
MBE, 18(5): 5836–5864.

DOI: 10.3934/mbe.2021294

Received: 25 April 2021

Accepted: 22 June 2021

Published: 29 June 2021

http://www.aimspress.com/journal/MBE

Research article

CWCA: Complex-valued encoding water cycle algorithm

Guo Zhou1, Yongquan Zhou2,3,*, Zhonghua Tang2 and Qifang Luo2,3

1 Department of Science and Technology Teaching, China University of Political Science and Law,
Beijing 100088, China

2 College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China
3 Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006,

China

* Correspondence: Email: yongquanzhou@126.com; Tel: +8613607882594; Fax:
+867713265523.

Abstract: Since the meta-heuristic water cycle algorithm (WCA) was presented, it has been used
extensively in scientific computation and engineering optimization. The aims of this study are to
improve the exploration and exploitation capabilities of the WCA algorithm, accelerate its
convergence speed, and enhance its calculation accuracy. In this paper, a novel complex-valued
encoding WCA (CWCA) is proposed. The positions of rivers and streams are divided into two parts,
that is, the real part and imaginary part, and modified formulas for the new positions of rivers and
streams are proposed. To evaluate the performance of the CWCA, 12 benchmark functions and four
engineering examples were considered. The experimental results indicated that the CWCA had
higher precision and convergence speed than the real-valued WCA and other well-known
meta-heuristic algorithms.

Keywords: water cycle algorithm; complex-valued water cycle algorithm; benchmark functions;
engineering optimization; meta-heuristic optimization.

1. Introduction

Generally, the objective of optimization is to find the optimal feasible response, considering the
constraints of a problem. As a modern optimization method, meta-heuristic algorithms have been
proposed by researchers in recent years, for example, the genetic algorithm (GA) [1], particle swarm
optimization (PSO) [2], simulated annealing (SA) [3], glowworm swarm optimization (GSO) [4],

5837

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

harmony search (HS) [5], bacterial foraging optimization [6], earthworm optimization [7], bat
algorithm (BA) [8], elephant herding behavior algorithm [9], krill herd algorithm [10], water cycle
algorithm (WCA) [10], and various improved versions of the meta-heuristic optimization algorithm
[45–48]. To date, hundreds of meta-heuristics have been proposed and used successfully to solve
complex optimization problems.

In 2012, Eskandar et al. presented the WCA and used it to solve real-valued optimization issues.
The real-valued WCA is a meta-heuristic optimization algorithm inspired by the water cycle process
in nature. It considers how rivers and streams flow into the sea. A simplified water cycle system
diagram is illustrated in Figure 1. In the WCA, the initial population comprises raindrops; the best
raindrop represents the ocean. Many good raindrops represent a river, and the remaining raindrops
represent streams that flow to the ocean and rivers. The rivers flow to the ocean, which is the lowest
terrain location.

Figure 1. Simplified water cycle process.

Since the WCA was proposed, it has been used extensively in scientific computation and
engineering optimization. In 2014, Ail et al. applied the WCA to multi-objective optimization [12].
Zhang et al. applied the WCA to solve engineering optimization problems [13]. In 2015, Ail et al.
proposed the WCA with the evaporation rate (ERWCA) for unconstrained and constrained
optimization [14]. In [41], a comprehensive and exhaustive review was conducted on the WCA and
its applications in a wide variety of study fields, including mechanical engineering, electrical and
electronic engineering, civil engineering, industrial engineering, water resources and hydropower
engineering, computer engineering, and mathematics. In [42], the detailed open source code for the
WCA was provided, and its performance and efficiency for solving optimization problems was
demonstrated. In [43], an enhanced discrete version of the WCA called DWCA was proposed to
solve the symmetric and asymmetric traveling salesman problem. The designed solver was tested on
over 33 problem datasets, and the statistical significance of the performance gaps for this benchmark
was validated using results from non-parametric tests, not only in terms of optimality but also in
terms of convergence speed. In [44], an extended version of WCA, that is, gradient-based WCA
(GWCA) with the evaporation rate, was introduced to enhance the performance of the standard WCA
by incorporating a local optimization operator in a so-called gradient-based approach. The
experimental results demonstrated the feasibility and efficiency of the proposed GWCA.

In this paper, the complex-valued encoding WCA (CWCA) is proposed, which uses the
complex number coding method of the complex-valued BA [15] and individual genes in the

5838

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

evolutionary algorithm [16,17]. A diploid is adopted in the indication of individual genes, which
significantly enhances the individual’s in information capacity. Finally, twelve benchmark functions
and four engineering examples were considered to evaluate the performance of the CWCA. The test
results indicated that the CWCA had higher precision and convergence speed than the real-valued
WCA and other well-known meta-heuristic algorithms.

2. Mathematical model for the real-valued water cycle

In the WCA, the initial population is represented by NN pop  matrix:

1

2

3 1,1 1,2 1,3 1,

2,1 2,2 2,3 2,

1

2 ,1 ,2 ,3 ,

3

pop pop pop pop

pop

N

N

Nsr

Nsr N N N N N

Nsr

N

Sea

River

River

River x x x x

x x x x
Population

Stream

Stream x x x x

Stream

Stream







 
 
 
 
 

  
  
      
  
   

 
 
 
 
 



 

    





, (1)

where popN represents the population size and N represents the design variables. Initially, the

popN stream is randomly generated, and srN good individuals represent a sea or river. The stream

that has the minimum value among all streams is identified as the ocean. srN represents the

summation of the number of rivers.
The remainder of the populations are computation using

1sr

Sea

N Number of Rivers  (2)

srpopstream NNN  . (3)

The total volume of water flowing in a river and/or the ocean varies from stream to stream. The
number of specified streams for a river or the ocean can be calculated as

1

()
, 1,2,

()
sr

k
n Stream srN

k
k

f River
NS round N k N

f River


 
 
    
 
  


 , (4)

where nNS denotes the number of rivers and f represents the fitness function.

