Research article Special Issues

CWCA: Complex-valued encoding water cycle algorithm

  • Received: 25 April 2021 Accepted: 22 June 2021 Published: 29 June 2021
  • Since the meta-heuristic water cycle algorithm (WCA) was presented, it has been used extensively in scientific computation and engineering optimization. The aims of this study are to improve the exploration and exploitation capabilities of the WCA algorithm, accelerate its convergence speed, and enhance its calculation accuracy. In this paper, a novel complex-valued encoding WCA (CWCA) is proposed. The positions of rivers and streams are divided into two parts, that is, the real part and imaginary part, and modified formulas for the new positions of rivers and streams are proposed. To evaluate the performance of the CWCA, 12 benchmark functions and four engineering examples were considered. The experimental results indicated that the CWCA had higher precision and convergence speed than the real-valued WCA and other well-known meta-heuristic algorithms.

    Citation: Guo Zhou, Yongquan Zhou, Zhonghua Tang, Qifang Luo. CWCA: Complex-valued encoding water cycle algorithm[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 5836-5864. doi: 10.3934/mbe.2021294

    Related Papers:

  • Since the meta-heuristic water cycle algorithm (WCA) was presented, it has been used extensively in scientific computation and engineering optimization. The aims of this study are to improve the exploration and exploitation capabilities of the WCA algorithm, accelerate its convergence speed, and enhance its calculation accuracy. In this paper, a novel complex-valued encoding WCA (CWCA) is proposed. The positions of rivers and streams are divided into two parts, that is, the real part and imaginary part, and modified formulas for the new positions of rivers and streams are proposed. To evaluate the performance of the CWCA, 12 benchmark functions and four engineering examples were considered. The experimental results indicated that the CWCA had higher precision and convergence speed than the real-valued WCA and other well-known meta-heuristic algorithms.



