−1)2+1, | (3.6) |
and so forth until
One may notice that the system mode information
Based on the probability transition matrix
To calculate a new control
ˆik−τ(k)1,ˆik−τ(k)1+1,⋯,ˆik+τ(k−τ(k)1−1)2−1,ˆik+τ(k−τ(k)1−1)2,..,ˆik−τ(k)1+L−1, | (3.7) |
where
J(ˆxk+τ2,ˆik+τ(k−τ(k)1−1)2−1,τ(k)1,τ(k−τ(k)1−1)2)=L−τ(k)1∑j=τ(k−τ(k)1−1)2+1ˆxTk+jQ(k+j)ˆxk+j+L−τ(k)1−τ(k−τ(k)1−1)2−1∑j=0ˆuTk+jR(k+j)ˆuk+j, | (3.8) |
where
Unlike the usual cost function which is the expected value along all possible future paths, this cost function (3.8) is calculated along the deterministic path (3.7), and because the optimization is performed on one path, a huge amount of calculation is saved. To see this in more details, let us consider a control method which chooses future controls
J(ˆxk+τ2,ˆik+τ(k−τ(k)1−1)2−1,τ(k)1,τ(k−τ(k)1−1)2)=L−τ(k)1∑j=τ(k−τ(k)1−1)2+1E[ˆxTk+jQ(k+j)ˆxk+j|xk−τ(k)1]+L−τ(k)1−τ(k−τ(k)1−1)2−1∑j=0ˆuTk+jR(k+j)ˆuk+j, | (3.9) |
where
But for our proposed simplified predictive control method, a natural question remains: what if the path we predicted does not actually occur? Remember that so far we have not used rolling optimization which is the true power of RHC. The calculation of future control sequences is repeated at each sample instant, and if a prediction error occurs, it will be corrected by re-planning at the next sample instant.
Actually we can make this calculation faster by noticing that the control format in RHC with quadratic criterion function (3.8) is given by linear feedback form, see, e.g., [20]. We borrow the iterative algorithm in [20] for the calculation of state feedback control in time varying case, then we obtain
uk=−F(ˆik+τ(k−τ(k)1−1)2−1,τ(k)1,τ(k−τ(k)1−1)2)ˆxk+τ(k−τ(k)1−1)2. | (3.10) |
Recall that
Dk−τ(k)1+1=(0 ⋯0 a(ˆik−τ(k)1) 0 ⋯0 b(ˆik−τ(k)1)⋯0 ⋯⋯ ⋯ ⋯ 0 1 0⋯0 ⋯⋯ ⋯⋯ 1 0 0⋯⋯⋯⋯ ⋯⋯⋯⋯ ⋯⋯), |
where
Dk−τ(k)1+1zk=(ˆxk−τ(k)1+1 uk−τ(k)1−τ(k−τ(k)1−1)2+1⋯⋯uk−1)T |
by (3.5).
Now we define
Dk−τ(k)1+2=(a(ˆik−τ(k)1+1) b(ˆik−τ(k)1+1)0 0⋯0 01 0⋯0 00 1⋯⋯ ⋯⋯ ⋯⋯), |
and get
Dk−τ(k)1+2Dk−τ(k)1+1zk=(ˆxk−τ(k)1+2 uk−τ(k)1−τ(k−τ(k)1−1)2+2 ⋯uk−1)T |
by (3.6). Continue this process until we reach
Dk+τ(k−τ(k)1−1)2⋯Dk−τ(k)1+1zk=ˆxk+τ(k−τ(k)1−1)2. | (3.11) |
Substituting (3.11) in (3.10) yields
uk=−F(ˆik+τ(k−τ(k)1−1)2−1,τ(k)1,τ(k−τ(k)1−1)2)⋅Dk+τ(k−τ(k)1−1)2⋯Dk−τ(k)1+1zk. |
Since
F(C(k)1,τ(k)1,C(k−τ(k)1−1)2,τ(k−τ(k)1−1)2,ik−τ(k)1−1)=F(ˆik+τ(k−τ(k)1−1)2−1,τ(k)1,τ(k−τ(k)1−1)2)⋅Dk+τ(k−τ(k)1−1)2⋯Dk−τ(k)1+1. | (3.12) |
In the next section we shall investigate the stability of this control algorithm.
