Processing math: 90%
Research article Special Issues

Global existence and stability of the classical solution to a density-dependent prey-predator model with indirect prey-taxis

  • Received: 07 June 2021 Accepted: 25 July 2021 Published: 09 August 2021
  • We study the existence of global unique classical solution to a density-dependent prey-predator population system with indirect prey-taxis effect. With two Lyapunov functions appropriately constructed, we then show that the solution can asymptotically approach prey-only state or coexistence state of the system under suitable conditions. Moreover, linearized analysis on the system at these two constant steady states shows their linear instability criterion. By numerical simulation we find that some density-dependent prey-taxis and predators' diffusion may either flatten the spatial one-dimensional patterns which exist in non-density-dependent case, or break the spatial two-dimensional distribution similarity which occurs in non-density-dependent case between predators and chemoattractants (released by prey).

    Citation: Yong Luo. Global existence and stability of the classical solution to a density-dependent prey-predator model with indirect prey-taxis[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 6672-6699. doi: 10.3934/mbe.2021331

    Related Papers:

    [1] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar . Integral transforms of an extended generalized multi-index Bessel function. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482
    [2] Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Abdel-Haleem Abdel-Aty, Emad E. Mahmoud, Kottakkaran Sooppy Nisar . Estimation of generalized fractional integral operators with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(5): 4492-4506. doi: 10.3934/math.2021266
    [3] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [4] Sobia Rafeeq, Sabir Hussain, Jongsuk Ro . On fractional Bullen-type inequalities with applications. AIMS Mathematics, 2024, 9(9): 24590-24609. doi: 10.3934/math.20241198
    [5] Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004
    [6] Hari M. Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Abdullah M. Alsharif, Juan L. G. Guirao . New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(10): 11167-11186. doi: 10.3934/math.2021648
    [7] Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469
    [8] Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
    [9] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [10] Muhammad Amer Latif, Humaira Kalsoom, Zareen A. Khan . Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function. AIMS Mathematics, 2022, 7(3): 4176-4198. doi: 10.3934/math.2022232
  • We study the existence of global unique classical solution to a density-dependent prey-predator population system with indirect prey-taxis effect. With two Lyapunov functions appropriately constructed, we then show that the solution can asymptotically approach prey-only state or coexistence state of the system under suitable conditions. Moreover, linearized analysis on the system at these two constant steady states shows their linear instability criterion. By numerical simulation we find that some density-dependent prey-taxis and predators' diffusion may either flatten the spatial one-dimensional patterns which exist in non-density-dependent case, or break the spatial two-dimensional distribution similarity which occurs in non-density-dependent case between predators and chemoattractants (released by prey).



    Fractional calculus signifies the identity of the distinguished materials in the modern research field due to its integrated applications in diverse regions such as mathematical physics, fluid dynamics, mathematical biology, etc. Convex function, exponentially convex function [1,2,3,4,5], related inequalities like as trapezium inequality, Ostrowski's inequality and Hermite Hadamard inequality, integrals [6,7,8,9,10] having succeed in mathematical analysis, approximation theory due to immense applications [11,12] have great importance in mathematics theory. Many authors established quadrature rules in numerical analysis for approximate definite integrals. Recently, Pólya-Szegö and Chebyshev inequalities occupied immense space in the field analysis. Chebyshev [13] was introduced the well-known inequality called Chebyshev inequality.

    In the literature of convex function, the Jensen inequality has gained much importance which describes a connection between an integral of the convex function and the value of the convex function of an interval [14,15,16]. Pshtiwan and Thabet [17] considered the modified Hermite Hadamard inequality in the context of fractional calculus using the Riemann-Liouville fractional integrals. Arran and Pshtiwan [18] discussed the Hermite Hadamard inequality results with fractional integrals and derivatives using Mittag-Leffler kernel. Pshtiwan and Thabet [19] constructed a connection between the Riemann-Liouville fractional integrals of a function concerning a monotone function with nonsingular kernel and Atangana-Baleanu. Pshtiwan and Brevik [20] obtained an inequality of Hermite Hadamard type for Riemann-Liouville fractional integrals, and proved the application of obtained inequalities on modified Bessel functions and q-digamma function. In [21], Set et al. introduced Grüss type inequalities by employing generalized k-fractional integrals. Recently, Nisar et al. [22] gave some new generalized fractional integral inequalities.

    Very recently, the fractional conformable and proportional fractional integral operators were given in [23,24]. Later on, Huang et al. [25] gave Hermite–Hadamard type inequalities by using fractional conformable integrals (FCI). Qi et al. [26] investigated Čebyšev type inequalities involving FCI. The Chebyshev type inequalities and certain Minkowski's type inequalities are found in [27,28,29]. Nisar et al. [30] have investigated some new inequalities for a class of n  (nN) positive, continuous, and decreasing functions by employing FCI. Rahman et al. [31] introduced Grüss type inequalities for k-fractional conformable integrals.

    Some significant inequalities are given as applications of fractional integrals [32,33,34,35,36,37,38]. Recently, Rahman et al. [39,40] presented fractional integral inequalities involving tempered fractional integrals. Qiang et al. [41] discussed a fractional integral containing the Mittag-Leffler function in inequality theory and contributed Hadamard type inequality, continuity, and boundedness, upper bounds of that integral. Nisar et al. [42] established weighted fractional Pólya-Szegö and Chebyshev type integral inequalities by operating the generalized weighted fractional integral involving kernel function. The dynamical approach of fractional calculus [43,44,45,46,47,48,49] in the field of inequalities.

    Grüss inequality [50] established for two integrable function as follows

    |T(h,l)|(kK)(sS)4, (1.1)

    where the h and l are two integrable functions which are synchronous on [a,b] and satisfy:

    sh(z)K,sl(y1)S, z,y1[a,b] (1.2)

    for some s,k,S,KR.

    Pólya and Szegö [51] proved the inequalities

    bah2(z)dzabl2(z)dz(abh(z)l(z)dz)214(KSks+ksKS)2. (1.3)

    Dragomir and Diamond [52], proves the inequality by using the Pólya-szegö inequality

    |T(h,l)|(Ss)(Kk)4(ba)2skSKbah(z)l(z)dz (1.4)

    where h and l are two integrable functions which are synchronous on [a,b], and

    0<sh(z)S<,0<kl(y1)K<, z,y1[a,b] (1.5)

    for some s,k,S,KR.

    The aim of this paper is to estimate a new version of Pólya-Szegö inequality, Chebyshev integral inequality, and Hermite Hadamard type integral inequality by a fractional integral operator having a nonsingular function (generalized multi-index Bessel function) as a kernel, and these established results have great contribution in the field of inequalities. The Hermite Hadamard type integral inequality provides the upper and lower estimate to find the average integral for the convex function of any defined interval.

    The structure of the paper follows:

    In section 2, we present some well-known definitions and mathematical preliminaries. The new generalized fractional integral with nonsingular function as a kernel is defined in section 3. In section 4, we present Hermite Hadamard type Mercer inequality of new designed fractional integral operator with nonsingular function (generalized multi-index Bessel function) as a kernel. some inequalities of (sm)-preinvex function involving new designed fractional integral operator with nonsingular function (generalized multi-index Bessel function) as a kernel are presented in section 5. Here section 6 and 7, we present Pólya-Szegö and Chebyshev integral inequalities involving generalized fractional integral operator with nonsingular function as a kernel, respectively.

    Definition 2.1. The inequality holds for the convex function if a mapping g:KR exist as

    g(δy1+(1δ)y2)δg(y1)+(1δ)g(y2), (2.1)

    where y1,y2K and δ[0,1].