    加载中


    [1] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ, IEEE Trans. Evol. Comput., 6 (2002), 182-197. doi: 10.1109/4235.996017
    [2] J. Kennedy, Particle swarm optimization, in Encyclopedia of Machine Learning, Springer US, (2010), 760-766.
    [3] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing, Science, 220 (1983), 671-680. doi: 10.1126/science.220.4598.671
    [4] K. N. Krishnanand, D. Ghose, Glowworm swarm optimisation: A new method for optimising multi-modal functions, Int. J. Comput. Intell. Stud., 1 (2009), 93-119. doi: 10.1504/IJCISTUDIES.2009.025340
    [5] B. Alatas, Chaotic harmony search algorithms, Appl. Math. Comput., 216 (2010), 2687-2699.
    [6] K. M. Passino, Biomimicry of bacterial foraging for distributed optimization and control, IEEE Control Syst. Mag., 22 (2002), 52-67. doi: 10.1109/MCS.2002.1004010
    [7] G. G. Wang, S. Deb, L. D. S. Coelho, Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems, J. Bio-Inspired Comput., 12 (2018), 1-22. doi: 10.1504/IJBIC.2018.093328
    [8] X. S. Yang, A new metaheuristic bat-inspired algorithm, in Nature inspired cooperative strategies for optimization, Springer Berlin Heidelberg, (2010), 65-74.
    [9] G. G. Wang, S. Deb, X. Z. Gao, L. D. S. Coelho, A new metaheuristic optimization algorithm motivated by elephant herding behavior, J. Bio-Inspired Comput., 8 (2017), 394-409.
    [10] G. Wang, L. Guo, H. Wang, H. Duan, L. Liu, J. Li, Incorporating mutation scheme into krill herd algorithm for global numerical optimization, Neural Comput. Appl., 24 (2014), 853-871. doi: 10.1007/s00521-012-1304-8
    [11] H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, Water cycle algorithm-A novel metaheuristic optimization method for solving constrained engineering optimization problems, Comput. Struct., 110 (2012), 151-166.
    [12] A. Sadollah, H. Eskandar, A. Bahreininejad, J. H. Kim, Water cycle algorithm for solving multi-objective optimization problems, Soft Comput., 19 (2015), 2587-2603. doi: 10.1007/s00500-014-1424-4
    [13] C. Zhang, G. W. Liao, L. Li, Optimizations of space truss structures using WCA algorithm, Prog. Steel Build. Struct., 1 (2014), 35-38.
    [14] A. Sadollah, H. Eskandar, A. Bahreininejad, J. H. Kim, Water cycle algorithm with evaporation rate for solving constrained and unconstrained optimization problems, Appl. Soft Comput., 30 (2015), 58-71. doi: 10.1016/j.asoc.2015.01.050
    [15] L. Li, Y. Zhou, A novel complex-valued bat algorithm, Neural Comput. Appl., 25 (2014), 1369-1381. doi: 10.1007/s00521-014-1624-y
    [16] D. B. Chen, H. J. Li, Z. Li, Particle swarm optimization based on complex-valued encoding and application in function optimization, Comput. Appl., 45 (2009), 59-61.
    [17] Z. Zheng, Y. Zhang, Y. Qiu, Genetic algorithm based on complex-valued encoding, Control Theory Appl., 20 (2003), 97-100.
    [18] X. S. Yang, Appendix A: test problems in optimization, Eng. Optim., 2010 (2010), 261-266.
    [19] K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. P. Chen, C. M. Chen, et al., Benchmark functions for the CEC'2008 special session and competition on large scale global optimization. Nat. Inspired Comput. Appl. Lab., 2007 (2007), 153-177.
    [20] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Global Optim., 39 (2007), 459-471. doi: 10.1007/s10898-007-9149-x
    [21] C. A. C. Coello, Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art, Comput. Methods Appl. Mech. Eng., 191 (2002), 1245-1287. doi: 10.1016/S0045-7825(01)00323-1
    [22] E. Mezura-Montes, C. A. C. Coello, An empirical study about the usefulness of evolution strategies to solve constrained optimization problems, Int. J. Gen. Syst., 37 (2008), 443-473. doi: 10.1080/03081070701303470
    [23] S. Mirjalili, S. M. Mirjalili, A. Hatamlou, Multi-Verse Optimizer: a nature-inspired algorithm for global optimization, Neural Comput. Appl., 27 (2016), 495-513. doi: 10.1007/s00521-015-1870-7
    [24] C. A. C. Coello, Use of a self-adaptive penalty approach for engineering optimization problems, Comput. Ind., 41 (2000), 113-127. doi: 10.1016/S0166-3615(99)00046-9
    [25] C. A. C. Coello, Montes, E. M. Constraint-handling in genetic algorithms through the use of dominance-based tournament selection, Adv. Eng. Inf., 16 (2002), 193-203. doi: 10.1016/S1474-0346(02)00011-3
    [26] K. Deb, Geneas: A robust optimal design technique for mechanical component design, in Evolutionary algorithms in engineering applications, Springer Berlin Heidelberg, (1997), 497-514.
    [27] E. Mezura-Montes, C. A. C. Coello, An empirical study about the usefulness of evolution strategies to solve constrained optimization problems, Int. J. Gen. Syst., 37 (2008), 443-473. doi: 10.1080/03081070701303470
    [28] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: A gravitational search algorithm, Inf. Sci., 179 (2009), 2232-2248. doi: 10.1016/j.ins.2009.03.004
    [29] Q. He, L. Wang, An effective co-evolutionary particle swarm optimization for constrained engineering design problems, Eng. Appl. Artif. Intell., 20 (2007), 89-99. doi: 10.1016/j.engappai.2006.03.003
    [30] L. J. Li, Z. B. Huang, F. Liu, Q. H. Wu, A heuristic particle swarm optimizer for optimization of pin connected structures, Comput. Struct., 85 (2007), 340-349. doi: 10.1016/j.compstruc.2006.11.020
    [31] A. Kaveh, S. Talatahari, An improved ant colony optimization for constrained engineering design problems, Eng. Comput., 27 (2010), 155-182. doi: 10.1108/02644401011008577
    [32] A. H. Gandomi, X. S. Yang, A. H. Alavi, Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems, Eng. Comput., 29 (2013), 17-35. doi: 10.1007/s00366-011-0241-y
    [33] M. Y. Cheng, D. Prayogo, Symbiotic Organisms Search: A new metaheuristic optimization algorithm, Comput. Struct., 139 (2014), 98-112. doi: 10.1016/j.compstruc.2014.03.007
    [34] M. Zhang, W. Luo, X. Wang, Differential evolution with dynamic stochastic selection for constrained optimization, Inf. Sci., 178 (2008), 3043-3074. doi: 10.1016/j.ins.2008.02.014
    [35] H. Liu, Z. Cai, Y. Wang, Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization, Appl. Soft Comput., 10 (2010), 629-640. doi: 10.1016/j.asoc.2009.08.031
    [36] A. Sadollah, A. Bahreininejad, H. Eskandar, M. Hamdi, Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems, Appl. Soft Comput., 13 (2013), 2592-2612. doi: 10.1016/j.asoc.2012.11.026
    [37] A. H. Gandomi, X. S. Yang, A. H. Alavi, Cuckoo search algorithm: A metaheuristic approach tosolve structural optimization problems, Eng. Comput., 29 (2013), 17-35. doi: 10.1007/s00366-011-0241-y
    [38] R. Krohling, L. dos Santos Coelho, Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems, IEEE Trans. Syst. Man Cyber. B Cyber., 36 (2006), 1407-1416. doi: 10.1109/TSMCB.2006.873185
    [39] K. Deb, An efficient constraint handling method for genetic algorithms, Comput. Methods Appl. Mech. Eng., 186 (2000), 311-338. doi: 10.1016/S0045-7825(99)00389-8
    [40] K. S. Lee, Z. W. Geem, A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice, Comput. Methods Appl. Mech. Eng., 194 (2005), 3902-3933. doi: 10.1016/j.cma.2004.09.007
    [41] N. Mohammad, S. Ali, H. C. Young, H. K. Joong, A comprehensive review on water cycle algorithm and its applications, Neural Comput. Appl., 32 (2020), 7433-17488.
    [42] A. Sadollah, H. Eskandar, H. M. Lee, D. G. Yoo, J. H. Kim, Water cycle algorithm: A detailed standard code, Softwarex, 5 (2016), 37-43. doi: 10.1016/j.softx.2016.03.001
    [43] E. Osaba, J. Del Ser, A. Sadollah, M. N. Bilbao, D. Camacho, A discrete water cycle algorithm for solving the symmetric and asymmetric traveling salesman problem, Appl. Soft Comput., 71 (2018), 277-290. doi: 10.1016/j.asoc.2018.06.047
    [44] M. Seyed, P. Abedi, A. Alireza, S. Ali, H. Joong, Gradient-based water cycle algorithm with evaporation rate applied to chaos suppression, Appl. Soft Comput., 53 (2017), 420-440. doi: 10.1016/j.asoc.2016.12.030
    [45] G. G. Wang, Y. Tan, Improving metaheuristic algorithms with information feedback models, IEEE Trans. Cybern., 49 (2019), 542-555. doi: 10.1109/TCYB.2017.2780274
    [46] G. G. Wang, L. Guo, A. H. Gandomi, G. S. Hao, H. Wang, Chaotic krill herd algorithm, Inf. Sci., 274 (2014), 17-34. doi: 10.1016/j.ins.2014.02.123
    [47] W. Deng, J. Xu, X. Z. Gao, H. Zhao, An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems, IEEE Trans. Syst. Man Cybern. Syst., 2020 (2020).
    [48] Y. Jiang, Q. Luo, Y. Wei, L. Abualigah, An efficient binary Gradient-based optimizer for feature selection, Math. Biosci. Eng., 18 (2021), 3813-3854. doi: 10.3934/mbe.2021192
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2407) PDF downloads(97) Cited by(1)

Article outline

Figures and Tables

Figures(31)  /  Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog