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Abstract: Zagreb indices are well-known and historical indices that are very useful to calculate
the properties of compounds. In the last few years, various kinds of Zagreb and Randic indices are
investigated and defined to fulfil the demands of various engineering applications. Phenylenes are a
class of conjugated hydrocarbons composed of a special arrangement of six- and four-membered rings.
This special chain, produced by zeroth-order Markov process has been commonly appeared in the field
of pharmacology and materials. Here, we compute the expected values of a multiplicative versions
of the geometric arithmetic and atomic bond connectivity indices for these special hydrocarbons.
Moreover, we make comparisons in the form of explicit formulae and numerical tables between the
expected values of these indices in the random polyphenyl Pn and spiro Sn chains.

Keywords: atomic bond connectivity index; geometric arithmetic index; expected values; random
polyphenyl chain; spiro chains; comparisons

1. Introduction

Chemical graph theory, is a branch of mathematics, dealing with mathematical modelling of
graphs that is also an essential branch of theoretical chemistry. Initial chemical research introduces
the theory of chemical graph. Chemists confirm that the physicochemical properties of a compound
have been associated with the molecular arrangement, resulting in derived from an enormous number
of investigational data. Furthermore, the researchers considered the same topological index based on
various chemical properties and applied it to QSR/ QSPR learning. Generally, the features of a
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compound derived by chemical experiments are not much authentic. Although, theoretical
calculations assume a vital role in many extraordinary cases, e.g., the proportion of trace elements is
very small and mass cannot be obtained, that makes it problematic to direct and inspect their
properties. Consequently, the way utilizing chemical experimentation are less productive than
chemical topological index computing. All through this research paper, we demonstrated the
molecular structure as where an atom is communicated by every node and every edge indicates the
chemical bond between two atoms of a graph. Here, the crystals, compounds, medications, or
materials are shown by graphical structures and known as molecular graphs. The earliest integer
topological indices such as W(G) index in [1] have a high degeneracy, the Z(G) index in [2], the
Zagreb index in [3], compared to non-integer such as information theoretic indices explained in [4–6]
or higher-order molecular connectivity index briefed in [7, 8]. The Atom Bond Connectivity (ABC)
index is introduced by Estrada et al. [9] and the stability of alkanes is correlated by this and the strain
energy of cycloalkanes, see [10, 11]. Zagreb index is the oldest index having a number of applications
in the field of chemicals. To fit the different applications, researchers have made a few changes to
various indices as of late, and have suggested some more versions. Next, a graph G has a node set
V(G) and an edge set E(G), d(x) gives the degree of the node x ∈ V(G). Recently, Kulli [12]
introduced the multiplicative version of ABC index and described as:

ABC
∏

(G) =
∏

uv∈E(G)

√
du + dv − 2

dudv
(1.1)

The authors computed the multiplicative ABC index of some nanotubes. Since the multiplicative
ABC index is not yet studied widely, the results on the multiplicative ABC index are yet restricted,
when contrasted with the ABC index, for more recent work see [13]. In [14] geometric arithmetic
index (GA) has been defined and well correlated with a lot of properties of the compound and it
predicts physio-chemical properties better than the Randic index. More details about the GA index
can be found in [15–26]. Kulli [12] also introduced the multiplicative version of geometric arithmetic
index

GA
∏

(G) =
∏

uv∈E(G)

2
√

dudv

du + dv
(1.2)

ABC and GA indices are shown to have an extensive scope of topological variables upheld by
chemical experimental data. Since the variables mentioned above are described in the field of
chemical for the fundamentals of additional applied applications having some potential application
substance. About a similar application, the edge version topological indices with unique indices
perform as corresponding associations that appropriate the different chemical data sets. The
polyphenyls may be used in heat exchanger, drug synthesis, organic synthesis, etc. See [27] for
further applications regarding the applications of polyphenyls.

In organic chemistry, spiro compounds are a significant class of cycloalkanes. In spiro compounds,
a spiro association is a relationship between two rings in which the same atom joint consists of two
rings. A free spiro association is a link having only one atom in common with two adjacent rings.
Another name of normal atom is the spiro atom. According to the spiro atoms, monospiro, dispiro,
trispiro are the compounds. We study a subclass of branchless multi-spiro particles where each ring
has a hexagon and so, their graphs are named spiro hexagonal chains.
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Figure 1. Random Polyphenyl Chains for n = 1, 2, 3 and n > 3.