In nature, streams are formed by raindrops, and then they join each other to constitute new
rivers. A part of a streams flows directly into the ocean. All streams and rivers end up in the open
ocean (the best point). Figure 2 shows a schematic of a stream flowing into a river. The star
represents the river and the circles represent the stream.

5839

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

Figure 2. Schematic of a stream flowing into a river.

In Figure 2, a stream flows into a river using a random distance:

),0(dCX  , 1C , (5)

where C is a numerical value between 1 and 2 (near to 2). The best numerical value is chosen as 2.
d represents the current distance between the stream and river current distance. X is a random
number between 0 and (dC).

The position update for streams and rivers is determined

1 ()k k k k
Stream Stream River StreamX X rand C X X      (6)

1 ()k k k
River River Sea RiverX X rand C X X      , (7)

where rand represents a random number uniformly distributed between 0 and 1. If the current
solution provided by a stream is better than that of its connecting river, the positions of the river and
stream are swapped. Such a swap can also occur for rivers and the ocean.

New raindrops form streams in different places to avoid being trapped in local optima. The
rainfall condition is as follows:

sr
k

vierOcean NkepsXX ,...,2,1,|| Re  , (8)

where eps is a small numerical constant.

The stream and river location update formulas are

()new
StreamX LB rand UB LB    (9)

()new
RiverX LB rand UB LB    , (10)

where LB represents the lower bound and UB represents the upper bound. The best newly
formed raindrop is treated as a river running into the ocean. The remaining raindrops form new
streams that flow into the rivers or ocean.

In Figure 3, the circles, stars, and diamonds represent streams, rivers, and the ocean,
respectively. In view to the above description, the WCA steps are as follows:

Step 1. Initialize parameters srpop NN , , and the number of maximum iterations .iterMax

Step 2. Randomly generate the initial population, composite initial rivers, streams, and ocean
using Eqs (1)–(3).

New

position

River

Stream

d

X

5840

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

Step 3. Calculate the intensity of streams flowing into the rivers and ocean using Eq (4).
Step 4. Determine the streams’ flow into the rivers, and the rivers’ flow into the ocean using Eqs

(6) and (7).
Step 5. According to the fitness function value, swap the positions of the streams, rivers, and

ocean.
Step 6. If the termination condition is not satisfied [using Eq (8)], the process of raining occurs

using Eqs (9) and (10); otherwise, go to Step 4.
Step 7. Stop the algorithm if the termination condition is satisfied; otherwise, go to Step 4.

Figure 3. Schematic of a water cycle system.

3. Complex-valued encoding WCA

3.1. Complex-valued encoding method

In the CWCA, the imaginary and real parts of the complex number are updated respectively for
each individual, which leads to inherent parallelism, improves the diversity of individuals, and
enhances its exploitation and exploration capabilities, and it does not fall into the local optimum.

3.1.1. Initialize the CWCA population

In the WCA, first, an interval popkk NkUBLB ,...,2,1],,[

is defined, and the popN

complex

modulus and phase angle are randomly generated using

0, , 1,2,
2

k k
k pop

LB UB
k N     

 (11)

 2 ,2 , 1,2, ,k popk N      . (12)

The M2 complex number is obtained as follows:

New Position

New Position

Sea

5841

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

 cos sin , 1,2,Rk Ik k k k popX iX i k N       (13)

Therefore, in the CWCA, the initial population represented by a matrix of streams of size popN N

is composed as follows:

1

2

(1,1) (1,1) (1,2) (1,2) (1,3), (1,3) (1,) (1,)
3

(2,1) (1,

1

2

3

, , ,

,

pop

R I R I R I R N I N

R I

Nsr

Nsr

Nsr

N

Sea

River

River
x x x x x x x xRiver

x x
Population

Stream

Stream

Stream

Stream







 
 
 
 
                 
 
  
 
 
 
 
 
 
 
 







1) (2,2) (2,2) 2,3 (2,) (2,)

(,1) (,1) (,2) (,2) (,3) (,3) (,) (,)

, ,

, , , ,
pop pop pop pop pop pop pop pop

R I R N I N

R N I N R N I N R N I N R N N I N N

x x x x x

x x x x x x x x

 
 
            
 
 
                



    



, (14)

where popN

denotes the complex modulus.

3.1.2. Updating method of the CWCA

In the CWCA, the new positions of rivers and streams are determined as follows: the real parts
are updated using

1
_ _ _ _()k k k k

R Stream R Stream R River R StreamX X rand C X X      (15)

1
_ _ _ _()k k k

R River R River R Sea R RiverX X rand C X X      , (16)

and the imaginary parts are updated using

1
_ _ _ _()k k k k

I Stream I Stream I River I StreamX X rand C X X      (17)

1
_ _ _ _()k k k

I River I River I Sea I RiverX X rand C X X     
. (18)

3.1.3. Fitness value

The fitness value is determined as follows: First, the complex value is converted into a real
value and then its fitness value is calculated. The real-valued fitness function is determined using the
complex modules and the sign is updated using the amplitude angle:

2 2 , 1,2, ,k Rk Ik popX X k N     (19)

sgn sin , 1,2, ,
2

Ik k k
k k pop

k

X UB LB
X k N


   

       
 , (20)

5842

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

where kX denotes the converted real variables.