    Definition 2.2. The inequality derived by Hermite [53] call as Hermite Hadamard inequality

    g(y1+y22)1y2y1y2y1g(t)dtg(y1)+g(y2)2, (2.2)

    where y1,y2I, with y2y1, if g:IRR is a convex function.

    Definition 2.3. Let yjK for all jIn, ωj>0 such that jInωj=1. Then the Jensen inequality holds

    g(jInωjyj)jInωjg(yj), (2.3)

    exist if g:kR is convex function.

    Mercer [54] derived the Mercer inequality by applying the Jensen inequality and properties of convex function.

    Definition 2.4. Let yjK for all jIn, ωj>0 such that jInωj=1, m=minjIn{yj} and n=maxjIn{yj}. Then the inequality holds for convex function as

    g(m+niInωjyj)g(m)+g(n)jInωjg(yj), (2.4)

    if g:kR is convex function.

    Definition 2.5. [55] The inequality holds for exponentially convex function, if a real valued mapping g:KR exist as

    g(δy1+(1δ)y2)δg(y1)eθy1+(1δ)g(y2)eθy2, (2.5)

    where y1,y2K and δ[0,1] and θR.

    Suppose that ΩRn is a set. Let g:ΩR continuous function and let ξ:Ω×ΩRn be continuous function:

    Definition 2.6. [56] With respect to bifunction ξ(.,.) a set Ω is called a invex set, if

    y1+δξ(y2,y1), (2.6)

    where y1,y2Ω,δ[0,1].

    Definition 2.7. [57] A invex set Ω and a mapping g with respect to ξ(.,.) is called a preinvex function, as

    g(y1+δξ(y2,y1))(1δ)g(y1)+δg(y2), (2.7)

    where y1,y2+ξ(y2,y1)Ω,δ[0,1].

    Definition 2.8. A invex set Ω with real valued mapping g and respect to ξ(.,.) is called a exponentially preinvex, if the inequality

    g(y1+δξ(y2,y1))(1δ)g(y1)eθy1+δg(y2)eθy2, (2.8)

    where for all y1,y2+ξ(y2,y1)Ω,δ[0,1] and θR.

    Definition 2.9. A invex set Ω with real valued mapping g and respect to ξ(.,.) is called a exponentially s-preinvex, if

    g(y1+δξ(y2,y1))(1δ)sg(y1)eθy1+δsg(y2)eθy2, (2.9)

    where for all y1,y2+ξ(y2,y1)Ω,δ[0,1], s(0,1] and θR.

    Definition 2.10. A invex set Ω with real valued mapping g and respect to ξ(.,.) is called exponentially (s-m)-preinvex, if

    g(y1+mδξ(y2,y1))(1δ)sg(y1)eθy1+mδsg(y2)eθy2, (2.10)

    where for all y1,y2+ξ(y2,y1)Ω, δ,m[0,1] and θR.

    Definition 2.11. [58] Generalized multi-index Bessel function is defined by Choi et al as follows

    J(ξj)m,λ(δj)m,σ(z)=s=0(λ)σsmj=1Γ(ξjs+δj+1)(z)ss!, (2.11)

    where ξj,δj,λC, (j=1,,m), (λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0.

    Definition 2.12. [58] Pohhammer symbol is defined for λC as follows

    (λ)s={λ(λ+1)(λ+s1),sN1,s=0, (2.12)
    =Γ(λ+s)Γ(λ),(λC/Z0) (2.13)

    where Γ being the Gamma function.

    This section presents a generalized fractional integral operator with a nonsingular function (multi-index Bessel function) as a kernel.

    Definition 3.1. Let ξj,δj,λ,ζC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξj)>max{0:(σ)1},σ>0. Let gL  [y1,y2] and t[y1,y2]. Then the corresponding left sided and right sided generalized integral operators having generalized multi-index Bessel function defined as:

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)=zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dt, (3.1)

    and

    (Œ(ξj,δj)mλ,σ,ζ;y2g)(z)=y2z(tz)δjJ(ξj)m,λ(δj)m,σ(ζ(tz)ξj)g(t)dt. (3.2)

    Remark 3.1. The special cases of generalized fractional integrals with nonsingular kernel are given below:

    1. If set j=m=1, σ=0 and limits from [0,z] in Eq (3.1), we get a fractional integral defined by Srivastava and Singh in [59] as

    (Œξ1,δ1λ,0,ζ;0+g)(z)=z0(zt)δ1Jξ1δ1(ζ(zt)ξ1)g(t)dt=f(z). (3.3)

    2. If set j=m=1, δ1=δ11 in Eq (3.1), we have a fractional integral defined by Srivastava and Tomovski in [60] as

    (Œξ1,δ11λ,σ,ζ;y+1g)(z)=(Eζ;λ,σy+1;ξ1,δ1g)(z). (3.4)

    3. If set j=m=1, δ1=δ11, ζ=0 in Eq (3.1), we get a Riemann-Liouville fractional integral operator defined in [61] as

    (Œξ1,δ1λ,σ,ζ;y+1g)(z)=(Iδ1y+1g)(z). (3.5)

    4. If set j=m=1, σ=1, δ1=δ11, in Eq (3.1) and Eq (3.2), we get the fractional integral operator defined by Prabhakar in [62] as follows

    (Œξ1,δ11λ,1,ζ;y+1g)(z)=E(ξ1,δ1;λ;ζ)g(z)=g(z) (3.6)
    (Œ(ξ1,δ11)λ,1,ζ;y2g)(z)=E(ξ1,δ1;λ;ζ)g(z). (3.7)

    Lemma 3.1. From generalized fractional integral operator, we have

    (Œ(ξj,δj)mλ,σ,ζ;y+11)(z)=zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)dt=zy1(zt)δjs=0(λ)σs(ζ)smj=1Γ(ξjs+δj+1)(zt)ξjss!dt=s=0(λ)σs(ζ)smj=1Γ(ξjs+δj+1)s!zy1(zt)ξjs+δjdt=(zy1)δj+1s=0(λ)σs(ζ)smj=1Γ(ξjs+δj+1)s!(zy1)ξjsξjs+δj+1. (3.8)

    Hence, the Eq (3.8) becomes

    (Œ(ξj,δj+1)mλ,σ,ζ;y+11)(z)=(zy1)δj+1J(ξj)m,λ(δj)m+1,σ(ζ(zy1)ξj), (3.9)

    and similarly we have

    (Œ(ξj,δj+1)mλ,σ,ζ;y21)(z)=(y2z)δj+1J(ξj)m,λ(δj)m+1,σ(ζ(y2z)ξj). (3.10)

    In this section, we derive Hermite Hadamard type Mercer inequality of new designed fractional integral operator in a generalized multi-index Bessel function using a kernel.