A polyphenyl chain denoted by Pn is obtained from n hexagons h1, h2, hn by joining two consecutive
hexagons by an edge (see Figure 1). If n = 1, 2, chains as shown in Figure 1 are unique. There are
three different ways to join two consecutive hexagons and hence Pn is not unique for n > 2. P1

n, P2
n,

and P3
n are the three local arrangements of Pn (see Figure 1). Hence, Pn is a random process obtained

from a fixed Pn−1 and P1
n, P2

n, and P3
n can be obtained from Pn−1, with ρ1, ρ2 and 1−ρ1−ρ2 probabilities.

If the probabilities ρi; i = 1, 2 are constants and do not pendent on n, then this procedure is a Markov
process of order zero. The obtained chain P(n; ρ1, ρ2) is called random polyphenyl.

Figure 2. Random spiro Chains for n = 1, 2, 3 and n > 3.

If each consecutive hexagon in Pn joined directly to each other, then we have a spiro chain Sn.
Similarly, for n > 2, the chain Sn has three types of local arrangements denoted by S1

n, S2
n and S3

n

, respectively, and Sn is not unique (see Figure 2). The obtained chain S(n; ρ1, ρ2) is called random
spiro.

Although, the mathematical theoretical model and the actual compound composition principle has a
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special gap (for example, the aromaticity of the structures give the stability of the polybenzene system
that is additionally obtained through its final arrangement, and the steric effect (steric hindrance) plays
an important part in defining the comparative constancy of orth, para and meta isomers). There are
few advance contributions in these structures in the special topological indices due to random chain
structural operation. In [28] we determined the Kirchhoff index for these two special chains and the
W(G) index in [29]. The Z(G) index and F(G) index [30]. BC-subtrees characterized in [31]. H(G)
and M2(G) indices in [19]. ABC and GA indices in [32]. Independent sets, matchings, and some
other properties [4, 17, 33–39]. For more details, one may refer to [15, 40–51].

Markov process of various molecular structures has a critical importance of research implication
in chemical studies in nature embedding. For instance, the thickness of water is changed at a lower
temperature and so, the thickness is more likely to be empty. It is to a good judgment, the lower the
temperature is, the less dynamic the atom, and the more modest the thickness vacillations ought to be.
The researchers claim that water is another important point and so, water is always changing rapidly
in both states. By nature, both states are distinct. Any transformation in any other will bring about an
unexpected transformed thickness that is usually specified at that basic point. In this behalf, we can say
that water consists of two liquids of various thickness, e.g., water is definitely not a liquid. However, the
two liquids are the combination of a lower and higher thickness of liquid. Due to various thicknesses,
lengths, association qualities, and hydrogen bonds between the two liquids are unique that converts
their features like diffusion and thickness. The molecular structure is different in these two types of
water, one of which is that the water particles are scattered and thick, and the other with a low thickness
is a standard tetrahedral structure. At a typical temperature and pressing factor, low-thickness water
particles are arbitrarily inserted in high-thickness water atoms. Furthermore, their mathematical theory
depends on the Markov process and the mutual embedding of various molecular graphs. Besides, Pn

and Sn chains show a typical method in regards to join molecule graphs.
In this paper, we study two important chains named as random spiro and random polyphenyl in

detail. Consequently, there are countless commitments that have been discussed on different random
properties and applications of ABC and GA indices. This inspires us to make an essential study on the
multiplicative ABC and GA indices and makes theoretical support available for the future use of above-
mentioned indices. So, the multiplicative ABC and multiplicative GA indices for random polyphenyl
and random spiro chains has been computed in this paper.