Putting (3.3) in (3.2) yields
zk+1=A(C(k)2,τ(k)2,ik)zk−B(C(k)2,τ(k)2,ik)⋅F(C(k)1,τ(k)1,C(k−τ(k)1−1)2,τ(k−τ(k)1−1)2,ik−τ(k)1−1)zk. | (4.1) |
Denote
H=H(C(k)2,τ(k)2,ik,C(k)1,τ(k)1,C(k−τ(k)1−1)2,τ(k−τ(k)1−1)2,ik−τ(k)1−1)=A(C(k)2,τ(k)2,ik)−B(C(k)2,τ(k)2,ik)⋅F(C(k)1,τ(k)1,C(k−τ(k)1−1)2,τ(k−τ(k)1−1)2,ik−τ(k)1−1), |
then we obtain the following dynamics
zk+1=H⋅zk, | (4.2) |
where
The usual stability criteria on MJSs are mean convergence (MC) and mean square convergence (MSC). We say that a system is uniformly MC if
F=diag(H)⋅(P′⊗Id),A=diag(H⊗H)⋅(P′⊗Id2), | (4.3) |
where
Theorem 4.1. The MJS (4.1) is uniformly MC if and only if
Proof. The proof can be found in [22]. Here we just point out that the matrices
In the numerical example we shall test both stabilities.
Remark 4.1. We are able to provide this sufficient and necessary condition on stability, and this is largely due to the fact that the structure of this NCS has been clearly revealed.
For the complete representation
(C(k)2,τ(k)2,ik,C(k)1,τ(k)1)→(C(k+1)2,τ(k+1)2,ik+1,C(k+1)1,τ(k+1)1). | (5.1) |
As we mentioned earlier, the regimes do not have full reachability, but the transition (5.1) can be decomposed into three parts that are treated independently. The first part
We consider an example where the objective system, which is a MJS, has two modes (
[x(1)k+1x(2)k+1]=[1.20.2 10 ][x(1)kx(2)k]+[0.05 0.1]uk−τ2, |
and
[x(1)k+1x(2)k+1]=[0.70.2 10 ][x(1)kx(2)k]+[0.10.3]uk−τ2, |
respectively. This system is controlled by a controller through a network with random time delays. It is assumed that
The matrix
Pm=(0.8 0.20.2 0.8). |
To construct
(0,0)(0,1) (0,2)(1,0) (1,1)(2,0)(0,0) 0.70 00.3 00 (0,1) 0.40.4 00 0.20 (0,2) 0.50.2 0.30 00 (1,0) 0.30.4 00 00.3 (1,1) 0.50.2 0.30 00 (2,0) 0.40.2 0.40 00 | (6.1) |
Now that
P1=(0.6 0 0.40.5 0.5 00.7 0.3 0). |
By the derivation in this paper, we need to keep
(0,0)→(0,0)→(0,0)(0,0)→(0,0)→(1,0)(0,0)→(1,0)→(0,0)(0,0)→(1,0)→(0,1)(0,0)→(1,0)→(2,0)⋯⋯⋯, |
and the total number of all possible 3-pair paths is 45. The estimate from (2.1) on this part is given by
The vector
Without any control we have
We choose the prediction horizon
The MJS stability certainly depends on the transition probabilities among the regimes. For instance, if we use
Pm=(0.85 0.150.25 0.75),P1=(0.7 0 0.30.6 0.4 00.8 0.2 0), |
and
P2=(0.8 0 0 0.2 0 00.5 0.3 0 00.2 00.6 0.3 0.1 00 00.4 0.30 00 0.30.5 0.20.3 00 00.7 0.20.1 00 0), |
then again, without control we have
Then we apply the proposed predictive control method and have
To overcome the constraints of NCS such as random packet delays/disorders, it is a natural idea to estimate the system states and send out a control signal that compensates the time delay, hence the expectation of a better control performance. In this paper we modeled the NCS as a regime switching system and proposed a simplified predictive control method. The regime estimate (2.1), which is one of the main contributions of this paper, illustrates that this seemingly small system actually has a very large scale. The structure of this system has been clearly revealed, and a concise sufficient and necessary condition on stability is obtained. Numerical examples clearly show the features of this dynamical system.
This work is supported by Barrios Technology Faculty Fellowship from University of Houston - Clear Lake, 2017-2018.
The author declares no conflict of interest in this paper.
[1] |
H. Wiener, Structure determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1947), 17–20. https://doi.org/10.1021/ja01193a005 doi: 10.1021/ja01193a005
![]() |
[2] |
H. Hosoya, A newly proposed quantity chracterizingthe topologcal nature of struuctural isomers of saturated hydrocarbons, Bull. Chem. Soc. Japan, 44 (1971), 2332–2339. https://doi.org/10.1246/bcsj.44.2332 doi: 10.1246/bcsj.44.2332
![]() |
[3] | I. Gutman, K. Das, The first Zagreb index 30 years after, Match Commun. Math. Comput. Chem., 50 (2004), 83–92. |
[4] | D. Bonchev, Information Theoretic Indices for Characterization of Molecular Structure, Research Studies Press, Chichester, 2010. |
[5] | H. Gonzales-Diaz, Topological Indices for Medicinal Chemistry, Biology, Parasitology, Neurological and Social Networks, Transworld Research Network, 2010. |
[6] | N. Trinajstic, Chemical Graph Theory, 2nd edition, CRC Press, Boca Raton, 1992. https://doi.org/10.1201/9781315139111 |
[7] | M. Karelson, Moledular Descriptors in QSR/QSPR, Wiley-Interscience, New York, 2000. |
[8] |
L. B. Kier, L. H. Hall, Medicinal chemistry: A series of monographs, Med. Chem., 14 (1976), 2. https://doi.org/10.1016/B978-0-12-406560-4.50001-5 doi: 10.1016/B978-0-12-406560-4.50001-5
![]() |
[9] | E. Estrada, L. Torres, L. Rodr´ýguez, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem., 37A (1998), 849–855. |
[10] |
T. Divnic, M. Milivojevic, L. Pavlovic, Extremal graphs for the geometric-arithmetic index with given minimum degree, Discrete Appl. Math., 162 (2014), 386–390. https://doi.org/10.1016/j.dam.2013.08.001 doi: 10.1016/j.dam.2013.08.001
![]() |
[11] |
E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, Chem. Phys. Lett., 463 (2008), 422–425. https://doi.org/10.1016/j.cplett.2008.08.074 doi: 10.1016/j.cplett.2008.08.074
![]() |
[12] |
V. R. Kulli, Multiplicative connectivity indices of certain nanotubes, Ann. Pure and App. Math., 12 (2016), 169–176. http://dx.doi.org/10.22457/apam.v12n2a8 doi: 10.22457/apam.v12n2a8
![]() |
[13] |
R. Škrekovski, D. Dimitrov, J. Zhong, H. Wu, W. Gao, Remarks on multiplicative atom-bond connectivity index, IEEE Access, 7 (2019), 76806–76811. https://doi.org/10.1109/access.2019.2920882 doi: 10.1109/access.2019.2920882
![]() |
[14] |
D. Vukicevic, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem., 46 (2009), 1369–1376. https://doi.org/10.1007/s10910-009-9520-x doi: 10.1007/s10910-009-9520-x
![]() |
[15] | K. C. Das, On geometric-arithmetic index of graphs, MATCH Commun. Math. Comput. Chem., 64 (2010), 619–630. |
[16] |
K. C. Das, N. Trinajstic, Comparison between first geometric-arithmetic index and atom-bond connectivity index, Chem. Phys. Lett., 497 (2010), 149–151. https://doi.org/10.1016/j.cplett.2010.07.097 doi: 10.1016/j.cplett.2010.07.097
![]() |
[17] |
H. Deng, Wiener indices of spiro and polyphenyl hexagonal chains, Math. Comput. Model., 55 (2012), 634–644. https://doi.org/10.1016/j.mcm.2011.08.037 doi: 10.1016/j.mcm.2011.08.037
![]() |
[18] |
M. Randic, Characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 660–661. http://dx.doi.org/10.1021/ja00856a001 doi: 10.1021/ja00856a001
![]() |
[19] |
Z. Raza, The harmonic and second Zagreb indices in random polyphenyl and spiro chains, Poly. Aro. Compounds, 42 (2022), 671–680. https://doi.org/10.1080/10406638.2020.1749089 doi: 10.1080/10406638.2020.1749089