    Theorem 4.1. Let g:[m,n](0,) is convex function such that gχc(m,n), x,y[m,n] and the operator defined in Eq (5.2) in the form of left sense operator and Eq (3.2) in the form of right sense operator then we have

    g(m+nx+y2)g(m)+g(n)[J(ξj)m,λ(δj)m+1,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)] (4.1)
    g(m)+g(n)g(x)+g(y)2. (4.2)

    Proof. Consider the mercer inequality

    g(m+ny1+y22)g(m)+g(n)g(y1)+g(y2)2,y1,y2[m,n]. (4.3)

    Let x,y[m,n], t[z1,z], y1=(zt)x+(1z+t)y and y2=(1z+t)x+(zt)y then inequality (4.3) becomes

    g(m+ny1+y22)g(m)+g(n)g((zt)x+(1z+t)y)+g(1z+t)x+(zt)y)2. (4.4)

    Multiply both sides of Eq (4.4) by (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj) and integrating with respect to t from [z1,z], we get

    J(ξj)m,λ(δj)m+1,σ(ζ)g(m+nx+y2)J(ξj)m,λ(δj)m+1,σ(ζ)[g(m)+g(n)]12[zz1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)×[g((zt)y1+(1z+t)y2)+g(1z+t)x+(zt)y2]]dt=J(ξj)m,λ(δj)m+1,σ(ζ)[g(m)+g(n)]12[yx(yuyx)δjJ(ξj)m,λ(δj)m,σ(ζ(yuyx)ξj)×g(u)(yx)du+xy(uxyx)δjJ(ξj)m,λ(δj)m,σ(ζ(uxyx)ξj)g(u)(yx)du]=J(ξj)m,λ(δj)m+1,σ(ζ)[g(m)+g(n)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)],

    we get the desired inequality, as

    g(m+nx+y2)g(m)+g(n)[J(ξj)m,λ(δj)m+1,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)]. (4.5)

    Thus, we get the inequality (4.1). Let t[z1,z]. From the convexity of function g we have

    g(x+y2)=g[(zt)x+(1z+t)y+(1z+t)x+(zt)y]2g((zt)x+(1z+t)y)+g((1z+t)x+(zt)y)2. (4.6)

    Both sides multiply of Eq (4.6) by (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj) and integrating with respect to t from [z1,z], we obtain

    J(ξj)m,λ(δj)m,σ(ζ)g(x+y2)zz1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)×[g((zt)x+(1z+t)y)+g((1z+t)x+(zt)y)]dt=12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)].

    We get the inequality of negative sign

    g(x+y2)[J(ξj)m,λ(δj)m+1,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)]. (4.7)

    By adding g(m)+g(n) of both sides of inequality (4.7), we have

    g(m)+g(n)g(x+y2)g(m)+g(n)[J(ξj)m,λ(δj)m+1,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)].

    Hence, we get the inequality (4.2).

    Theorem 4.2. Let g:[m,n](0,) is convex function such that gχc(m,n) then we have the following inequalities:

    g(m+nx+y2)[J(ξj)m,λ(δj)m,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;(m+ny)+g(m+nx)+Œ(ξj,δj)mλ,σ,ζ;(m+nx)g(m+ny)]. (4.8)
    g(m+nx)+g(m+ny)2g(m)+g(n)g(m)+g(n)2. (4.9)

    Where x,y[m,n].

    Proof. We see that from the convexity of g as

    g(m+ny1+y22)=g(m+ny1+m+ny22)12[g(m+ny1)+g(m+ny2)],y1,y2[m,n]. (4.10)

    Let x,y[m,n], t[z1,z], m+ny1=(zt)(m+nx)+(1z+t)(m+ny), m+ny2=(1z+t)(m+nx)+(zt)(m+ny), then inequality (4.10) gives

    g(m+ny1+y22)12g[(zt)(m+nx)+(1z+t)(m+ny)]+12g[(1z+t)(m+nx)+(zt)(m+ny)], (4.11)

    multiply of both sides of inequality (4.11) by (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj) then integrate with respect to t from [z1,z], we get

    J(ξj)m,λ(δj)m,σ(ζ)g(m+nx+y2)12zz1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g[(zt)(m+nx)+(1z+t)(m+ny)]dt+12zz1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g[(1z+t)(m+nx)+(zt)(m+ny)]dt=12(yx)[m+nxm+ny(u(m+ny)yx)δj)J(ξj)m,λ(δj)m,σ(ζ(u(m+ny)yx)ξj)g(u)du+m+nym+nx((m+ny)uyx)δj)J(ξj)m,λ(δj)m,σ(ζ((m+ny)uyx)ξj)g(u)du]=12(yx)[Œ(ξj,δj)mλ,σ,ζ;(m+ny)+g(m+nx)+Œ(ξj,δj)mλ,σ,ζ;(m+nx)g(m+ny)].

    Thus, we get the inequality (4.8)

    g(m+nx+y2)[J(ξj)m,λ(δj)m,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;(m+ny)+g(m+nx)+Œ(ξj,δj)mλ,σ,ζ;(m+nx)g(m+ny)].

    From the convexity of g, we obtain

    g((zt)(m+nx)+(1z+t)(m+ny))(zt)g(m+nx)+(1z+t)g(m+ny), (4.12)

    and

    g((1z+t)(m+nx)+(zt)(m+ny))(1z+t)g(m+nx)+(zt)g(m+ny). (4.13)

    Adding up the above inequalities and applying Jensen-Mercer inequality, we get

    g((zt)(m+nx)+(1z+t)(m+ny))+g((1z+t)(m+nx)+(zt)(m+ny))g(m+nx)+g(m+ny)2[g(m)+g(n)][g(x)+g(y)]. (4.14)

    Multiply both sides of inequality (4.14) by (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj) and then integrating with respect to t from [z1,z] we obtain the two inequalities (4.9).

    In this section, we derive some inequalities of (sm) preinvex function involving new designed fractional integral operator Œ(ξj,δj)mλ,σ,ζg)(z) having generalized multi-index Bessel function as its kernel in the form of theorems.

    Theorem 5.1. Suppose a real valued function g:[y1,y1+ξ(y2,y1)]R be exponentially (s-m) preinvex function, then the following fractional inequality holds:

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[g(y1)eθ1y1+mg(z)eθ1z]+(y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)[g(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+mg(z)eθ2z].

    z[y1,y1+ξ(y2,y1)], θ1,θ2R.

    Proof. Let z[y1,y1+ξ(y2,y1)], and then for t[y1,z) and δj>1, we have the subsequent inequality

    (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj). (5.1)

    For g is exponentially (s-m)-preinvex function, we obtain

    g(t)(ztzy1)sg(y1)eθ1y1+m(ty1zy1)sg(z)eθ1z. (5.2)

    Taking product (5.1) and (5.2), and integrating with respect to t from y1 to z, we get

    zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dtzy1(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)×[(ztzy1)sg(y1)eθ1y1+m(ty1zy1)sg(z)eθ1z]dt, (5.3)

    apply definition (13) in Eq (5.3), we have

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[g(y1)eθ1y1+mg(z)eθ1z]. (5.4)

    Analogously for t(z,y1+ξ(y2,y1)] and μj>1, we have

    (tz)μjJ(ξj)m,λ(μj)m,σ(ζ(tz)ξj)(y1+ξ(y2,y1)z)μjJ(ξj)m,λ(μj)m,σ(ζ(y1+ξ(y2,y1)z)ξj). (5.5)

    Further, the exponentially (s-m) convexity of g, we get

    g(t)(tzy1+ξ(y2,y1)z)sg(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+m(y1+ξ(y2,y1)ty1+ξ(y2,y1)z)sg(z)eθ2z. (5.6)

    Taking product of (5.5) and (5.6) and integrating with respect to t from z to y1+ξ(y2,y1), we have

    y1+ξ(y2,y1)z(tz)μjJ(ξj)m,λ(μj)m,σ(ζ(tz)ξj)g(t)dty1+ξ(y2,y1)z(y1+ξ(y2,y1)z)μjJ(ξj)m,λ(μj)m,σ(ζ(y1+ξ(y2,y1)z)ξj)×[(tzy1+ξ(y2,y1)z)sg(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+m(y1+ξ(y2,y1)ty1+ξ(y2,y1)z)sg(z)eθ2z]dt, (5.7)

    apply the definition (13) in inequality (5.7), we have

    (Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)(y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)[g(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+mg(z)eθ2z]. (5.8)

    Now, add the inequalities (5.4) and (5.8), we get the result

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[g(y1)eθ1y1+mg(z)eθ1z]+(y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)[g(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+mg(z)eθ2z].