2. Results and discussion

Our main results about these two types of chains have been discussed in this part. First, we consider
the random spiro chain S(n; ρ1, ρ2) as shown in Figure 2, and there are only (2, 2), (2, 4) and (4, 4)
edges in Sn. As we know that the multiplicative ABC and GA indices for random spiro chains are
random variables and their expected values are denoted by EABC

n = E[ABC
∏

(S(n; ρ1, ρ2))] and EGA
n =

E[GA
∏

(S(n; ρ1, ρ2))] respectively. From Eqs (1.1) and (1.2), we have:

ABC
∏

(Sn) = (

√
2

2
)x22(Sn)+x24(Sn)(

√
6

4
)x44(Sn) (2.1)

GA
∏

(Sn) = (1)x22(Sn)+x44(Sn)(
2
√

2
3

)x24(Sn) (2.2)
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Theorem 1. For n > 1, and a random spiro chains S(n; ρ1, ρ2), we have
1) EABC

n = E[ABC
∏
S(n; ρ1, ρ2)] =

(ρ1(
√

3−2)+2)n−2

24n−2 .

2) EGA
n = E[GA

∏
(S(n; ρ1, ρ2))] = 64

81 (8ρ1+64
81 )n−2.

Proof. For n = 2, we have EABC
2 = 1/64 and EGA

2 = 64/81. If n > 2, then we have to consider three
local arrangements (see Figure 2).

i. If Sn−1 → S
1
n with probability ρ1, then x22(S1

n) = x22(Sn−1) + 3, x24(S1
n) = x24(Sn−1) + 2, x44(S1

n) =

x44(Sn−1) + 1, and by Eqs (2.1) and (2.2), we have

ABC
∏

(S1
n) = (

1
√

2
)x22+x24(

√
6

4
)x44(

1
√

2
)5(

√
6

4
)

=

√
3

16
ABC

∏
(Sn−1).

GA
∏

(S1
n) = 1x22+x44(

2
√

2
3

)x24+2

=
8
9

GA
∏

(Sn−1)

ii. If ρ2 is the probability to obtained S2
n from a fixed Sn−1, then x22(S2

n) = x22(Sn−1) + 2, x24(S2
n) =

x24(Sn−1) + 4, x44(S2
n) = x44(Sn−1), and by (2.1) we get

ABC
∏

(S2
n) =

1
8

ABC
∏

(Sn−1).

GA
∏

(S2
n) = (

2
√

2
3

)4GA
∏

(Sn−1)

iii. If Sn−1 → S
3
n with probability 1 − ρ1 − ρ2, then x22(S3

n) = x22(Sn−1) + 2, x24(S3
n) = x24(Sn−1) + 4,

x44(S3
n) = x44(Sn−1), so

ABC
∏

(RSC3
n) =

1
8

ABC
∏

(RSCn−1)

GA
∏

(RSC3
n) = (

2
√

2
3

)4GA
∏

(RSCn−1).

By the above three types of local arrangements, we have:,

EABC
n = ρ1ABC

∏
(S1

n) + ρ2ABC
∏

(S2
n) + (1 − ρ1 − ρ2)ABC

∏
(S3

n)

= ρ1[ABC
∏

(Sn−1)

√
3

16
] + ρ2[ABC

∏
(Sn−1)

1
8

]

+ (1 − ρ1 − ρ2)ABC
∏

(Sn−1)

= ABC
∏

(Sn−1)
[
ρ1

√
3

16
+ ρ2

1
8

+
1
8
− ρ1

1
8
− ρ2

1
8
]

= ABC
∏

(Sn−1)
[ √3

16
ρ1 − ρ1

1
8

+
1
8
]

(2.3)
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and also, we have

EGA
n = ρ1GA

∏
(S1

n) + ρ2GA
∏

(S2
n) + (1 − ρ1 − ρ2)GA

∏
(S3

n)

= ρ1[GA
∏

(Sn−1)
8
9

] + ρ2[GA
∏

(Sn−1)(
2
√

2
3

)4]

+ (1 − ρ1 − ρ2)GA
∏

(Sn−1)(
2
√

2
3

)4

= GA
∏

(Sn−1)
[8
9
ρ1 − ρ1(

8
9

)2 + (
8
9

)2]
= GA

∏
(Sn−1)

[
ρ1(1 −

8
9

)
8
9

+ (
8
9

)2]
= GA

∏
(Sn−1)

[8ρ1 + 64
81

]
(2.4)

As E[En] = E, so apply E on Eqs (2.3) and (2.4), which gives the following:

EABC
n = EABC

n−1 [ρ1

√
3 − 2
16

+
1
8

]. (2.5)

EGA
n = EGA

n−1[
8ρ1 + 64

81
]. (2.6)

Solving the linear recurrence relation of Eqs (2.5) and (2.6) with the initial condition, we get

EABC
n =

(ρ1(
√

3 − 2) + 2)n−2

24n−2 .