3.2. Pseudocode of the CWCA

The pseudocode of the CWCA is as follows:

Pseudocode of the CWCA

1. BEGIN

2. Initial population parameters: ,, srpop NN and let 0,
2

k k
k

LB UB     ,  2 ,2k    .

3. Convert the complex value into real variables [Eqs (19) and (20)]. Using Eqs (14), (2) and (3),

randomly generate the initial population and form the initial rivers, streams, and ocean,

respectively.

4. Evaluate the intensity of flow for rivers [Eq (4)].

5. while (iterMaxiter )

6: Calculate the real part using Eqs (14) and (15).

7. Calculate the imaginary part using Eqs (17) and (18).

8. Convert the complex value into real variables using Eqs (19) and (20).

Swap the positions of the rivers, streams, and ocean with respect to their fitness values.

9. for each river do

10. if
k

sea RiverX X eps 

11. Rain began, and new streams and rivers are generated [Eqs (11–13)]

12. end if

13. end for

14. end while

15. Output the optimal solution

16. END

4. Experimental results and comparisons

The experimental setup was as follows: MATLAB R2012a, AMD Athlon™*4 640 processor,
and 2 GB memory. The CWCA was used to solve 12 benchmark functions [18,19] and four
engineering design problems. The performance of CWCA was compared with that of GSO [4],
artificial bee colony (ABC) [20], WCA [11], and ERWCA [14] using the standard deviation and
mean. The control parameters of the algorithms were set as follows:

● GSO: Parameters popN =50, 00 ;20,100 KG   linearly decreased to 1 and was set to

NP [4].
● ABC: Parameters popN = 50, .5DLimit  [20].

● WCA: Parameters popN =s 50, 8srN (number of rivers), with .2C [11].

5843

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

● ERWCA: Parameters popN = 50, 8srN , with .2C [14].

● CWCA: Parameters popN = 50, 8srN , with 2C ,].2,2[],
2

,0[ 


 k
kk

k

UBLB

For the simulation experiments, the mean outcomes of 25 independent runs for 0401 ff  are

listed in Table 2, the test results for functions 0805 ff  are listed in Table 3, and the test results for

functions 1209 ff  are listed in Table 4. The unrestrained benchmark functions are presented in

Table 1. The results perform 25 generations. “Best,” “Mean,” “Worst,” “Std,” and “ANOVA”
represent the optimal value, mean value, worst value, standard deviation, and analysis of variance,
respectively.

Table 1. Test functions for the benchmark.

Unstrained functions D Range Optimum Iter

2
01

1

D

i
i

f x



50 [–100, 100] 0 500

02
1 1

DD

i i
i i

f x x
 

   50 [–10, 10] 0 500

2

03
1 1

D i

j
i j

f x
 

 
  

 
 

50 [–100, 100] 0 500

 04 max ,1if x i D  
50 [–100, 100] 0 500

 2

05 0.5
D

if x   
50 [–100, 100] 0 100

2
06

1

10cos2 10
D

i i
i

f x x


    
50 [–5.12, 5.12] 0 100

2
07

1 1

1 1
20exp(0.2) exp(cos2) 20

D D

i i
i i

f x x e
D D


 

       50 [–32, 32] 0 100

2
08

1 1

1
cos 1

4000

DD
i

i
i i

x
f x

i 

    
 

 
50 [–600, 600] 0 100

2 4 6 2 4
09 1 1 1 2 2 2

1
4 2.1 4 4

3if x x x x x x x     
2 [–5, 5] –1.03162 100

2 2 2
10 1 2 1 1 2 1 2 2

2 2 2
1 2 1 1 2 1 2 2

1 (1) (19 14 3 14 6 3)

30 (2 3) (18 32 12 48 36 27)

f x x x x x x x x

x x x x x x x x

          
         

2 [–5, 5] 3 100

4 3
2

11
1 1

exp ()i ij j ij
i j

f c a x p
 

 
   

 
  3 [0, 1] –3.8628 100

4 6
2

12
1 1

exp ()i ij j ij
i j

f c a x p
 

 
   

 
  6 [0, 1] –3.3224 100

5844

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

Table 2. Test results for the benchmark functions 0401 ff  .

Functions Algorithms Results

 Best Mean Worst Std.

01(50)f D  GSO 0.207355483 0.643658692 1.381211712 0.305186488

ABC 0.02164161 0.266296242 1.0272904 0.308026332

WCA 27.27537295 60.81289202 125.1674416 24.49799538

ERWCA 3.65357E–16 2.23497E–13 1.2168E–12 2.98299E–13

CWCA 1.9495E–207 7.9173E–188 1.9695E–186 0

02 (50)f D  GSO 0.190471323 0.523626056 1.926347272 0.35741995

ABC 0.083559555 0.159897637 0.284741881 0.054138322

WCA 12.77983257 73286.99059 1666293.509 332935.3144

ERWCA 5.40146E–09 0.000105465 0.002580972 0.000515735

CWCA 3.0115E–108 4.8137E–101 5.05153E–100 1.29853E–100

03(50)f D  GSO 5614.494834 9162.038749 13171.78451 2191.964722

ABC 49854.83613 63062.58662 80673.90543 7903.826327

WCA 22036.10203 40160.29047 71405.33553 11778.719

ERWCA 1.48038E–14 3.58088451 31.08218217 7.333461723

CWCA 1.0586E–175 1.0027E–155 2.0513E–154 4.1614E–155

04(50)f D  GSO 7.482344366 11.02103367 15.22690812 1.805226231

ABC 68.25830295 80.27564106 87.87728499 4.794442375

WCA 48.67045644 66.08139632 81.93733451 7.664963523

ERWCA 2.43589E–10 5.55482E–08 2.43961E–07 5.29924E–08

CWCA 7.15741E–99 3.31169E–92 3.17129E–91 7.72028E–92

4.1. Experimental results for the benchmark functions

As shown in Table 2, the best values produced by the CWCA were more accurate than those