    Corollary 5.1. If gL[y1,y1+ξ(y2,y1)], then under the assumption of theorem (5.1), we have

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)||g||s+1[(zy1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y1+η(y2,y1)z)(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)(1eθ2(y1+ξ(y2,y1))+m1eθ2z)].

    Corollary 5.2. Setting m=1 and gL[y1,y1+ξ(y2,y1)], then under the assumption of theorem (5.1), we have

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)||g||s+1[(zy1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y1+ξ(y2,y1)z)(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)(1eθ2(y1+ξ(y2,y1))+1eθ2z)].

    Corollary 5.3. Setting m=s=1 and gL[y1,y1+ξ(y2,y1)], then under the assumption of theorem (5.1), we have

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)||g||2[(zy1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y1+ξ(y2,y1)z)(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)(1eθ2(y1+ξ(y2,y1))+1eθ2z)].

    Corollary 5.4. Setting ξ(y2,y1)=y2y1 and gL[y1,y2], then under the assumption of theorem (5.1), we have

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)||g||s+1[(zy1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y2z)(Œ(ξj,μj)mλ,σ,ζ;y+21)(z)(1eθ2y2+1eθ2z)].

    Theorem 5.2. Suppose a real value function g:[y1,y1+ξ(y2,y1)]R is differentiable and |g| is exponentially (s-m) preinvex, then the following fractional inequality for (3.1) and (3.2) holds:

    |(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)+(Œ(ξj)m,(μj1)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1)[(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)]g(y1+ξ(y2,y1))|(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]+((y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)[|g(y1+ξ(y2,y1))|eθ1(y1+ξ(y2,y1))+m|g(z)|eθ1z].

    z[y1,y1+ξ(y2,y1)], θ1,θ2R.

    Proof. Let z[y1,y1+ξ(y2,y1)], t[y1,z), and applying exponentially (s-m) preinvex of |g|, we get

    |g(t)|(ztzy1)s|g(y1)|eθ1y1+m(ty1zx1)s|g(z)|eθ1z. (5.9)

    Get the inequality (5.9), we have

    g(t)(ztzy1)s|g(y1)|eθ1y1+m(ty1zy1)s|g(x)|eθ1z. (5.10)

    Subsequently inequality as:

    (zt)δjJ(ξj)m,λ(δj)m,k(ζ(zt)ξj)(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj). (5.11)

    Conducting product of inequality (5.10) and (5.11), we have

    (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)×[(ztzy1)s|g(y1)|eθ1y1+m(ty1zy1)s|g(x)|eθ1z], (5.12)

    integrating before mention inequality with respect to t from y1 to z, we have

    zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dtzy1(zy1)δjJ(ξj)m,λ(δj)m,k(ζ(zy1)ξj)[(ztzy1)s|g(y1)|eθ1y1+m(ty1zy1)s|g(z)|eθ1z]dt=(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]. (5.13)

    Now, solving left side of (5.13) by putting zt=α, then we have

    zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dt=zy10αδjJ(ξj)m,λ(δj)m,σ(ζ(α)ξj)g(zα)dα=(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)g(y1)+zy10αδj1J(ξj)m,λ(δj)m1,σ(ζ(α)ξj)g(zα)dα.

    Now, again subsisting zα=t, we get

    zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dt=zy1(zt)δj1J(ξj)m,λ(δj)m1,σ(ζ(zt)ξj)g(t)dt(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)g(y1)=(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1).

    Therefore, the inequality (5.13) have the following form

    (Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(x)[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]. (5.14)

    Also from (5.9), we get

    g(t)(ztzy1)s|g(y1)|eθ1y1m(ty1zy1)s|g(z)|eθ1z. (5.15)

    Adopting the same procedure as we have done for (5.10), we obtain

    (Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]. (5.16)

    From (5.14) and (5.16), we get

    |(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1)|(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]. (5.17)

    Now, we let z[y1,y1+η(y2,y1)] and t(z,y1+ξ(y2,y1)], and by exponentially (s-m) preinvex of |g|, we get

    |g(t)|(tzy1+ξ(y2,y1)z)s|g(y1+ξ(y2,y1))|eθ2(y1+ξ(y2,y1))+m(y1+ξ(y2,y1)ty1+ξ(y2,y1)z)s|g(z)|eθ2z, (5.18)

    repeat the same procedure from Eq (5.9) to Eq (5.17), we get

    |(Œ(ξj)m,(μj1)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)[(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)]g(y1+ξ(y2,y1))|((y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)[|g(y1+ξ(y2,y1))|eθ1(y1+ξ(y2,y1))+m|g(z)|eθ1z]. (5.19)

    From inequalities (5.17) and (5.19), we have

    |(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)+(Œ(ξj)m,(μj1)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)[(Œ(ξj,δj)mλ,k,ζ;y+11)(z)]g(y1)[(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)]g(y1+ξ(y2,y1))|(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]+((y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)[|g(y1+ξ(y2,y1))|eθ1(y1+ξ(y2,y1))+m|g(z)|eθ1z].

    Corollary 5.5. Setting ξ(y2,y1)=y2y1, then under the assumption of theorem (5.2), we have

    |(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)+(Œ(ξj)m,(μj1)mλ,σ,ζ;y2g)(z)[(Œ(ξj,δj)mλ,k,ζ;y+11)(z)]g(y1)[(Œ(ξj,μj)mλ,σ,ζ;y21)(z)]g(y2)|(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]+(y2z)s+1(Œ(ξj,μj)mλ,σ,ζ;y21)(z)[|g(y2)|eθ1(y2)+m|g(z)|eθ1z].

    t[y1,y2], θ1,θ2R.

    Corollary 5.6. Setting ξ(y2,y1)=y2y1, along with m=s=1 then under the assumption of theorem (5.2), we have

    |(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)+(Œ(ξj)m,(μj1)mλ,σ,ζ;y2g)(z)[(Œ(ξj,δj)mλ,k,ζ;y+11)(z)]g(y1)[(Œ(ξj,μj)mλ,σ,ζ;y21)(z)]g(y2)|(zy1)2(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+|g(z)|eθ1z]+(y2z)2(Œ(ξj,μj)mλ,σ,ζ;y21)(z)[|g(y2)|eθ1(y2)+|g(z)|eθ1z].

    t[y1,y2], θ1,θ2R.