EGA
n =

64
81

(
8ρ1 + 64

81
)n−2.

�

From Theorem 1, we noted that EABC
n and EGA

n are polynomial in rho1 and asymptotic to n. It is
easy to note that these indices can be computed for three special chains: meta PMn = S(n; 0, 1), para
PPn = S(n; 0, 0), and ortho POn = S(n; 1, 0) chains as shown in Figure 3.

Figure 3. Special Polyphenyl ortho (PO6, meta PM6 and para PP6 chains).
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Corollary. For n > 1, we have

1. • ABC
∏

(Pn) = ABC
∏

(Mn) = 1
23n .

• ABC
∏

(On) =
(
√

3)n−2

24n−2 .

2. • GA
∏

(Pn) = GA
∏

(Mn) = (64
81 )n−1.

• GA
∏

(On) = (8
9 )n.

If Pn is the polyphenyl chain as shown in Figure 1. There are only (2, 2), (2, 3) and (3, 3) edges in
Pn and from Eqs (1.1) and (1.2) one can get the following:

ABC
∏

(Pn) = (

√
2

2
)x22(Pn)+x24(Pn) ∗ (

√
6

4
)x44(Pn) (2.7)

GA
∏

(Pn) = (1)x22(Pn)+x44(Pn) ∗ (
2
√

2
3

)x24(Pn) (2.8)

As we know that the multiplicative GA and ABC indices are random variables in random polyphenyl
chain and their expected values are denoted by EA

n BC = E[ABC
∏

(P(n; ρ1, ρ2))] and
EGA

n = E[GA
∏

(P(n; ρ1, ρ2))] respectively.

Theorem 2. For n > 1, and a random polyphenyl chains P(n; ρ1, ρ2), we have
1) EABC

n = ABC
∏

(Pn) =
[3+ρ1(2

√
2−3)]n−2

22n+1∗32n−3 .

2) EGA
n = (2

√
6

5 )4
[
(2
√

6
5 )4 + ρ1{( 2

√
6

5 )2 − (2
√

6
5 )4}

]n−2
.

Proof. For n = 2, we have EABC
2 = 1/96 and EGA

2 = 576/625. If n > 2, then we have to consider three
local arrangements (see Figure 1).

1). If Pn−1 → P
1
n with probability ρ1, then

x22(P1
n) = x22(Pn−1) + 3, x23(P1

n) = x23(Pn−1) + 2 and x33(P1
n) = x33(Pn−1) + 2. Then from (2.7) and

(2.8), we have
ABC

∏
(P1

n) =
√

2
18 ABC

∏
(Pn−1)

GA
∏

(P1
n) = ( 2

√
6

5 )2GA
∏

(Pn−1)
2). If Pn−1 → P

2
n with probability ρ2, then

x22(P2
n) = x22(Pn−1) + 2, x23(P2

n) = x23(Pn−1) + 4 and x33(P2
n) = x33(Pn−1) + 1. Then from (2.7) and

(2.8), we have
ABC

∏
(P2

n) = (
√

2
2 )6( 2

3 )ABC
∏

(Pn−1) = ( 1
12 )ABC

∏
(Pn−1)

GA
∏

(P2
n) = ( 2

√
6

5 )4GA
∏

(Pn−1)
3). If RPCn−1 → RPC3

n with probability 1 − ρ1 − ρ2, then
x22(P3

n) = x22(Pn−1) + 2, x23(P3
n) = x23(Pn−1) + 4 and x33(P3

n) = x33(Pn−1) + 1. Then from (2.7) and
(2.8), we have
ABC

∏
(P3

n) = (
√

2
2 )6( 2

3 )ABC
∏

(Pn−1) = ( 1
12 )ABC

∏
(Pn−1)

GA
∏

(P3
n) = ( 2

√
6

5 )4GA
∏

(Pn−1)
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By the above three types of local arrangements, we have

EABC
n = ρ1ABC

∏
(P1

n) + ρ2ABC
∏

(P2
n) + (1 − ρ1 − ρ2)ABC

∏
(P3

n)

= ρ1[ABC
∏

(Pn−1)

√
2

18
] + ρ2[ABC

∏
(Pn−1)

1
12

]

+ (1 − ρ1 − ρ2)ABC
∏

(Pn−1)
1

12

= ABC
∏

(Pn−1)
[
ρ1

√
2

18
+ ρ2

1
12

+
1

12
− ρ1

1
12
− ρ2

1
12

]
= ABC

∏
(Pn−1)

[3 + ρ1(2
√

2 − 3)
36

]
(2.9)

and also, we have

EGA
n = ρ1GA

∏
(P1

n) + ρ2GA
∏

(P2
n) + (1 − ρ1 − ρ2)GA

∏
(P3

n)

= ρ1(
2
√

6
5

)2GA
∏

(Pn−1) + ρ2(
2
√

6
5

)4GA
∏

(Pn−1)

+ (1 − ρ1 − ρ2)(
2
√

6
5

)4GA
∏

(Pn−1)

= GA
∏

(Pn−1)
[
(
2
√

6
5

)4 + ρ1{(
2
√

6
5

)2 − (
2
√

6
5

)4}
]

(2.10)

As E[En] = E, so apply E on Eqs (2.9) and (2.10), which gives the following:

EABC
n = EABC

n−1
[3 + ρ1(2

√
2 − 3)

36
]
. (2.11)

EGA
n = EGA

n−1

[
(
2
√

6
5

)4 + ρ1{(
2
√

6
5

)2 − (
2
√

6
5

)4}
]
. (2.12)

Solving the linear recurrence relation of Eqs (2.11) and (2.12) with the initial condition, we get our
results and finish the proof. �

From Theorem 2, we noted that EABC
n and EGA

n are polynomial in ρ1 and asymptotic to n. It is
easy to note that these indices can be computed for three special chains: meta PMn = P(n; 0, 1), para
PPn = P(n; 0, 0), and ortho POn = P(n; 1, 0) chains as shown in Figure 4.

Corollary. For n > 1, we have
1) ABC

∏
(Pn) = ABC

∏
(Mn) = 1

22n+1∗3n−1 .

ABC
∏

(On) =
(
√

2)n−2

2n+3∗32n−3 .

2) GA
∏

(Pn) = GA
∏

(Mn) = ( 24
25 )2n−2.

GA
∏

(On) = ( 24
25 )n.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12500–12517.



12508

Figure 4. Special Polyphenyl ortho (PO6, meta PM6 and para PP6 chains).

3. A comparison between the expected values of multiplicative ABC and GA indices

A comparison between the expected values of multiplicative ABC and GA indices for these two
types of random chains has been considered in this part. As an application of Theorems 1 and 2, an
analytical and numerical comparison (see Tables 1–8) between the expected values for these indices of
a random spiro and random polyphenyl chains has been outlined. Moreover, Figures 5 and 6 gives the
comparison of both indices. The following lemma is easy to prove by induction, we omit its proof.

Lemma 1. For all n ≥ 2, we have

f (n) =
(
√

3)n−232n

27n−2 < 1.

Theorem 3. For n ≥ 2, we have

E[GA
∏

(S(n; ρ1, ρ2))] > E[ABC
∏

(S(n; ρ1, ρ2))].

Proof. Obviously for n = 2, the statement is true. So, when n > 2, by Theorem 1, we have

E[GA
∏

(S(n; ρ1, ρ2))] − E[ABC
∏

(S(n; ρ1, ρ2))]

=
64
81

(
8ρ1 + 64

81
)n−2 −

(ρ1(
√

3 − 2) + 2)n−2

24n−2

= (
8
9

)n −
(
√

3)n−2

24n−2 ∵ 0 ≤ ρ1 ≤ 1

=
23n

32n

[
1 −

(
√

3)n−2 ∗ 32n

27n−2

]
> 0

�
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Figure 5. Comparison between E[ABC] and E[GA] in random polyphenyl chain.

Figure 6. Comparison between E[ABC] and E[GA] in random spiro chain.

Table 1. For probability ρ1 = 0.

n EABC
n (Sn) EGA

n (Sn)
2 0.015625 0.790123457
3 0.001953125 0.624295077
4 0.000244141 0.493270184
5 3.05176 ×10−5 0.389744343
6 3.8147 ×10−6 0.307946148
7 4.76837 ×10−7 0.243315475
8 5.96046 ×10−8 0.192249264
9 7.45058 ×10−9 0.151900653
10 9.31323 ×10−10 0.120020269
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Theorem 4. For n ≥ 2, we have

E[GA
∏

(P(n; ρ1, ρ2))] > E[ABC
∏

(P(n; ρ1, ρ2))].

Proof. When n > 2, by Theorem 2, we have

E[GA
∏

(P(n; ρ1, ρ2))] − E[ABC
∏

(P(n; ρ1, ρ2))]

= (
24
25

)2
[ 24
252 (24 + ρ1)

]n−2
−

[3 + ρ1(2
√

2 − 3)]n−2

22n+132n−3

= (
24
25

)n −
(
√

2)n−2

2n+332n−3 ∵ 0 ≤ ρ1 ≤ 1

= (
√

2)n−2
[4n(
√

2)n+23n

52n −
1

2n+332n−3

]
= (

√
2)n−2

[
2(

12
√

2
25

)n −
1

2n+332n−3

]
> 0

�

Table 2. For probability ρ1 = 1/2.

n EABC
n (Sn) EGA

n (Sn)
2 0.015625 0.790123457
3 0.00182229 3.784788904
4 0.000212528 18.12960611
5 2.47864 ×10−5 86.84305148
6 2.89075 ×10−6 415.988938
7 3.37138 ×10−7 1992.63837
8 3.93193 ×10−8 9544.983795
9 4.58567 ×10−9 45721.65077
10 5.34811 ×10−10 219012.3518

Table 3. For probability ρ1 = 1/3.

n EABC
n (Sn) EGA

n (Sn)
2 0.015625 0.790123457
3 0.001865902 2.731290962
4 0.000222822 9.441499621
5 2.66089 ×10−5 32.63728264
6 3.17757 ×10−6 112.8202363
7 3.79458 ×10−7 389.9958785
8 4.5314 ×10−8 1348.133901
9 5.4113 ×10−9 4660.215954
10 6.46205 ×10−10 16109.38848
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Table 4. For probability ρ1 = 1.

n EABC
n (Sn) EGA

n (Sn)
2 0.015625 0.790123457
3 0.001691456 6.945282731
4 0.000183105 61.04989265
5 1.98217 ×10−5 536.6360934
6 2.14577 ×10−6 4717.097513
7 2.32286 ×10−7 41463.86949
8 2.51457 ×10−8 364472.5318
9 2.7221 ×10−9 3203758.551
10 2.94676 ×10−10 28161433.19

From Tables 1–4, we can note that the expected value of the GA index is greater than ABC index
for spiro chain.

Table 5. For probability ρ1 = 0.

n EABC
n (Pn) EGA

n (Pn)
2 0.010416667 0.9216
3 0.000868056 0.84934656
4 7.2338 ×10−5 0.78275779
5 6.02816 ×10−6 0.721389579
6 5.02347 ×10−7 0.664832636
7 4.18622 ×10−8 0.612709757
8 3.48852 ×10−9 0.564673312
9 2.9071 ×10−10 0.520402925
10 2.42258 ×10−11 0.479603335

Table 6. For probability ρ1 = 1/2.

n EABC
n (Pn) EGA

n (Pn)
2 0.010416667 0.9216
3 0.000843233 0.86704128
4 6.826 ×10−5 0.815712436
5 5.52568 ×10−6 0.76742226
6 4.47306 ×10−7 0.721990862
7 3.62096 ×10−8 0.679249003
8 2.93118 ×10−9 0.639037462
9 2.3728 ×10−10 0.601206444

10 1.92079 ×10−11 0.565615023
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Table 7. For probability ρ1 = 1/3.

n EABC
n (Pn) EGA

n (Pn)
2 0.010416667 0.9216
3 0.000851507 0.86114304
4 6.96062 ×10−5 0.804652057
5 5.68994 ×10−6 0.751866882
6 4.65122 ×10−7 0.702544414
7 3.80213 ×10−8 0.656457501
8 3.10804 ×10−9 0.613393889
9 2.54066 ×10−10 0.57315525
10 2.07685 ×10−11 0.535556265

Table 8. For probability ρ1 = 1.

n EABC
n (Pn) EGA

n (Pn)
2 0.010416667 0.9216
3 0.000818411 0.884736
4 6.43004 ×10−5 0.84934656
5 5.05192 ×10−6 0.815372698
6 3.96916 ×10−7 0.78275779
7 3.11847 ×10−8 0.751447478
8 2.4501 ×10−9 0.721389579
9 1.92498 ×10−10 0.692533996
10 1.51241 ×10−11 0.664832636

From Tables 5–8, we can note that the expected value of the GA index is greater than ABC index
for polyphenyl chain Pn.

3.1. The average value of multiplicative ABC and GA for a random and spiro chains

In order to compute the average values of aforementioned indices over the set of all spiro chains
S(n, ρ1, ρ2) of order n, which will be denoted by SSn. The average values over the set SSn are defined
by

ABCave

∏
(SSn) =

1
|SSn|

∑
Γ∈SSn

ABC
∏

(Γ)

and

GAave

∏
(SSn) =

1
|SSn|

∑
Γ∈SSn

GA
∏

(Γ)

respectively. It is easy to see that these are the population means of these indices over all elements in
SSn that is ρ1 = ρ2 = 1 − ρ1 − ρ2¿ Hence by putting ρ1 = ρ2 = 1 − ρ1 − ρ2 = 1

3 in Theorem 1 we, will
get the following result.
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Theorem 5. If SSn is the set of spiro chains, then

ABCave

∏
(SSn) =

(
√

3+4
3 )n−2

24n−2 .

GAave

∏
(SSn) = 52n−4 ∗

23n

35n−1 .

It is easy to see from Corollary 2, we have

ABC
∏

(POn) + ABC
∏

(PPn) + ABC
∏

(PMn)
3

=

√
3n−2

24n−2 + 1
23n + 1

23n

3

=
(
√

3)n−2 + 2 ∗ 2n−2

24n−23

=

(
√

3)n−2+2n−1

3

24n−2 .

and

GA
∏

(POn) + GA
∏

(PPn) + GA
∏

(PMn)
3

=
1
3

[
(
8
9

)n + 2(
64
81

)n−1
]

= (
8
9

)n

[
9n−2 + 2 ∗ 8n−2

9n−2

]
=

23n(32n−4 + 23n−5)
34n−4

Since (
√

3+4
3 )n−2 ≥

(
√

3)n−2+2n−1

3 ∀n ≥ 4. Thus the average value of these aforementioned indices is always
greater or equal to their average value over the set {POn, PPn, PMn} of three special chains.

4. Conclusions

The multiplicative ABC and GA indices have been considered in the following article. We also
determine the expected values, and give a comparison of the expected values of both indices in
random polyphenyl and spiro chains. The results of these calculations have potential opportunities in
many engineering states. Particularly, the related theories gives the mathematical features in reverse
engineering and explicit values of compounds with extraordinary compound attributes. Therefore far
the values are concerned, the basic features of the compound are concluded from the topological
index that provides a theoretical point for the synthesis of drug investigation, great materials, and
extraordinary chemical substances. In addition, we make it clear that the estimation model described
in the current article takes many limitations in the chemical field. For instance, hexagonal and spiro
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structures typically appear in different polybenzene arrangements. Although the stability of
polybenzene arrangements has been dictated through its absolute arrangement. Furthermore, steric
impact, e.g., steric hindrance, assumes a vital part in computing the overall steadiness of orth, meta,
and para isomers. Subsequently, the final structural arrangement of such a hexagonal chain is not
random in general. Steric limitations prevent the final arrangement of cycloalkane chains. Thus, more
research is required on how to describe the chemical structure of odors and oppressive barriers.
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