obtained using the proposed WCA and the other meta-heuristic optimization algorithms. For four

functions, the standard deviation of the CWCA was less than that of GSO, ABC, WCA, and ERWCA,

which implies that the CWCA had better stability in terms of optimizing high-dimensional unimodal

functions. Figures 4–7 show that the fitness functions converged to a curve. Hence, it can be

concluded that the proposed CWCA had a higher convergence rate and higher computation precision

5845

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

than meta-heuristic algorithms such as GSO, ABC, WCA, ERWCA, and CWCA. Figures 8–11 show

the analysis of ANOVA using a graph. The ERWCA and CWCA obtained stable optimal values.

Figure 9 show that most of the algorithms produced a stable value, except the WCA, when solving

function 02f .

Table 3. Test results for the benchmark functions 0805 ff  .

Functions Algorithms Results

 Best Mean Worst Std.

05(50)f D  GSO 566 1131.64 1950 342.5811193

ABC 13,559 27,666.12 44,007 7900.040123

WCA 8099 13,872.64 24,084 4340.085031

ERWCA 0 0.76 19 3.8

CWCA 0 0 0 0

06(50)f D  GSO 102.9655468 130.6203352 186.189766 18.88401764

ABC 219.8304665 322.5058351 377.4759954 40.06728218

WCA 299.2085116 440.4852994 533.5915321 59.06933452

ERWCA 0 1.989918114 49.74795285 9.949590571

CWCA 0 0 0 0

07 (50)f D  GSO 5.764211343 8.469214323 10.36140998 1.216196283

ABC 16.85525103 18.18606241 18.93602973 0.470872533

WCA 5.598512115 16.86361644 20.34625814 4.444925239

ERWCA 2.84823E–09 1.74804E–05 0.000429133 8.57614E–05

CWCA 8.88178E–16 8.88178E–16 8.88178E–16 0

08(50)f D  GSO 1.11022E–16 0.052857507 0.073410582 0.033637865

ABC 3.33067E–16 0.003443108 0.073410582 0.014668708

WCA 6.24611E–13 0.063455934 0.195437086 0.047329549

ERWCA 0 5.41167E–14 8.64864E–13 1.70589E–13

CWCA 0 0 0 0

It can be noted from Table 3 that the CWCA located the optimal solutions of the functions

0605 , ff and 08f with a standard deviation of 0. For function 07f , the precision and mean value

were higher than those for the other meta-heuristic optimization algorithms. Building on the results
shown in Figures 12–15, it can be concluded that the CWCA converged faster and its precision was
higher than that of the other meta-heuristic optimization algorithms. Figures 16–19 show the
ANOVA graphical analysis results. The results demonstrated that both the ERWCA and CWCA had
better stability than the other meta-heuristic optimization algorithms.

5846

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

Table 4. Test results for the benchmark functions 1209 ff  .

Functions Algorithms Results

 Best Mean Worst Std.

09(2)f D  GSO –1.031628453 –1.031628453 –1.031628453 4.2276E–16

ABC –1.031628453 –1.031628453 –1.031628453 4.03633E–12

WCA –1.031628453 –1.031628453 –1.031628453 1.16441E–10

ERWCA –1.031628453 –1.031628453 –1.031628453 6.06115E–14

CWCA –1.031628453 –1.031628453 –1.031628453 8.87086E–11

10(2)f D  GSO 3 3 3 4.39868E–13

ABC 3 6.829312618 34.11721073 9.461128153

WCA 3 3.000000007 3.000000081 1.62655E–08

ERWCA 3 3 3 7.70669E–12

CWCA 3 3.000000005 3.000000093 1.8483E–08

11(3)f D  GSO –3.862782148 –3.862781304 –3.86277018 2.56717E–06

ABC –3.862782148 –3.831845002 –3.0897641 0.154600208

WCA –3.862782148 –3.862782122 –3.862781721 8.52233E–08

ERWCA –3.862782148 –3.862782148 –3.862782148 1.67437E–11

CWCA –3.862782148 –3.862782148 –3.862782147 7.21169E–11

12(6)f D  GSO –3.322368009 –3.274490605 –3.199245153 0.059836344

ABC –3.322367256 –3.322206338 –3.319008561 0.000668069

WCA –3.322367865 –3.283354564 –3.186190502 0.058086807

ERWCA –3.322368011 –3.312831524 –3.203161909 0.033006674

CWCA –3.322368011 –3.322367989 –3.322367817 4.5094E–08

0 100 200 300 400 500
0

5

10

15
x 10

4

Iteration

av
er

ag
e

fit
ne

ss
 v

al
ue

GSO

ABC

WCA
ERWCA

CWCA

0 100 200 300 400 500
10

-150

10
-100

10
-50

10
0

10
50

Iteration

av
er

ag
e

fit
ne

ss
 v

al
ue

GSO

ABC

WCA
ERWCA

CWCA

Figure 4. 01f function evolution curve. Figure 5. 02f function evolution curve.