    Definition 5.1. Let g:[y1,y1+ξ(y2,y1)]R is a function, and g is exponentially symmetric about 2y1+ξ(y2,y1)2 if

    g(z)eθz=g(2y1+ξ(y2,y1)z)eθ(2y1+ξ(y2,y1)z),θR. (5.20)

    Lemma 5.1. Let g:[y1,y1+ξ(y2,y1)]R be exponentially symmetric, then

    g(2y1+ξ(y2,y1)2)(1+m)g(z)2seθz,θR. (5.21)

    Proof. For g is exponentially (s-m) preinvex, therefore

    g(2y1+ξ(y2,y1)2)g(y1+δξ(y2,1))2seθ(y1+δξ(y2,y1))+mg(y1+(1δ)ξ(y2,y1))2seθ(y1+(1δ)ξ(y2,y1)). (5.22)

    Let t=y1+δξ(y2,y1), where t[y1,y1+ξ(y2,y1)], and then 2y1+ξ(y2,y1)=y1+(1δ)ξ(y2,y1), we have

    g(2y1+ξ(y2,y1)2)g(z)2seθz+mg(2y1+ξ(y2,y1)z)2seθ(2y1+ξ(y2,y1)z). (5.23)

    applying that g is exponentially symmetric, we obtain

    g(2y1+ξ(y2,y1)2)(1+m)g(z)2seθz. (5.24)

    Theorem 5.3. Suppose a real valued function g:[y1,y1+ξ(y2,y1)]R is exponentially (s-m) preinvex and symmetric about exponentially 2y1+ξ(y2,y1)2, then the following integral inequality for (3.1) and (3.2) holds:

    2s1+mf(2y1+ξ(y2,y1)2)[eθy1(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1)+(Œ(μj,δj)mλ,σ,ζ;y+11)(y1+ξ(y2,y1))](Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)+(Œ(μj,τj)mλ,σ,ζ;y+1g)(y1+ξ(y2,y1))ξ(y2,y1)s+1(g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1)×[(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1+ξ(y2,y1))]. (5.25)

    Proof. For z[y1,y1+ξ(y2,y1)], we have

    (zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)(ξ(y2,y1))δjJ(ξj)m,λ(δj)m,σ(ζ(ξ(y2,y1))ξj), (5.26)

    the real value function g is exponentially (s-m) preinvex, then for z[y1,y1+ξ(y2,y1)], we get

    g(z)(zy1ξ(y2,y1))sg(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+m((y1+ξ(y2,y1)z)ξ(y2,y1))sg(y1)eθ1y1. (5.27)

    Conducting product of (5.26) and (5.27), and integrating with respect to z from y1 to y2, we get

    y2y1(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)g(z)dzy2y1(ξ(y2,y1))δjJ(ξj)m,λ(δj)m,σ(ζ(ξ(y2,y1))ξj)×[(zy1ξ(y2,y1))sg(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+m((y1+ξ(y2,y1)z)ξ(y2,y1))sg(y1)eθ1y1]dz, (5.28)

    then we have

    (Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)(ξ(y2,y1))δjJ(ξj)m,λ(δj)m,σ(ζ(ξ(y2,y1))ξj)ξ(y2,y1)s+1[g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1]=(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)ξ(y2,y1)s+1[g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1]. (5.29)

    Analogously for z[y1,y1+ξ(y2,y1)], we have

    (y1+ξ(y2,y1)z)μjJ(ξj)m,λ(μj)m,σ(ζ(zy1)ξj)(ξ(y2,y1))μjJ(ξj)m,λ(μj)m,σ(ζ(ξ(y2,y1))ξj). (5.30)

    Conducting product of (5.27) and (5.30), and integrating with respect to z from y1 to y2, we have

    y2y1(y1+ξ(y2,y1)z)μjJ(ξj)m,λ(μj)m,σ(ζ(zy1)ξj)g(z)dzy2y1(ξ(y2,y1))μjJ(ξj)m,λ(μj)m,σ(ζ(ξ(y2,y1))ξj)[(zy1ξ(y2,y1))sg(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+m((y1+ξ(y2,y1)z)ξ(y2,y1))sg(y1)eθ1y1]dz=(ξ(y2,y1))μjJ(ξj)m,λ(μj)m,σ(ζ(ξ(y2,y1))ξj)ξ(y2,y1)s+1[g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1],

    then

    (Œ(ξj,μj)mλ,σ,ζ;y+1g)(z)(Œ(ξj,μj)mλ,σ;(y1+ξ(y2,y1))1)(y1+ξ(y2,y1))ξ(y2,y1)s+1[g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1]. (5.31)

    Summing (5.29) and (5.31), we obtain

    (Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)+(Œ(ξj,μj)mλ,σ,ζ;y+1g)(z)ξ(y2,y1)s+1(g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1)[(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1+ξ(y2,y1))]. (5.32)

    Take the product of Eq (5.21) with (zy1)τjJ(μj)m,λ(τj)m,σ(ζ(zy1)μj) and integrating with respect to t from y1 to y2, we have

    g(2y1+ξ(y2,y1)2)y2y1(zy1)τjJ(μj)m,λ(τj)m,σ(ζ(zy1)μj)dz(1+m)2sy2y1(zy1)τjJ(μj)m,λ(τj)m,σ(ζ(zy1)μj)g(z)eθzdz (5.33)

    using definition (13), we have

    g(2y1+ξ(y2,y1)2)(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1)(1+m)2seθy1(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z). (5.34)

    Taking product (5.21) with (y1+ξ(y2,y1)z)δjJ(μj)m,λ(δj)m,σ(ζ(y1+ξ(y2,y1)z)μj) and integrating with respect to variable z from y1 to y2, we have

    g(2y1+ξ(y2,y1)2)(Œ(μj,δj)mλ,σ,ζ;y+11)(y1+ξ(y2,y1))(1+m)2seθ1(y1+ξ(y2,y1))(Œ(μj,τj)mλ,σ,ζ;y+1g)(y1+ξ(y2,y1)). (5.35)

    Summing up (5.34) and (5.35), we get

    2s1+mg(2y1+ξ(y2,y1)2)[eθy1(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1)+(Œ(μj,δj)mλ,σ,ζ;y+11)(y1+ξ(y2,y1))](Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)+(Œ(μj,τj)mλ,σ,ζ;y+1g)(y1+ξ(y2,y1)). (5.36)

    Now, combining (5.32) and (5.36), we get inequality

    2s1+mg(2y1+ξ(y2,y1)2)[eθy1(Œ(μj,τj)mλ,σ,ζ;(y1+η(y2,y1))1)(y1)+(Œ(μj,δj)mλ,σ,ζ;y+11)(y1+ξ(y2,y1))](Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)+(Œ(μj,τj)mλ,σ,ζ;y+1g)(y1+ξ(y2,y1))ξ(y2,y1)s+1(g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1)×[(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1+ξ(y2,y1))].

    Corollary 5.7. Setting ξ(y2,y1)=y2y1, then under the assumption of theorem (5.3), we have

    2s1+mg(y1+y22)[eθy1(Œ(μj,τj)mλ,σ,ζ;y21)(y1)+(Œ(μj,δj)mλ,σ,ζ;y+11)(y2)](Œ(μj,τj)mλ,σ,ζ;y2g)(z)+(Œ(μj,τj)mλ,σ,ζ;y+1g)(y2)(y2y1)s+1(g(y2y1)eθ1(y2y1)+mg(y1)eθ1y1)×[(Œ(ξj,δj)mλ,σ,ζ;y21)(z)+(Œ(ξj,μj)mλ,σ,ζ;y21)(y2)]. (5.37)

    In this section, we derive some Pólya-Szegö inequalities for four positive integrable functions having fractional operator Œ(ξj,δj)mλ,σ(z) in the form of theorems.

    Theorem 6.1. Let h and l are integrable functions on [y1,). Suppose that there exist integrable functions θ1,θ2,ψ1 and ψ2 on [y1,) such that:

    (R1) 0<θ1(b)h(b)θ2(b),0<ψ1(b)l(b)ψ2(b) (b[y1,z],z>y1).

    Then, for z>y1,y10, ξj,δj,λC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0 and (zb)Ω, then the following inequalities hold:

    Œ(ξj,δj)mλ,σ,ζ;y1+[(ψ1ψ2)h2](z)Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1θ2)l2](z)[Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1ψ1+θ2ψ2)hl](z)]214. (6.1)

    Proof. From (R1), for b[y1,z], z>y1, we have

    h(b)l(b)θ2(b)ψ1(b), (6.2)

    the inequality write as

    (θ2(b)ψ1(b)h(b)l(b))0. (6.3)

    Similarly, we get

    θ1(b)ψ2(b)h(b)l(b), (6.4)

    thus

    (h(b)l(bθ1(b)ψ2(b))0. (6.5)

    Multiplying Eq (6.3) and Eq (6.5), it follows

    (θ2(b)ψ1(b)h(b)l(b))(h(b)l(b)θ1(b)ψ2(b))0, (6.6)

    i.e.

    (θ2(b)ψ1(b)+θ1(b)ψ2(b))h(b)l(b)h2(b)l2(b)+θ1(b)θ2(b)ψ1(b)ψ2(b). (6.7)

    The last inequality can be written as

    (θ1(b)ψ1(b)+θ2(b)ψ2(b))h(b)l(b)ψ1(b)ψ2(b)h2(b)+θ1(b)θ2(b)l2(b). (6.8)

    Consequently, multiply both sides of (6.8) by (y1b)δjJ(ξj)m,λ(δj)m,σ(ζ(y1b)ξj), (zb)Ω and integrating with respect to b from y1 to z, we get

    Œ(ξj,δj)mλ,σ,ζ;y1+[(θ1ψ1+θ2ψ2)hl](z)Œ(ξj,δj)mλ,σ,ζ;y1+[ψ1ψ2h2](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[θ1θ2l2](z). (6.9)

    Besides, by AM-GM (arithmetic mean- geometric mean) inequality, i.e., a1+b12a1b1 a1,b1+, we get

    Œ(ξj,δj)mλ,σ,ζ;y1+[(θ1ψ1+θ2ψ2)hl](x)2Œ(ξj,δj)mλ,σ,ζ;y1+[ψ1ψ2h2](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[θ1θ2l2](z), (6.10)

    and it follows straightforward the statement of Eq (6.1).

    Corollary 6.1.. Let h and l be two integrable functions on [0,) and satisfying the inequality

    (R2) 0<sh(b)S,0<kl(b)K(b[y1,τ],z>y1). (6.11)

    For z>y1,y10, ξj,δj,λC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0 and (zb)Ω, then the following inequalities hold:

    Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l2](z)(Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z))214(SKsk+skSK)2. (6.12)

    Theorem 6.2. Let h and l are positive integrable functions on [y1,). Suppose that there exist integrable functions θ1,θ2,ψ1 and ψ2 on [y1,) satisfying (R1) on [y1,). Then, for z>y1,y10, ξj,δj,λC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0 and (zb),(τz)Ω, then the following inequalities hold:

    Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ1ψ2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[θ1θ2](z)Œ(ξj,δj)mλ,σ,ζ;y2[l2](z)[Œ(ξj,δj)mλ,σ,ζ;y1+[θ1h](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ1h](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[θ2h](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ2l](z)]214. (6.13)

    Proof. By condition (R1), it is clear that

    (θ2(b)ψ1(α)h(b)l(α))0, (6.14)

    and

    (h(b)l(α)θ1(b)ψ2(α))0, (6.15)

    these inequalities implies that

    (θ1(b)ψ2(α)+θ2(b)ψ1(α))h(b)l(α)h2(b)l2(α)+θ1(b)θ2(b)ψ1(α)ψ2(α). (6.16)

    The Eq (6.16), multiply by ψ1(α)ψ2(α)l2(α) of both sides, we have

    θ1(b)h(b)ψ1(α)l(α)+θ2(b)h(b)ψ2(α)l(α)ψ1(α)ψ2(α)h2(b)+θ1(b)θ2(b)l2(α). (6.17)

    Hence, the Eq (6.17) multiply both sides by

    (zb)δjJ(ξj)m,λ(δj)m,σ(ζ(zb)ξj),(αz)δjJ(ξj)m,λ(δj)m,σ(ζ(αz)ξj). (6.18)

    And integrating double with respect to b and α from y1 to z and z to y2 respectively, we have

    Œ(ξj,δj)mλ,σ,ζ;y1+[θ1h](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ1l](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[θ2h](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ2l](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ1ψ2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[θ1θ2](z)Œ(ξj,δj)mλ,σ,ζ;y2[l2](z). (6.19)

    At last, we come to Eq (6.13) by using the arithmetic and geometric mean inequality to the upper inequality.

    Theorem 6.3. Let h and l are integrable functions on [y1,). Suppose that there exist integrable functions θ1,θ2,ψ1 and ψ2 on [y1,) satisfying (R1) on [y1,). Then, for z>y1,y10, ξj,δj,λC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0 and (zb),(αz)Ω, then the following inequalities hold:

    Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y2[l2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[(θ2hl)/ψ1](z)Œ(ξj,δj)mλ,σ,ζ;y2[(ψ2hl)/θ1]. (6.20)

    Proof. We have for any (zb),(αz)Ω, from Eq (6.2), thus

    zy1(zb)δjJ(ξj,δj)mλ,σ(ζ(zb)ξj)h2(b)dby1z(αz)ξjJ(ξj,δj)mλ,σ(ζ(αz)ξj)θ2(α)ψ1(α)h(α)l(α)dα,

    which implies

    Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[(θ2hl)/ψ1](z). (6.21)

    and analogously, by Eq (6.4), we get

    Œ(ξj,δj)mλ,σ,ζ;y2[l2](x)Œ(ξj,δj)mλ,σ,ζ;y2[(ψ2hl)/θ1](z), (6.22)

    hence, by multiplying Eq (6.21) and Eq (6.22), follow Eq (6.20).

    Corollary 6.2. Let h and l be integrable functions on [y1,) satisfying (R2). Then, for z>y1,y10, ξj,δj,λC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0 and (zb),(αz)Ω, we obtain

    Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y2[l2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z)Œ(ξj,δj)mλ,σ,ζ;y2[hl](z)SKsk. (6.23)

    In this section, Chebyshev type integral inequalities established involving the fractional operator Œ(ξj,δj)mλ,σ(z) and using the Pólya-Szegö fractional integral inequalities of theorem (6.1) in the form of theorem, and then discuss its corollary.

    Theorem 7.1. Let h and l be integrable functions on [y1,), and suppose that there exist integrable functions θ1,θ2,ψ1 and ψ2 on [y1,) satisfying (R1). Then, for z>y1,y10, ξj,δj,λC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0 and (zb)(αz)Ω the following inequality hold:

    |Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+Œ(νj,μj)mλ,σ,ζ;y2[hl](z)Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(νj,μj)mλ,σ,ζ;y2[l](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)Œ(νj,μj)mλ,σ,ζ;y2[h](z)|2[Gy1,y2(h,θ1,θ2)Gy1,y2(l,ψ1,ψ2)]12. (7.1)

    where

    Gy1,y2(b,y,x)(z)=18[Œ(ξj,δj)mλ,σ,ζ;y1+[(y+x)b](z)]2Œ(ξj,δj)mλ,σ,ζ;y1+[yx](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+18[Œ(νj,μj)mλ,σ,ζ;y2[(y+x)b](z)]2Œ(μj,νj)mλ,σ,ζ;y2[yx](z)Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(ξj,δj)mλ,σ,ζ;y1+[b](z)Œ(νj,μj)mλ,σ,ζ;y2[b](z).