![]() |
[20] | Z. Raza, M. Imran, Expected values of some molecular descriptors in random cyclooctane chains, Symmetry, 13 (2021), 2197–2210. |
[21] |
Z. Raza, The expected values of some indices in random phenylene chains, Eur. Phys. J. Plus, 136 (2021), 1–15. https://doi.org/10.1140/epjp/s13360-021-01082-y doi: 10.1140/epjp/s13360-021-01082-y
![]() |
[22] | Z. Raza, K. Naz, S. Ahmad, E Expected values of molecular descriptors in random polyphenyl chains, Emerging Sci. J., 6 (2022), 151–165. |
[23] |
Z. Raza, The expected values of arithmetic bond connectivity and geometric indices in random phenylene chains, Heliyon, 6 (2020), e04479. https://doi.org/10.1016/j.heliyon.2020.e04479 doi: 10.1016/j.heliyon.2020.e04479
![]() |
[24] |
J. M. Rodríguez, J. M. Sigarreta, Spectral properties of geometric-arithmetic index, Appl. Math. Comput., 277 (2016), 142–153. https://doi.org/10.1016/j.amc.2015.12.046 doi: 10.1016/j.amc.2015.12.046
![]() |
[25] |
Y. Yuan, B. Zhou, N. Trinajstić, On geometric-arithmetic index, J. Math. Chem., 47 (2010), 833–841. https://doi.org/10.1007/s10910-009-9603-8 doi: 10.1007/s10910-009-9603-8
![]() |
[26] |
B. Zhou, I. Gutman, B. Furtula, Z. Du, On two types of geometric-arithmetic index, Chem. Physc. Lett., 482 (2009), 153–155. https://doi.org/10.1016/j.cplett.2009.09.102 doi: 10.1016/j.cplett.2009.09.102
![]() |
[27] |
M. Burechecks, V. Pekarek, T. Ocelka, Thermochemical properties and relative stability of polychlorinated biphenyls, Environ. Tox. Pharm., 25 (2008), 2610–2617. https://doi.org/10.1016/j.etap.2007.10.010 doi: 10.1016/j.etap.2007.10.010
![]() |
[28] |
G. Huang, M. Kuang, H. Deng, The expected values of Kirchhoff indices in the random polyphenyl and spiro chains, Ars Math. Comtemp., 9 (2015), 197–207. https://doi.org/10.26493/1855-3974.458.7b0 doi: 10.26493/1855-3974.458.7b0
![]() |
[29] | W. Yang, F. Zhang, Wiener index in random polyphenyl chains, Match Commun. Math. Comput. Chem., 68 (2012), 371–376. |
[30] |
G. Huang, M. Kuang, H. Deng, The expected values of Hosoya index and Merrifield-Simmons index in a random polyphenylene chain, J. Comb. Optim., 32 (2016), 550–562. https://doi.org/10.1007/s10878-015-9882-x doi: 10.1007/s10878-015-9882-x
![]() |
[31] |
Y. Yang, H. Liu, H. Wang, S. Sun, On spiro and polypheny hexagonal chains with respect to the number of BC-subtrees, Int. J. Comput. Math., 94 (2017), 774–799. https://doi.org/10.1080/00207160.2016.1148811 doi: 10.1080/00207160.2016.1148811
![]() |
[32] |
S. Wei, X. Ke, G. Hao, Comparing the excepted values of the atom-bond connectivity and geometric-arithmetic indices in random spiro chains, J. Inequal. Appl., 45 (2018), 45–55. https://doi.org/10.1186/s13660-018-1628-8 doi: 10.1186/s13660-018-1628-8
![]() |
[33] | Y. Bai, B. Zhao, P. Zhao, Extremal Merrifield-Simmons index and Hosoya index of polyphenyl chains, Match Commun. Math. Comput. Chem., 62 (2009), 649–656. |
[34] | H. Bian, F. Zhang, Tree-like polyphenyl systems with extremal Wiener indices, Match Commun. Math. Comput. Chem., 61 (2009), 631–642. |
[35] | H. Deng, Z. Tang, Kirchhoff indices of spiro and polyphenyl hexagonal chains, Util. Math., 95 (2014), 113–128. |
[36] | T. Doslic, M. S. Litz, Matchings and independent sets in polyphenylene chains, Match Commun. Math. Comput. Chem., 67 (2012), 313–330. |
[37] | A. Chen, F. Zhang, Wiener index and perfect matchings in random phenylene chains, MATCH Commun. Math. Comput. Chem., 61 (2009), 623–630. |
[38] | X. Chen, B. Zhao, P. Zhao, Six-membered ring spiro chains with extremal Merrifild-Simmons index and Hosaya index, MATCH Commun. Math. Comput. Chem., 62 (2009), 657–665. |
[39] |
Y. Yang, H. Liu, H. Wang, H. Fu, Subtrees of spiro and polypheny hexagonal chains, Appl. Math. Comput., 268 (2015), 547–560. https://doi.org/10.1016/j.amc.2015.06.094 doi: 10.1016/j.amc.2015.06.094
![]() |
[40] |
X. Zhang, H. Jiang, J. B. Liu, Z. Shao, The cartesian product and join graphs on edge-version atom-bond connectivity and geometric arithmetic indices, Molecules, 23 (2018), 1731. https://doi.org/10.3390/molecules23071731 doi: 10.3390/molecules23071731
![]() |
[41] |
X. Zhang, W. Xinling, S. Akhter, M. K. Jamil, J. B. Liu, M. R. Farahani, Edge-version atom-bond connectivity and geometric arithmetic indices of generalized bridge molecular graphs, Symmetry, 10 (2018), 751. https://doi.org/10.3390/sym10120751 doi: 10.3390/sym10120751
![]() |
[42] | X. Zhang, H. M. Awais, M. Javaid, M. K. Siddiqui, Multiplicative zagreb indices of molecular graphs, J. Chem., 268 (2019). https://doi.org/10.1155/2019/5294198 |
[43] |
M. Cancan, M. Imran, S. Akhter, M. Siddiqui, M. Hanif, Computing forgotten topological index of extremal cactus chains, Appl. Math. Nonlinear Sci., 6 (2021), 439–446. https://doi.org/10.2478/amns.2020.2.00075 doi: 10.2478/amns.2020.2.00075
![]() |
[44] |
M. B. Belay, C. Wang, The first general Zagreb coindex of graph operations, Appl. Math. Nonlinear Sci., 5 (2020), 109–120. https://doi.org/10.2478/amns.2020.2.00020 doi: 10.2478/amns.2020.2.00020
![]() |
[45] |
M. Berhe, C. Wang, Computation of certain topological coindices of graphene sheet and C4C8(S) nanotubes and nanotorus, Appl. Math. Nonlinear Sci., 4 (2019), 455–468. https://doi.org/10.2478/AMNS.2019.2.00043 doi: 10.2478/AMNS.2019.2.00043
![]() |
[46] |
S. Goyal, P. Garg, V. Mishra, New composition of graphs and their Wiener Indices, Appl. Math. Nonlinear Sci., 4 (2019), 163–168. https://doi.org/10.2478/AMNS.2019.1.00016 doi: 10.2478/AMNS.2019.1.00016
![]() |
[47] |
S. Shirakol, M. Kalyanshetti, S. Hosamani, QSPR Analysis of certain distance based topological indices, Appl. Math. Nonlinear Sci., 4 (2019), 371–386. https://doi.org/10.2478/AMNS.2019.2.00032 doi: 10.2478/AMNS.2019.2.00032
![]() |
[48] |
M. Naeem, M. Siddiqui, J. Guirao, W. Gao, New and modified eccentric indices of octagonal grid Omn, Appl. Math. Nonlinear Sci., 3 (2018), 209–228. https://doi.org/10.21042/AMNS.2018.1.00016 doi: 10.21042/AMNS.2018.1.00016
![]() |
[49] |
A. Baig, M. Naeem, W. Gao, Revan and hyper-Revan indices of Octahedral and icosahedral networks, Appl. Math. Nonlinear Sci., 3 (2018), 33–40. https://doi.org/10.21042/AMNS.2018.1.00004 doi: 10.21042/AMNS.2018.1.00004
![]() |
[50] |
M. Sardar, S. Zafar, Z. Zahid, Computing topological indices of the line graphs of Banana tree graph and Firecracker graph, Appl. Math. Nonlinear Sci., 2 (2017), 83–92. https://doi.org/10.21042/AMNS.2017.1.00007 doi: 10.21042/AMNS.2017.1.00007
![]() |
[51] |
V. Lokesha, T. Deepika, P. Ranjini, I. Cangul, Operations of nanostructures via SDD, ABC4 and GA5 indices, Appl. Math. Nonlinear Sci., 2 (2017), 173–180. https://doi.org/10.21042/AMNS.2017.1.00014 doi: 10.21042/AMNS.2017.1.00014
![]() |