### Mathematical Biosciences and Engineering

2021, Issue 5: 6552-6580. doi: 10.3934/mbe.2021325
Research article Special Issues

# Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions

• Received: 23 April 2021 Accepted: 15 July 2021 Published: 30 July 2021
• In this study, we introduce and study new fuzzy-interval integral is known as fuzzy-interval double integral, where the integrand is fuzzy-interval-valued functions (FIVFs). Also, some fundamental properties are also investigated. Moreover, we present a new class of convex fuzzy-interval-valued functions is known as coordinated convex fuzzy-interval-valued functions (coordinated convex FIVFs) through fuzzy order relation (FOR). The FOR $\left(\preccurlyeq \right)$ and fuzzy inclusion relation (⊇) are two different concepts. With the help of fuzzy-interval double integral and FOR, we have proved that coordinated convex fuzzy-IVF establish a strong relationship between Hermite-Hadamard (HH-) and Hermite-Hadamard-Fejér (HH-Fejér) inequalities. With the support of this relation, we also derive some related HH-inequalities for the product of coordinated convex FIVFs. Some special cases are also discussed. Useful examples that verify the applicability of the theory developed in this study are presented. The concepts and techniques of this paper may be a starting point for further research in this area.

Citation: Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Khadijah M. Abualnaja. Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 6552-6580. doi: 10.3934/mbe.2021325

### Related Papers:

• In this study, we introduce and study new fuzzy-interval integral is known as fuzzy-interval double integral, where the integrand is fuzzy-interval-valued functions (FIVFs). Also, some fundamental properties are also investigated. Moreover, we present a new class of convex fuzzy-interval-valued functions is known as coordinated convex fuzzy-interval-valued functions (coordinated convex FIVFs) through fuzzy order relation (FOR). The FOR $\left(\preccurlyeq \right)$ and fuzzy inclusion relation (⊇) are two different concepts. With the help of fuzzy-interval double integral and FOR, we have proved that coordinated convex fuzzy-IVF establish a strong relationship between Hermite-Hadamard (HH-) and Hermite-Hadamard-Fejér (HH-Fejér) inequalities. With the support of this relation, we also derive some related HH-inequalities for the product of coordinated convex FIVFs. Some special cases are also discussed. Useful examples that verify the applicability of the theory developed in this study are presented. The concepts and techniques of this paper may be a starting point for further research in this area.

• © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142

2.6 3.9