    Proof. For (b,α)(y1,z) (z>y1), we defined A(b,α)=(h(b)h(α))(l(b)l(α)) which is the same

    A(b,α)=h(b)l(b)+h(α)l(α)h(b)l(α)h(α)l(b). (7.2)

    Further, the Eq (7.2), multiply both sides by

    (zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj), (7.3)

    and integrating double with respect to b and α from y1 to z and z to y2 respectively, we get

    zy1y2z(zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)A(b,α)dbdα=zy1(zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)h(b)l(b)dby2z(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)dα+zy1(zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)dby2z(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)h(α)l(α)dαy1z(zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)h(b)dby2z(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)h(α)dαy1z(zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)l(b)dby2z(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)h(α)dα=Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(νj,μj)mλ,σ,ζ;y2[hl](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(νj,μj)mλ,σ,ζ;y2[l](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)Œ(νj,μj)mλ,σ,ζ;y2[h](z). (7.4)

    Now, applying Cauchy-Schwartz inequality for integrals, we get

    \begin{multline} \bigg|\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})A(b, \alpha)dbd\alpha\bigg|\\ \leq\bigg(\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})\alpha[h(b)]^{2}dbd\alpha\\ +\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})[h(\alpha)]^{2}dbd\alpha\\ -2\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})h(b)h(\alpha)dbd\alpha \bigg)^{1/2}\\ \times\bigg(\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})\alpha[l(b)]^{2}dbd\alpha\\ +\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})[l(\alpha)]^{2}dbd\alpha\\ -2\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})l(b)l(\alpha)dbd\alpha \bigg)^{1/2}, \end{multline} (7.5)

    it follow as

    \begin{multline} \bigg|\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})A(b, \alpha)dbd\alpha\bigg|\\ \leq2\{1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h^{2}](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)+1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h^{2}](z)\\ -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h](z)\}^{1/2}\times\{1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l^{2}](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)\\+1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l^{2}](z) -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l](z)\}^{1/2}. \end{multline} (7.6)

    By applying lemma (6.1) for \psi_{1}(z) = \psi_{2}(z) = l(z) = 1 , we get for any \mathrm{J}^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(z)^{\delta_{j}}\in \Omega

    \begin{align} Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}} [h^{2}](z)\leq\frac{1}{4}\frac{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}+\theta_{2})h](z)]^{2}}{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}\theta_{2})](z)}, \end{align} (7.7)

    this implies

    \begin{align} &1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h^{2}](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)+1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h^{2}](z)\\ &-Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h](z)\leq\frac{1}{8}\frac{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}+\theta_{2})h](z)]^{2}}{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}\theta_{2})](z)}Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)\\ &+\frac{1}{8}Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)\frac{[Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}+\theta_{2})h](z)]^{2}}{Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}\theta_{2})](z)} -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h](z)\\ & = G_{y_{1}, y_{2}}(h, \theta_{1}, \theta_{2}). \end{align} (7.8)

    Analogously, it is clear when \theta_{1}(z) = \theta_{2}(z) = h(z) = 1 , according to Lemma (6.1), we get

    \begin{align} &1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l^{2}](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)+1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l^{2}](z)\\ &-Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l](x)\leq\frac{1}{8}\frac{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\psi_{1}+\psi_{2})l](z)]^{2}}{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\psi_{1}\psi_{2})](z)}Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)\\ &+\frac{1}{8}Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)\frac{[Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\psi_{1}+\psi_{2})l](z)]^{2}}{Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\psi_{1}\psi_{2})](z)} -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l](z)\\ & = G_{y_{1}, y_{2}}(l, \psi_{1}, \psi_{2}). \end{align} (7.9)

    Thus, by resulting Eqs (7.4), (7.6), (7.8) and (7.9), we get the desired inequality (7.1).

    Corollary 7.1. Let h and l be integrable functions on [y_{1}, \infty) , suppose that there exist integrable functions \theta_{1}, \theta_{2}, \psi_{1} and \psi_{2} on [y_{1}, \infty) satisfying (R1) . Then, for z > y_{1}, y_{1}\geq0 , \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 and (z-b), (\alpha-z)\in \Omega the following inequalities hold:

    \begin{align} |Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[hl](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z) -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l](z)|\\ \leq [G_{y_{1}, y_{2}}(h, \theta_{1}, \theta_{2})G_{y_{1}, y_{1}}(l, \theta_{1}, \theta_{2})]^{\frac{1}{2}}, \end{align}

    where

    \begin{align} G_{y_{1}, y_{1}}(b, y, x)(z) = \frac{1}{4}\frac{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[(y+x)b](z)]^{2}}{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[yx](z)}Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1]-(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[b](z))^{2}. \end{align}

    This article analyzed the generalized fractional integral operator having nonsingular function (generalized multi-index Bessel function) as kernel and developed a new version of inequalities. We estimate some inequalities (Hermite Hadamard type Mercer inequality, exponentially (s-m) preinvex inequality, Pólya-Szegö type integral inequality and the Chebyshev type inequality) with the generalized fractional integral operator in which nonsingular function as the kernel. Introducing the new version of inequalities of newly constricted operators have strengthened the idea and results.

    The authors declare that they have no competing interest.



    [1] P. Kareiva, G. Odell, Swarms of predators exhibit "preytaxis" if individual predators use area-restricted search, Am. Naturalist, 130 (1987), 233–270. doi: 10.1086/284707
    [2] S. N. Wu, J. P. Shi, B. Y. Wu, Global existence of solutions and uniform persistence of a diffusive predator–prey model with prey-taxis, J. Differ. Equations, 260 (2016), 5847–5874. doi: 10.1016/j.jde.2015.12.024
    [3] J. R. Beddington. Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331–340.
    [4] D. L. DeAngelis, R. A. Goldstein, R. V. O'Neill, A model for tropic interaction, Ecology, 56 (1975), 881–892. doi: 10.2307/1936298
    [5] P. A. Abrams, L. R. Ginzburg, The nature of predation: prey dependent, ratio dependent or neither?, Trends Ecol. Evol., 15 (2000), 337–341. doi: 10.1016/S0169-5347(00)01908-X
    [6] H. Y. Jin, Z. A. Wang, Global stability of prey-taxis systems, J. Diffe. Equations, 262 (2017), 1257–1290. doi: 10.1016/j.jde.2016.10.010
    [7] Y. L. Cai, Q. Cao, Z. A. Wang, Asymptotic dynamics and spatial patterns of a ratio-dependent predator–prey system with prey-taxis, Appl. Anal., (2020), 1–19.
    [8] T. Hillen, K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280–301. doi: 10.1006/aama.2001.0721
    [9] B. E. Ainseba, M. Bendahmane, A. Noussair, A reaction–diffusion system modeling predator–prey with prey-taxis, Nonlinear Anal. Real World Appl., 9 (2008), 2086–2105. doi: 10.1016/j.nonrwa.2007.06.017
    [10] Y. S. Tao, Global existence of classical solutions to a predator–prey model with nonlinear prey-taxis, Nonlinear Anal. Real World Appl., 11 (2010), 2056–2064. doi: 10.1016/j.nonrwa.2009.05.005
    [11] X. He, S. N. Zheng, Global boundedness of solutions in a reaction–diffusion system of predator–prey model with prey-taxis, Appl. Math. Lett., 49 (2015), 73–77. doi: 10.1016/j.aml.2015.04.017
    [12] C. L. Li, X. H. Wang, Y. F. Shao, Steady states of a predator–prey model with prey-taxis, Nonlinear Anal. Theory Meth. Appl., 97 (2014), 155–168. doi: 10.1016/j.na.2013.11.022
    [13] X. L. Wang, W. D. Wang, G. H. Zhang, Global bifurcation of solutions for a predator–prey model with prey-taxis, Math. Meth. Appl. Sci., 38 (2015), 431–443. doi: 10.1002/mma.3079
    [14] H. Y. Jin, Z. A. Wang, Global dynamics and spatio-temporal patterns of predator–prey systems with density-dependent motion, Eur. J. Appl. Math., 32 (2021), 652–682. doi: 10.1017/S0956792520000248
    [15] B. Roy, S. K. Roy, D. B. Gurung, Holling–Tanner model with Beddington–DeAngelis functional response and time delay introducing harvesting, Math. Comput. Simul., 142 (2017), 1–14. doi: 10.1016/j.matcom.2017.03.010
    [16] B. Roy, S. K. Roy, M. H. A. Biswas, Effects on prey–predator with different functional responses, Int. J. Biomath., 10 (2017), 1750113. doi: 10.1142/S1793524517501133
    [17] A. Jana, S. K. Roy, Holling-Tanner prey-predator model with Beddington-DeAngelis functional response including delay, Int. J. Model. Simul., (2020), 1–15.
    [18] S. K. Roy, B. Roy, Analysis of prey-predator three species fishery model with harvesting including prey refuge and migration, Int. J. Bifurcat. Chaos, 26 (2016), 1650022. doi: 10.1142/S021812741650022X
    [19] B. Roy, S. K. Roy, Analysis of prey-predator three species models with vertebral and invertebral predators, Int. J. Dyn. Control, 3 (2015), 306–312. doi: 10.1007/s40435-015-0153-6
    [20] J. I. Tello, D. Wrzosek, Predator–prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129–2162. doi: 10.1142/S0218202516400108
    [21] Y. V. Tyutyunov, L. I. Titova, I. N. Senina, Prey-taxis destabilizes homogeneous stationary state in spatial Gause– Kolmogorov-type model for predator–prey system, Ecol. Complex., 31 (2017), 170–180. doi: 10.1016/j.ecocom.2017.07.001
    [22] H. Y. Jin, S. J. Shi, Z. A. Wang, Boundedness and asymptotics of a reaction-diffusion system with density-dependent motility, J. Differ. Equations, 269 (2020), 6758–6793. doi: 10.1016/j.jde.2020.05.018
    [23] H. Y. Jin, Z. A. Wang, Critical mass on the Keller-Segel system with signal-dependent motility, P. Am. Math. Soc., 148 (2020), 4855–4873. doi: 10.1090/proc/15124
    [24] X. F. Fu, L. H. Tang, C. L. Liu, J. D. Huang, T. Hwa, P. Lenz, Stripe formation in bacterial systems with density-suppressed motility, Phys. Rev. Lett., 108 (2012), 198102. doi: 10.1103/PhysRevLett.108.198102
    [25] J. Smith-Roberge, D. Iron, T. Kolokolnikov, Pattern formation in bacterial colonies with density-dependent diffusion, Eur. J. Appl. Math., 30 (2019), 196–218. doi: 10.1017/S0956792518000013
    [26] H. Y. Jin, Y. J. Kim, Z. A. Wang, Boundedness, stabilization, and pattern formation driven by density-suppressed motility, SIAM J. Appl. Math., 78 (2018), 1632–1657. doi: 10.1137/17M1144647
    [27] S. L. Wang, J. F. Zhang, F. Xu, X. Y. Song, Dynamics of virus infection models with density-dependent diffusion, Comput. Math. Appl., 74 (2017), 2403–2422. doi: 10.1016/j.camwa.2017.07.019
    [28] W. J. Zuo, Y. L. Song, Stability and double-Hopf bifurcations of a Gause-Kolmogorov-type predator–prey system with indirect prey-taxis, J. Dyn. Differ. Equations, (2020), 1–41.
    [29] I. Ahn, C. Yoon, Global well-posedness and stability analysis of prey-predator model with indirect prey-taxis, J. Differ. Equations, 268 (2020), 4222–4255. doi: 10.1016/j.jde.2019.10.019
    [30] J. P. Wang, M. X. Wang, The dynamics of a predator–prey model with diffusion and indirect prey-taxis, J. Dyn. Differ. Equations, 32 (2019), 1291–1310.
    [31] H. Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differ. Integral Equations, 3 (1990), 13–75.
    [32] H. Amann, Dynamic theory of quasilinear parabolic systems. III. Global existence, Math. Z., 202 (1989), 219–250. doi: 10.1007/BF01215256
    [33] H. Amann, Linear and Quasilinear Parabolic Problems Volume I: Abstract Linear Theory, Monographs in Mathematics, Birkhäuser, Basel, 1995.
    [34] R. Kowalczyk, Z. Szymańska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379–398. doi: 10.1016/j.jmaa.2008.01.005
    [35] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin Heidelberg, 1981.
    [36] D. Horstmann, M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equations, 215 (2005), 52–107. doi: 10.1016/j.jde.2004.10.022
    [37] O. A. Ladyzhenskaia, V. A. Solonnikov, N. N. Ural'tseva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, 1968.
    [38] J. R. Ellis, N. B. Petrovskaya, A computational study of density-dependent individual movement and the formation of population clusters in two-dimensional spatial domains, J. Theor. Biol., 505 (2020), 110421. doi: 10.1016/j.jtbi.2020.110421
  • This article has been cited by:

    1. Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Artion Kashuri, Hassen Aydi, Eskandar Ameer, Ostrowski-type inequalities pertaining to Atangana–Baleanu fractional operators and applications containing special functions, 2022, 2022, 1029-242X, 10.1186/s13660-022-02899-6
    2. Peng Xu, Saad Ihsan Butt, Saba Yousaf, Adnan Aslam, Tariq Javed Zia, Generalized Fractal Jensen–Mercer and Hermite–Mercer type inequalities via h-convex functions involving Mittag–Leffler kernel, 2022, 61, 11100168, 4837, 10.1016/j.aej.2021.10.033
    3. Ravi Kumar Jain, Alok Bhargava, Mohd. Rizwanullah, Certain New Integrals Including Generalized Bessel-Maitland Function and M-Series, 2022, 8, 2349-5103, 10.1007/s40819-021-01202-3
    4. Wedad Saleh, Abdelghani Lakhdari, Adem Kiliçman, Assia Frioui, Badreddine Meftah, Some new fractional Hermite-Hadamard type inequalities for functions with co-ordinated extended s,m-prequasiinvex mixed partial derivatives, 2023, 72, 11100168, 261, 10.1016/j.aej.2023.03.080
    5. Anupam Das, Mohsen Rabbani, Bipan Hazarika, An iterative algorithm to approximate the solution of a weighted fractional integral equation, 2023, 1793-5571, 10.1142/S1793557123502418
    6. Yong Tang, Ghulam Farid, M. Y. Youssif, Zakieldeen Aboabuda, Amna E. Elhag, Kahkashan Mahreen, Çetin Yildiz, Refinements of Various Types of Fractional Inequalities via Generalized Convexity, 2024, 2024, 2314-4629, 10.1155/2024/4082683
    7. Saad Ihsan Butt, Praveen Agarwal, Juan J. Nieto, New Hadamard–Mercer Inequalities Pertaining Atangana–Baleanu Operator in Katugampola Sense with Applications, 2024, 21, 1660-5446, 10.1007/s00009-023-02547-3
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3536) PDF downloads(208) Cited by(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog