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Abstract: Zagreb indices are well-known and historical indices that are very useful to calculate
the properties of compounds. In the last few years, various kinds of Zagreb and Randic indices are
investigated and defined to fulfil the demands of various engineering applications. Phenylenes are a
class of conjugated hydrocarbons composed of a special arrangement of six- and four-membered rings.
This special chain, produced by zeroth-order Markov process has been commonly appeared in the field
of pharmacology and materials. Here, we compute the expected values of a multiplicative versions
of the geometric arithmetic and atomic bond connectivity indices for these special hydrocarbons.
Moreover, we make comparisons in the form of explicit formulae and numerical tables between the
expected values of these indices in the random polyphenyl P, and spiro S,, chains.

Keywords: atomic bond connectivity index; geometric arithmetic index; expected values; random
polyphenyl chain; spiro chains; comparisons

1. Introduction

Chemical graph theory, is a branch of mathematics, dealing with mathematical modelling of
graphs that is also an essential branch of theoretical chemistry. Initial chemical research introduces
the theory of chemical graph. Chemists confirm that the physicochemical properties of a compound
have been associated with the molecular arrangement, resulting in derived from an enormous number
of investigational data. Furthermore, the researchers considered the same topological index based on
various chemical properties and applied it to QSR/ QSPR learning. Generally, the features of a
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compound derived by chemical experiments are not much authentic. Although, theoretical
calculations assume a vital role in many extraordinary cases, e.g., the proportion of trace elements is
very small and mass cannot be obtained, that makes it problematic to direct and inspect their
properties. Consequently, the way utilizing chemical experimentation are less productive than
chemical topological index computing. All through this research paper, we demonstrated the
molecular structure as where an atom is communicated by every node and every edge indicates the
chemical bond between two atoms of a graph. Here, the crystals, compounds, medications, or
materials are shown by graphical structures and known as molecular graphs. The earliest integer
topological indices such as W(G) index in [1] have a high degeneracy, the Z(G) index in [2], the
Zagreb index in [3], compared to non-integer such as information theoretic indices explained in [4—6]
or higher-order molecular connectivity index briefed in [7, 8]. The Atom Bond Connectivity (ABC)
index 1s introduced by Estrada et al. [9] and the stability of alkanes is correlated by this and the strain
energy of cycloalkanes, see [10, 11]. Zagreb index is the oldest index having a number of applications
in the field of chemicals. To fit the different applications, researchers have made a few changes to
various indices as of late, and have suggested some more versions. Next, a graph G has a node set
V(G) and an edge set E(G),d(x) gives the degree of the node x € V(G). Recently, Kulli [12]
introduced the multiplicative version of ABC index and described as:

d,+d,—2
Md]@:EL%iﬁf- (1.1)

The authors computed the multiplicative ABC index of some nanotubes. Since the multiplicative
ABC index is not yet studied widely, the results on the multiplicative ABC index are yet restricted,
when contrasted with the ABC index, for more recent work see [13]. In [14] geometric arithmetic
index (GA) has been defined and well correlated with a lot of properties of the compound and it
predicts physio-chemical properties better than the Randic index. More details about the GA index
can be found in [15-26]. Kulli [12] also introduced the multiplicative version of geometric arithmetic
index

mﬂ@:ﬂzﬂz (1.2)

weE(G) dy +d,

ABC and GA indices are shown to have an extensive scope of topological variables upheld by
chemical experimental data. Since the variables mentioned above are described in the field of
chemical for the fundamentals of additional applied applications having some potential application
substance. About a similar application, the edge version topological indices with unique indices
perform as corresponding associations that appropriate the different chemical data sets. The
polyphenyls may be used in heat exchanger, drug synthesis, organic synthesis, etc. See [27] for
further applications regarding the applications of polyphenyls.

In organic chemistry, spiro compounds are a significant class of cycloalkanes. In spiro compounds,
a spiro association is a relationship between two rings in which the same atom joint consists of two
rings. A free spiro association is a link having only one atom in common with two adjacent rings.
Another name of normal atom is the spiro atom. According to the spiro atoms, monospiro, dispiro,
trispiro are the compounds. We study a subclass of branchless multi-spiro particles where each ring
has a hexagon and so, their graphs are named spiro hexagonal chains.
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Figure 1. Random Polyphenyl Chains forn = 1,2,3 and n > 3.

A polyphenyl chain denoted by PP, is obtained from n hexagons 4, h,, h, by joining two consecutive
hexagons by an edge (see Figure 1). If n = 1,2, chains as shown in Figure 1 are unique. There are
three different ways to join two consecutive hexagons and hence P, is not unique for n > 2. P! P2,
and P;;’ are the three local arrangements of P, (see Figure 1). Hence, P, is a random process obtained
from a fixed P,,_; and P!, PZ, and P? can be obtained from P,_;, with p;, p, and 1 — p; — p, probabilities.
If the probabilities p;;i = 1,2 are constants and do not pendent on 7, then this procedure is a Markov
process of order zero. The obtained chain P(n; py, p») is called random polyphenyl.

O OO
G o oo

Figure 2. Random spiro Chains forn = 1,2,3 and n > 3.

If each consecutive hexagon in P, joined directly to each other, then we have a spiro chain S,.
Similarly, for n > 2, the chain S, has three types of local arrangements denoted by S!, S? and S3
, respectively, and S, is not unique (see Figure 2). The obtained chain S(n;p;, p,) is called random
spiro.

Although, the mathematical theoretical model and the actual compound composition principle has a
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special gap (for example, the aromaticity of the structures give the stability of the polybenzene system
that is additionally obtained through its final arrangement, and the steric effect (steric hindrance) plays
an important part in defining the comparative constancy of orth, para and meta isomers). There are
few advance contributions in these structures in the special topological indices due to random chain
structural operation. In [28] we determined the Kirchhoft index for these two special chains and the
W(G) index in [29]. The Z(G) index and F(G) index [30]. BC-subtrees characterized in [31]. H(G)
and M,(G) indices in [19]. ABC and GA indices in [32]. Independent sets, matchings, and some
other properties [4,17,33-39]. For more details, one may refer to [15,40-51].

Markov process of various molecular structures has a critical importance of research implication
in chemical studies in nature embedding. For instance, the thickness of water is changed at a lower
temperature and so, the thickness is more likely to be empty. It is to a good judgment, the lower the
temperature is, the less dynamic the atom, and the more modest the thickness vacillations ought to be.
The researchers claim that water is another important point and so, water is always changing rapidly
in both states. By nature, both states are distinct. Any transformation in any other will bring about an
unexpected transformed thickness that is usually specified at that basic point. In this behalf, we can say
that water consists of two liquids of various thickness, e.g., water is definitely not a liquid. However, the
two liquids are the combination of a lower and higher thickness of liquid. Due to various thicknesses,
lengths, association qualities, and hydrogen bonds between the two liquids are unique that converts
their features like diffusion and thickness. The molecular structure is different in these two types of
water, one of which is that the water particles are scattered and thick, and the other with a low thickness
is a standard tetrahedral structure. At a typical temperature and pressing factor, low-thickness water
particles are arbitrarily inserted in high-thickness water atoms. Furthermore, their mathematical theory
depends on the Markov process and the mutual embedding of various molecular graphs. Besides, P,
and S, chains show a typical method in regards to join molecule graphs.

In this paper, we study two important chains named as random spiro and random polyphenyl in
detail. Consequently, there are countless commitments that have been discussed on different random
properties and applications of ABC and GA indices. This inspires us to make an essential study on the
multiplicative ABC and GA indices and makes theoretical support available for the future use of above-
mentioned indices. So, the multiplicative ABC and multiplicative GA indices for random polyphenyl
and random spiro chains has been computed in this paper.

2. Results and discussion

Our main results about these two types of chains have been discussed in this part. First, we consider
the random spiro chain S(n; p1,p;) as shown in Figure 2, and there are only (2,2),(2,4) and (4,4)
edges in S,. As we know that the multiplicative ABC and GA indices for random spiro chains are
random variables and their expected values are denoted by EA5¢ = E[ABC [](S(n; p1,p2))] and EC4 =
E[GA T1(S(n; p1,02))] respectively. From Eqs (1.1) and (1.2), we have:

2 6
ABC H(S") - (7\/_)x22(8n)+x24(sn)(§)x44(Sn) 2.1)

2V2
GA H(S") — (1)X2z(Sn)+X44(Sn)(T\/_)XM(Sn) (2_2)
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Theorem 1. For n > 1, and a random spiro chains S(n; p1,p>), we have
n—2
1) E2B€ = E[ABC [1 S(n; p1,p2)] = WZ#

2) EGA = E[GA T1(S(n; pr, po))] = S(Butbiyn-2.

Proof. For n = 2, we have E{5¢ = 1/64 and ES* = 64/81. If n > 2, then we have to consider three
local arrangements (see Figure 2).

1. If S, — S,ll with pI‘Obﬂbﬂity P1, then XQQ(S,IZ) = XZQ(Sn_l) + 3, X24(S,11) = X24(Sn_1) +2, X44(Srll) =
X44(S,-1) + 1, and by Eqs (2.1) and (2.2), we have

1 6 1 6
ABc[|sh = <$>mw<7‘f)m($>5<7‘f>

V3
e ABC H(Sn_1 ).

242
1 _ X202 +X4. X2, +2
GAl [s) = ey

7Y B [CAY

ii. If p, is the probability to obtained S? from a fixed S,_1, then x5(S2) = x22(S,_1) + 2, x24(S?) =
x04(Sno1) + 4, x44(S2) = x44(S,-1), and by (2.1) we get

ABC| [sh = %ABC [ |0

2V2
G | =o'l [@m

ii. If Sn—l - Si with probability 1- P1 — P2, then )sz(Sz) = XZZ(Sn—l) +2, X24(Si) = X24(Sn_1) + 4,
%44(S;) = x44(Sy1), 50 |
ABC ]—[(Rgcg) = gABC H(RSCH)

GA ]—[(RSC3) - (2 ‘/_ YGA H(RSC,H).

By the above three types of local arrangements, we have:,

EFC = pABC [ |81 +pABC | [82) + (1 - py - pABC| [(52)
+ (1=p1 —p2)ABC ﬂ(sn_o

1 1 1 1

ABC H(Sn 1)[}01— +1028 + 3 —Plg —Pzg]
\/§ 1

ABC | |Sidlgem —pig

1
g 2.3)
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and also, we have

ES = piGA[ D +pmGA )+ (1 -p1 - pGA| | (8D

8 22
= pi[GA H(S”‘l)§] + p2[GA H(Sn—])(T)4]
2

+ (1-pi-pGA[ ]S, 1><i>

— 8
= GA (Sn—l)[§pl —P1(§) + (5) ’]
= Al 88 . &y
= GA| [Sn-Dp:(1 9)9 +(9) |

— 8 64
= GA[ e P

E[E,] = E, so apply E on Eqgs (2.3) and (2.4), which gives the following:
2 1
EABC = pABC[p, \/_ + g].
8p1 + 64

ESA = Effl[

81 I

Solving the linear recurrence relation of Eqs (2.5) and (2.6) with the initial condition, we get

EABC _ (p1(V3 =2) +2)2

24n2
64 8p, + 64
EGA:_ n—2
" 81( 81 )

(2.4)

(2.5)

(2.6)

O

From Theorem 1, we noted that EA2¢ and E94 are polynomial in rho, and asymptotic to n. It is
easy to note that these indices can be computed for three special chains: meta PM, = S(n;0, 1), para

PP, = S(n;0,0), and ortho PO, = S(n; 1,0) chains as shown in Figure 3.

PM;
PP,

PO,

Figure 3. Special Polyphenyl ortho (POg, meta PM, and para PP chains).
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Corollary. Forn > 1, we have

1. e ABCT(P,) = ABCII(M,) = 3.

n-2
e ABCT](0,) = QL.

2. e GATI(P,) = GATI(M,) = (5"

« GATI(0,) = (3"

If P, is the polyphenyl chain as shown in Figure 1. There are only (2,2), (2, 3) and (3, 3) edges in
P, and from Eqs (1.1) and (1.2) one can get the following:

V2 V6
—_ X22(Pn)+x24(Pr) X44(Pn)
ABC | (@) = (Foymmms® s (o) 2.7)
2V2
— x22(Pp)+x44(Py) x24(Py)

GA [ [(B,) = (1=t (myes (2.8)
As we know that the multiplicative GA and ABC indices are random variables in random polyphenyl
chain and their expected values are denoted by EQBC = E[ABC[](P(n;p1,p2))] and

ESY = E[GA T1(P(n; p1,p2))] respectively.

Theorem 2. Forn > 1, and a random polyphenyl chains P(n; py, p,), we have
]) EABC — ABC H(P ) — B2 ‘5—3)]"72.

22n+1432n-3

2) ES* = (28288 4 py (202 — (28]

Proof. For n = 2, we have E{¢ = 1/96 and ES* = 576/625. If n > 2, then we have to consider three
local arrangements (see Figure 1).

1). If P,_; — P! with probability p;, then
Xzz(P}l) = xZZ(Pn—l) + 3, ng(P}l) = x23(Pn—1) + 2 and )C33(P,ll) = X33(Pn_1) + 2. Then from (27) and
(2.8), we have
ABC1(P}) = t2ABC (P, 1)
GATI(RY) = (B PGATI(®,-1)
2). If P,_; — P? with probability p,, then
Xzz(Pﬁ) = XZZ(Pn—l) + 2, )C23(P,21) = )C23(Pn_1) + 4 and )C33(P,21) = )C33(Pn_1) + 1. Then from (27) and
(2.8), we have
ABCTI(P;) = (%)W%)ABC [T(P.-1) = (55)ABC [1(P-1)
GATI(E) = (RO 'GATI(®, 1)
3). If RPC,_; — RPCﬁ with probability 1 — p; — p,, then
)sz(P?l) = XZZ(Pn—l) + 2, )ng(Pz) = x23(Pn—l) + 4 and X33(P,31) = X33(Pn_1) + 1. Then from (27) and
(2.8), we have
ABCTI®Y) = (2)°(D)ABC [1(B,1) = (5)ABC [1(B,1)
GATI(ES) = (B)'GATI(®,-1)
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By the above three types of local arrangements, we have

EMC = pABC| |®)) +pABC | [®2) + (1 - pi - ppaBC | [®))
= p[ABC H(Pn 1) \/_] + p2[ABC H(Pn 1)
+ (1 =pi-pABC B

V2 1 1 1 1
AB P, — —p— —
Cl—[( w—D[o1 = 13 +P212 TR TR
3 2v2-3
+p1(2V2 )| (2.9)

36

]

ABC| @0

and also, we have

ES = piGA[ |®)+pmGA[ |+ (1 —pi — pGA[ |
2V6 2V6
= ;F)ZGA]—[(P,,_om( f)“GAH(Pn_])

2V6
(1-p, —pz)(—\/_)4GA [e.-

+

2V6 2V6
= ca[ |@.] (—) pill ;F)Z ~( f)‘*}] (2.10)
As E[E,] = E, so apply E on Egs (2.9) and (2.10), which gives the following:
EAC = Eﬁff[3+p1(2‘/§_3)]. 2.11)
36
2 2V6 2V6
ES* = EZ [(i> pi( ;Ff ~( ;f)‘*}]. (2.12)

Solving the linear recurrence relation of Eqs (2.11) and (2.12) with the initial condition, we get our
results and finish the proof. O

From Theorem 2, we noted that EA®¢ and E®4 are polynomial in p; and asymptotic to n. It is
easy to note that these indices can be computed for three special chains: meta PM, = P(n;0, 1), para
PP, = P(n;0,0), and ortho PO, = P(n; 1,0) chains as shown in Figure 4.

Corollary. Forn > 1, we have
1) ABCTI(P,) = ABC [|(M,) = 55z

n—2
ABCTI(0,) = £20—.

x3n=1°

2) GATI(P,) = GATI(M,) = (33)" 2.

GATI(0,) = ()"

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12500-12517.
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Figure 4. Special Polyphenyl ortho (POg, meta PM and para PPg chains).

3. A comparison between the expected values of multiplicative ABC and GA indices

A comparison between the expected values of multiplicative ABC and GA indices for these two
types of random chains has been considered in this part. As an application of Theorems 1 and 2, an
analytical and numerical comparison (see Tables 1-8) between the expected values for these indices of
a random spiro and random polyphenyl chains has been outlined. Moreover, Figures 5 and 6 gives the
comparison of both indices. The following lemma is easy to prove by induction, we omit its proof.

Lemma 1. For all n > 2, we have

3 n—232n
f(l’l) = % < 1.

Theorem 3. Forn > 2, we have

EIGA [ (8@ p1,p201 > EIABC [ [(8(n: p1, 020

Proof. Obviously for n = 2, the statement is true. So, when n > 2, by Theorem 1, we have

E[GA | [(S(:p1,0201 = EIABC | (S p1,p2))]

64 801 +64., , (p1(V3-2)+2)2

= n e ) 242
8., (V32

= ()~ s 0<p<]
3n n—-2 2n

= 2_ 1_(\/§)—*3 >0
32n 27n—2

O
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E[GA]

E[ABC]

E[ABC]

Figure 6. Comparison between E[ABC] and E[GA] in random spiro chain.

Table 1. For probability p; = 0.

n EFC(S,) EZA(S,)

2 0.015625 0.790123457
3 0.001953125 0.624295077
4 0.000244141 0.493270184
5 3.05176 x1073 0.389744343
6 3.8147 x107° 0.307946148
7 4.76837 x1077 0.243315475
8 5.96046 x1078 0.192249264
9 7.45058 x107° 0.151900653
10 9.31323 x1071° 0.120020269
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Theorem 4. Forn > 2, we have

EIGA [ [®@: p1,p20) > EIABC [ [B(n: p1, 020

Proof. When n > 2, by Theorem 2, we have
E[GA | [®@:p1,0201 - EIABC | |®(n: p1, )]

24 24 -2 [34p(2V2-3)]2
- (5) [2_52(24 +p1)] - 22n+132n-3
24, (Vo

Table 2. For probability p; = 1/2.

(V22

( \/E)n—2[4n( \/i)n+23n 1 ]

52n "~ on+332m-3

12V2 1
‘/_)n _ ] >0
25 2n+332n—3

n EMC(S,) ETA(S,)

2 0.015625 0.790123457
3 0.00182229 3.784788904
4 0.000212528 18.12960611
5 2.47864 x107° 86.84305148
6 2.89075 x107° 415.988938
7 3.37138 x107’ 1992.63837
8 3.93193 x1078 9544.983795
9 4.58567 x10~° 45721.65077
10 5.34811 x1071° 219012.3518

Table 3. For probability p; = 1/3.

n EFFC(S,) EF(S,)

2 0.015625 0.790123457
3 0.001865902 2.731290962
4 0.000222822 9.441499621
5 2.66089 x107° 32.63728264
6 3.17757 x107° 112.8202363
7 3.79458 x107’ 389.9958785
8 4.5314 x1078 1348.133901
9 5.4113 x107° 4660.215954
10 6.46205 x1071° 16109.38848

Mathematical Biosciences and Engineering
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Table 4. For probability p; = 1.

n EFC(S,) EZA(S,)

2 0.015625 0.790123457
3 0.001691456 6.945282731
4 0.000183105 61.04989265
5 1.98217 x1073 536.6360934
6 2.14577 x107¢ 4717.097513
7 2.32286 x1077 41463.86949
8 2.51457 x1078 364472.5318
9 2.7221 x107° 3203758.551
10 2.94676 x1071° 28161433.19

From Tables 1-4, we can note that the expected value of the GA index is greater than ABC index
for spiro chain.

Table 5. For probability p; = 0.

n D EFA(B,)

2 0.010416667 0.9216

3 0.000868056 0.84934656
4 7.2338 x1073 0.78275779
5 6.02816 x107° 0.721389579
6 5.02347 x107’ 0.664832636
7 4.18622 x1078 0.612709757
8 3.48852 x10™° 0.564673312
9 2.9071 x1071° 0.520402925
10 2.42258 x107!! 0.479603335

Table 6. For probability p; = 1/2.

n EMFC(R,) EF(B,)
2 0.010416667 0.9216

3 0.000843233 0.86704128
4 6.826 x107 0.815712436
5 5.52568 x107° 0.76742226
6 4.47306 x10~7 0.721990862
7 3.62096 x1078 0.679249003
8 2.93118 x10™ 0.639037462
9 2.3728 x1071° 0.601206444
10 1.92079 x107!! 0.565615023

Mathematical Biosciences and Engineering
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Table 7. For probability p; = 1/3.

n EZPC(B,) EGA(F,)

2 0.010416667 0.9216

3 0.000851507 0.86114304

4 6.96062 x107° 0.804652057

5 5.68994 x107° 0.751866882

6 4.65122 x107’ 0.702544414

7 3.80213 x1078 0.656457501

8 3.10804 x10~° 0.613393889

9 2.54066 x1071° 0.57315525

10 2.07685 x1071! 0.535556265
Table 8. For probability p; = 1.

n E}"(P,) EJAP,)

2 0.010416667 0.9216

3 0.000818411 0.884736

4 6.43004 x107° 0.84934656

5 5.05192 x107° 0.815372698

6 3.96916 x107’ 0.78275779

7 3.11847 x1078 0.751447478

8 2.4501 x107° 0.721389579

9 1.92498 x1071° 0.692533996

10 1.51241 x107!! 0.664832636

From Tables 5-8, we can note that the expected value of the GA index is greater than ABC index
for polyphenyl chain P,,.

3.1. The average value of multiplicative ABC and GA for a random and spiro chains

In order to compute the average values of aforementioned indices over the set of all spiro chains
S(n, p1, p2) of order n, which will be denoted by SS,,. The average values over the set SS, are defined

by
1
ABC,,, ﬂ(ssn) =55 rezsén ABC n(r)
and .
GAwe | |50 = 1 %;*" Al [

respectively. It is easy to see that these are the population means of these indices over all elements in
SS, thatis p; = p2 = 1 — p1 — pa;, Hence by putting p; =2 = 1 —p1 —p2 = % in Theorem 1 we, will
get the following result.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12500-12517.
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Theorem 5. If SS, is the set of spiro chains, then

(L3+dyn-2
ABCu. | [88) = —55—

23n
GAwe | [S8)) = 57w iy,

It is easy to see from Corollary 2, we have

ABC [1(PO,) + ABC [1(PP,) + ABC [[(PM,)

3

3n-2 1 1

_ ;f—z Tt
3
(V3242522
- 24n-23
( \/§)n72+2n71

_ 3
- 24n-2

and

GATI(PO,) + GATI(PP,) + GATI(PM,)
3

18 n ﬁ n—1
g[(§) +2(81) ]

8 [9n—2 + 2 sn—z]

)"

0 9n—2
B 23n(32n—4 + 23n—5)
- 34n—4

. n—2 , nan—1 . . . .
Since ( ‘@;4 Y2 > () 3 *2_ Vn > 4. Thus the average value of these aforementioned indices is always

greater or equal to their average value over the set {PO,, PP,, PM,} of three special chains.
4. Conclusions

The multiplicative ABC and GA indices have been considered in the following article. We also
determine the expected values, and give a comparison of the expected values of both indices in
random polyphenyl and spiro chains. The results of these calculations have potential opportunities in
many engineering states. Particularly, the related theories gives the mathematical features in reverse
engineering and explicit values of compounds with extraordinary compound attributes. Therefore far
the values are concerned, the basic features of the compound are concluded from the topological
index that provides a theoretical point for the synthesis of drug investigation, great materials, and
extraordinary chemical substances. In addition, we make it clear that the estimation model described
in the current article takes many limitations in the chemical field. For instance, hexagonal and spiro

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12500-12517.
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structures typically appear in different polybenzene arrangements. Although the stability of
polybenzene arrangements has been dictated through its absolute arrangement. Furthermore, steric
impact, e.g., steric hindrance, assumes a vital part in computing the overall steadiness of orth, meta,
and para isomers. Subsequently, the final structural arrangement of such a hexagonal chain is not
random in general. Steric limitations prevent the final arrangement of cycloalkane chains. Thus, more
research is required on how to describe the chemical structure of odors and oppressive barriers.
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