5847

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

0 100 200 300 400 500
0

1

2

3

4

5
x 10

5

Iteration

av
er

ag
e

fit
ne

ss
 v

al
ue

GSO

ABC

WCA
ERWCA

CWCA

0 100 200 300 400 500
0

20

40

60

80

100

Iteration

av
er

ag
e

fit
ne

ss
 v

al
ue

GSO

ABC

WCA
ERWCA

CWCA

Figure 6. 03f function evolution curve. Figure 7. 04f function evolution curve.

GSO ABC WCA ERWCA CWCA

0

20

40

60

80

100

120

Algorithms

F
itn

es
s

va
lu

e

GSO ABC WCA ERWCA CWCA

0

2

4

6

8

10

12

14

16

x 10
5

Algorithms

F
itn

es
s

va
lu

e

Figure 8. ANOVA for function 01f . Figure 9. ANOVA for function 02f .

GSO ABC WCA ERWCA CWCA

0

1

2

3

4

5

6

7

8

x 10
4

Algorithms

F
itn

es
s

va
lu

e

GSO ABC WCA ERWCA CWCA

0

10

20

30

40

50

60

70

80

90

Algorithms

F
itn

es
s

va
lu

e

Figure 10. ANOVA for function 03f . Figure 11. ANOVA for function 04f .

5848

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

0 20 40 60 80 100
0

2

4

6

8

10

12
x 10

4

Iteration

av
er

ag
e

fit
ne

ss
 v

al
ue

GSO

ABC

WCA
ERWCA

CWCA

Figure 12. Fitness function evolution curve for 05f .

0 20 40 60 80 100
0

200

400

600

800

1000

Iteration

av
er

ag
e

fit
ne

ss
 v

al
ue

GSO
ABC

WCA

ERWCA
CWCA

Figure 13. Fitness function evolution curve for 06f .

0 20 40 60 80 100
0

5

10

15

20

25

Iteration

av
er

ag
e

fit
ne

ss
 v

al
ue

GSO

ABC

WCA
ERWCA

CWCA

Figure 14. Fitness function evolution curve for 07f .

5849

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

0 20 40 60 80 100
0

5

10

15

20

Iteration

av
er

ag
e

fit
ne

ss
 v

al
ue

GSO

ABC

WCA
ERWCA

CWCA

5 10 15

0
0.5

1
1.5

Figure 15. Fitness function evolution curve for 08f .

GSO ABC WCA ERWCA CWCA

0

1

2

3

4

x 10
4

Algorithms

F
itn

es
s

va
lu

e

GSO ABC WCA ERWCA CWCA

0

100

200

300

400

500

Algorithms

F
itn

es
s

va
lu

e

Figure 16. ANOVA for function 05f . Figure 17. ANOVA for function 06f .

GSO ABC WCA ERWCA CWCA

0

5

10

15

20

Algorithms

F
itn

es
s

va
lu

e

GSO ABC WCA ERWCA CWCA

0

500

1000

1500

2000

2500

3000

3500

Algorithms

F
itn

es
s

va
lu

e

Figure 18. ANOVA for function 07f . Figure 19. ANOVA for function 08f .

5850

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

0 20 40 60 80 100

-1

-0.5

0

0.5

Iteration

av
er

ag
e

fit
ne

ss
 v

al
ue

GSO
ABC

WCA

ERWCA
CWCA

2 4 6 8
-1.04
-1.02

-1
-0.98
-0.96
-0.94

Figure 20. Fitness function evolution curve for 09f .

0 20 40 60 80 100
0

20

40

60

80

Iteration

av
er

ag
e

fit
ne

ss
 v

al
ue

GSO

ABC

WCA
ERWCA

CWCA

10 20

5

10

15

Figure 21. Fitness function evolution curve for 10f .

0 20 40 60 80 100
-4

-3.5

-3

-2.5

-2

Iteration

av
er

ag
e

fit
ne

ss
 v

al
ue

GSO

ABC

WCA
ERWCA

CWCA

5 10 15

-3.9

-3.8

-3.7

Figure 22. Fitness function evolution curve for 11f .

5851

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

0 20 40 60 80 100
-3.5

-3

-2.5

-2

-1.5

-1

Iteration

av
er

ag
e

fit
ne

ss
 v

al
ue

GSO

ABC

WCA
ERWCA

CWCA

30 40 50

-3.2

-3

-2.8

Figure 23. Fitness function evolution curve for 12f .

GSO ABC WCA ERWCA CWCA

-1.0316

-1.0316

-1.0316

-1.0316

-1.0316

-1.0316

Algorithms

F
itn

es
s

vl
au

e

GSO ABC WCA ERWCA CWCA

5

10

15

20

25

30

35

Algorithms

F
itn

es
s

va
lu

e

Figure 24. ANOVA for function 09f . Figure 25. ANOVA for function 10f .

GSO ABC WCA ERWCA CWCA
-3.9

-3.8

-3.7

-3.6

-3.5

-3.4

-3.3

-3.2

-3.1

Algorithms

F
itn

es
s

va
lu

e

GSO ABC WCA ERWCA CWCA

-3.35

-3.3

-3.25

-3.2

Algorithms

F
itn

es
s

va
lu

e

Figure 26. ANOVA for function 11f . Figure 27. ANOVA for function 12f .

5852

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

As shown in Table 4, for 09f , all algorithms produced optimal solutions, and the solutions of

GSO were the most stable. For functions 10f and 11f , the solutions for most algorithms achieved the

same order of magnitude, but the standard deviation of the CWCA was the best. For function 12f ,

both the ERWCA and CWCA obtained optimal solutions, but the CWCA had the best stability.
Figures 20–27 shows that the CWCA had excellent performance when solving multimodal
low-dimensional problems.

4.2. Engineering design problem

The mathematical model for general constrained optimization is defined [21] as

();

() 0, 1, , ,

() 0, 1, , ,

, 1, , ,

j

i

i i i

Minimize f x

subject to g x j q

h x i q m

l x u i D

 

  

  







 (21)

where),...,,(21 Dxxxx  represents the D -dimensional decision variables, ）xf (denotes the

objective function, 0)(xg j represents q inequality constraints, and)(xhi represents qm 
equality constraints. The functions jgf ,

and ih are nonlinear or linear functions. ii ul , denote

the lower and upper bounds, respectively.
Generally, when practical problems are solved, it is common to convert equality constraints into

inequality constraints:

() 0, 1, ,ih x i q m     , (22)

where  denotes the allowed tolerance, which is set to a small value. The best numerical value for
 is 0.001. According to the feasibility-based rules, each individual’s constraint violation is

1 2() max(,)viol viol violf x f f (23)

1 max(()) 1, ,viol jf g x j q  
 (24)

2 max(()) 1, ,viol if h x i q m    
. (25)

Generally, a feasibility-based rule is used [22]:
Rule 1: Any feasible solution is preferred over any infeasible solution.
Rule 2: The feasible solution that has a better objective function value is preferred, if choosing

between two feasible solutions.
Rule 3: The infeasible solution that has smaller constraint violations is preferred, if choosing

between two infeasible solutions.

4.2.1. Pressure vessel design problem

A cylindrical pressure vessel with hemispherical heads capped at both ends is shown in Figure

28, where)(1xTs denotes the shell thickness,)(2xTh denotes the head thickness,)(3xR denotes

5853

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

the inner radius, and 4()L x denotes the cylindrical vessel length. The overall cost, including a

combination of material cost, single 060 welding cost, and forming cost, is minimized.

The mathematical model for the pressure vessel design problem is

2 2
1 3 4 2 3 1 4

1 1 3

2 2 3

2 3
3 3 4 3

4 4

1 2

3 4

() 0.6224 1.7781 3.1661 19.84

() 0.0193 0

() 0.00954 0

4
() 1296000 0

3
() 240 0

0 , 100

10 , 200

Minimize f x x x x x x xx x x

Subject to g x x x

g x x x

g x x x x

g x x

x x

x x

 

   
   

   

    

  
 
 

 (26)

Figure 28. Schematic of the pressure vessel design problem [23].

Table 5. Comparison of the statistical results for the pressure vessel design problem.

Algorithms Optimal values for variables Optimum cost

sT hT R L

ES [27] 0.8125 0.4375 42.098087 176.640518 6059.7456

GSA [28] 1.1250 0.6250 55.9886598 84.4542025 8538.8359

PSO [29] 0.8125 0.4375 42.091266 176.746500 6061.0777

GA [21] 0.8125 0.4375 40.323900 200.000000 6288.7445

GA [22] 0.8125 0.4375 42.097398 176.654050 6059.9463

GA [23] 0.9375 0.5000 48.329000 112.679000 6410.3811

DE [30] 0.8125 0.4375 42.098411 176.637690 6059.7340

ACO [31] 0.8125 0.4375 42.103624 176.572656 6059.0888

MVO [23] 0.8125 0.4375 42.0907382 176.738690 6060.8066

WCA [11] 1.7958 0.3933 41.2310 187.6901 5916.0914

CWCA 0.7782 0.3846 40.3196 200.0000 5885.3327

5854

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

The results obtained using the CWCA to solve the pressure vessel design problem is shown in
Table 5. The statistical outcomes were compared with those of the meta-heuristic algorithms ES [27],
GSA [28], PSO [29], GA [24–26], DE [30], MVO [23], WCA [11], and ACO [31]. As shown in Table
5, the proposed CWCA outperformed all the other optimization algorithms.

4.2.2. Cantilever beam design problem

Cantilever beam design optimization aims to minimize the weight of a cantilever beam, which
is composed of hollow square blocks. In this study, it involved five squares: the first block was fixed,
and the fifth block had the burden of a vertical load. In Figure 29, five parameters define the shape of
the cross section of the cubes.

The mathematical model for the cantilever beam design optimization is

1 2 3 4 5

3 3 3 3 3
1 2 3 4 5

1 2 3 4

() 0.06224()

61 27 19 7 1
() 1 0

0.01 , , , 100

Minimize f x x x x x x

Subject to g x
x x x x x

x x x x

    

      

 

 (27)

Figure 29. Schematic of the cantilever beam design problem [23].

Table 6. Statistical comparison results for the cantilever beam design problem.

Algorithms Optimal variable values Optimum

weight 1x 2x 3x 4x 5x

CS [32] 6.0089 5.3049 4.5023 3.5077 2.1504 1.3340

SOS [33] 6.01878 5.3034 4.4958 3.4989 2.1556 1.3340

MMA [34] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

MVO [23] 6.0239 5.3060 4.49501 3.4960 2.1527 1.3399

WCA [11] 5.9799 4.8821 4.4659 3.4733 2.1380 1.30325382

CWCA 5.9783 4.8762 4.4663 3.4791 2.1391 1.30325143

5855

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

In the same way, the meta-heuristic optimization algorithms MVO [23], CS [32], SOS [33],
MMA [34], WCA [11], and CWCA were used. Table 6 shows that the results of the CWCA for the
cantilever beam design problem were consistent with those of the other engineering optimization
problems. Both the WCA and CWCA outperformed all the other optimization algorithms.

4.2.3. Three-bar truss design problem

The design problem for a three-bar planar truss structure is shown in Figure 30. The volume of a
statically loaded three-bar truss was minimized, subject to stress () constraints. The objective was

to find the best cross-sectional areas (21, AA).

The mathematical model for the three-bar planar truss structure design problem is

1 2

1 2
1 2

1 1 2

2
2 2

1 1

3

2 1

1 2

2 2
1 1 2 2 1 3

() (2 2)

2
() 0

2 2

() 0
2 2

1
() 0

2

0 , 1

100 , 2 / , / , ,

Minimize f x x x l

x x
Subject to g x P

x x x

x
g x P

x x x

g x P
x x

x x

l cm P kn cm kn cm x A x A A A









  


  



  


  


 

     

(28)

Table 7. Comparison of the statistical results for the three-bar truss design problem.

Algorithms Optimal values for variables Optimal weight

1A 2A

DEDS [34] 0.78867513 0.40824828 263.8958434

PSO-DE[35] 0.7886751 0.4082482 263.8958433

MBA [36] 0.7885650 0.4085597 263.8958522

CS [37] 0.78867 0.40902 263.9716

MVO [23] 0.78860276 0.40845307 263.8958499

WCA [11] 0.7888 0.4080 263.89585025

CWCA 0.7887 0.4082 263.89584340

For the three-bar truss design problem, the metaheuristic optimization algorithms MVO [23],
DEDS [34], PSO-DE [35], MBA [36], CS [37], WCA [11], and CWCA were used. The proposed
CWCA was compared with the other optimization algorithms (see Table 7). The results obtained
using the CWCA were very close to those obtained using DEDS.

5856

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

Figure 30. Schematic of the three-bar truss design problem [23].

4.2.4. Welded beam design problem

Figure 31 shows a beam made of low-carbon steel and welded to a rigid support. The welded
beam was designed to achieve the minimum cost, subject to constraints on shear stress)( , bending

stress)( in the beam, buckling load on the bar)(bP , end deflection of the beam)( , and side

constraints. There were four design variables:)(),(),(321 xtxlxh and)(4xb .

Figure 31. Schematic of the welded beam design problem [23].

The objective function is expressed as

 
 

2
1 2 3 4 2

1 max

2 max

3 1 4

2
4 1 3 4 2

5 1

6 max

7

1 4 1 2

() 1.10471 0.04811 (14)

() () 0

() () 0

() 0

() 0.10471 0.04811 (14) 5 0

() 0.125 0

() 0

() 0

0.1 , 2
c

Minimize f x x x x x x

Subject to g x x

g x x

g x x x

g x x x x x

g x x

g x x

g x P P x

x x x h x

 
 

 

  
  

  
  

    
  

  

  

  

2 3 3 40.1 , 10

l

x x x t x b


   

 (29)

5857

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

where

 

   

2 22

1 2

22
2 2 1 3

22
2 1 3

1 2

2 6
3 4

3
3

2 3 2
4 3 3 4

() 2 ()
2 2

, ,
2 4 2

2 2
12 2

4.013
6 4 36, , () 1

2 4

6000 , 1

c

x P MR
x

R Jx x

x x x x
M P L R

x x x
J x x

x x
E

PL PL x E
x x P x

x x Ex x L L G

P lb L

      

 

         

         
   

        
     

 
     

 
  6 6

max max max

4 , 30 10 , 12 10

13600 , 30000 , 0.25

in E psi G psi

psi psi in  
   

  

 (30)

Table 8. Comparison of the statistical results for the welded beam design problem.

Algorithms Optimal values for variables Optimal

cost h l t b

GSA [28] 0.1821 3.856979 10.0000 0.202376 1.87995

CPSO [38] 0.2023 3.544214 9.048120 0.205723 1.72802

GA [39] 0.2489 6.1730 8.1789 0.2533 2.4331

HS [40] 0.2442 6.2231 8.2915 0.2443 2.3807

MVO [23] 0.2054 3.473193 9.044502 0.205695 1.72645

WCA [11] 0.2058 3.4697 9.0353 0.2058 1.7252

CWCA 0.2057 3.4705 9.0366 0.2057 1.7248

In the same way, the meta-heuristic optimization algorithms MVO [23], GSA [28], CPSO [38],
GA [39], and HS [40] were applied. The proposed CWCA was compared with the other
meta-heuristic algorithms (see Table 8). The results showed that the proposed CWCA achieved the
minimum cost.

5. Conclusions and future directions

In recent years, significant attention has been paid to the design of meta-heuristic optimization
algorithms to solve optimization problems. The aims of this study were to improve the exploration
and exploitation capabilities of the WCA algorithm, accelerate its convergence speed, and enhance
its calculation accuracy. A novel CWCA algorithm was proposed, and to evaluate the performance of
CWCA optimization, 12 benchmark functions and four engineering examples were considered. The
test results indicated that the CWCA had higher precision and convergence speed than the WCA and
other popular meta-heuristic optimization algorithms. Further improvements to versions of the WCA
equipped with the latest, efficient strategies should be considered in future research. Additionally, the

5858

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

CWCA is not well used in some engineering majors, such as mechanical engineering. Despite the
great potential of this principal field, it is necessary to use and use more meta-heuristic optimization
algorithms, such as CWCA, to solve large-scale optimization problems.

Acknowledgments

This work was supported by the National Science Foundation of China under Grant No.
62066005 and the Project of Guangxi Natural Science Foundation under Grant No.
2018GXNSFAA138146. We thank Maxine Garcia, Ph.D, from Liwen Bianji (Edanz)
(www.liwenbianji.cn/) for editing the English text of a draft of this manuscript.

Conflict of interest

The authors declare no conflict of interest.

References

1. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi-objective genetic algorithm:
NSGA-II, IEEE Trans. Evol. Comput., 6 (2002), 182–197.

2. J. Kennedy, Particle swarm optimization, in Encyclopedia of Machine Learning, Springer US,
(2010), 760–766.

3. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing, Science, 220
(1983), 671–680.

4. K. N. Krishnanand, D. Ghose, Glowworm swarm optimisation: A new method for optimising
multi-modal functions, Int. J. Comput. Intell. Stud., 1 (2009), 93–119.

5. B. Alatas, Chaotic harmony search algorithms, Appl. Math. Comput., 216 (2010), 2687–2699.
6. K. M. Passino, Biomimicry of bacterial foraging for distributed optimization and control, IEEE

Control Syst. Mag., 22 (2002), 52–67.
7. G. G. Wang, S. Deb, L. D. S. Coelho, Earthworm optimization algorithm: a bio-inspired

metaheuristic algorithm for global optimization problems, J. Bio-Inspired Comput., 12 (2018),
1–22.

8. X. S. Yang, A new metaheuristic bat-inspired algorithm, in Nature inspired cooperative
strategies for optimization, Springer Berlin Heidelberg, (2010), 65–74.

9. G. G. Wang, S. Deb, X. Z. Gao, L. D. S. Coelho, A new metaheuristic optimization algorithm
motivated by elephant herding behavior, J. Bio-Inspired Comput., 8 (2017), 394–409.

10. G. Wang, L. Guo, H. Wang, H. Duan, L. Liu, J. Li, Incorporating mutation scheme into krill herd
algorithm for global numerical optimization, Neural Comput. Appl., 24 (2014), 853–871.

11. H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, Water cycle algorithm–A novel
metaheuristic optimization method for solving constrained engineering optimization problems,
Comput. Struct., 110 (2012), 151–166.

12. A. Sadollah, H. Eskandar, A. Bahreininejad, J. H. Kim, Water cycle algorithm for solving
multi-objective optimization problems, Soft Comput., 19 (2015), 2587–2603.

13. C. Zhang, G. W. Liao, L. Li, Optimizations of space truss structures using WCA algorithm, Prog.
Steel Build. Struct., 1 (2014), 35–38.

5859

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

14. A. Sadollah, H. Eskandar, A. Bahreininejad, J. H. Kim, Water cycle algorithm with evaporation
rate for solving constrained and unconstrained optimization problems, Appl. Soft Comput., 30
(2015), 58–71.

15. L. Li, Y. Zhou, A novel complex-valued bat algorithm, Neural Comput. Appl., 25 (2014),
1369–1381.

16. D. B. Chen, H. J. Li, Z. Li, Particle swarm optimization based on complex-valued encoding and
application in function optimization, Comput. Appl., 45 (2009), 59–61.

17. Z. Zheng, Y. Zhang, Y. Qiu, Genetic algorithm based on complex-valued encoding, Control
Theory Appl., 20 (2003), 97–100.

18. X. S. Yang, Appendix A: test problems in optimization, Eng. Optim., 2010 (2010), 261–266.
19. K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. P. Chen, C. M. Chen, et al., Benchmark

functions for the CEC’2008 special session and competition on large scale global optimization.
Nat. Inspired Comput. Appl. Lab., 2007 (2007), 153–177.

20. D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function
optimization: artificial bee colony (ABC) algorithm, J. Global Optim., 39 (2007), 459–471.

21. C. A. C. Coello, Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: a survey of the state of the art, Comput. Methods Appl. Mech. Eng.,
191 (2002), 1245–1287.

22. E. Mezura-Montes, C. A. C. Coello, An empirical study about the usefulness of evolution
strategies to solve constrained optimization problems, Int. J. Gen. Syst., 37 (2008), 443–473.

23. S. Mirjalili, S. M. Mirjalili, A. Hatamlou, Multi-Verse Optimizer: a nature-inspired algorithm for
global optimization, Neural Comput. Appl., 27 (2016), 495–513.

24. C. A. C. Coello, Use of a self-adaptive penalty approach for engineering optimization problems,
Comput. Ind., 41 (2000), 113–127.

25. C. A. C. Coello, Montes, E. M. Constraint-handling in genetic algorithms through the use of
dominance-based tournament selection, Adv. Eng. Inf., 16 (2002),193–203.

26. K. Deb, Geneas: A robust optimal design technique for mechanical component design, in
Evolutionary algorithms in engineering applications, Springer Berlin Heidelberg, (1997),
497–514.

27. E. Mezura-Montes, C. A. C. Coello, An empirical study about the usefulness of evolution
strategies to solve constrained optimization problems, Int. J. Gen. Syst., 37 (2008), 443–473.

28. E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: A gravitational search algorithm, Inf. Sci.,
179 (2009), 2232–2248.

29. Q. He, L. Wang, An effective co-evolutionary particle swarm optimization for constrained
engineering design problems, Eng. Appl. Artif. Intell., 20 (2007), 89–99.

30. L. J. Li, Z. B. Huang, F. Liu, Q. H. Wu, A heuristic particle swarm optimizer for optimization of
pin connected structures, Comput. Struct., 85 (2007), 340–349.

31. A. Kaveh, S. Talatahari, An improved ant colony optimization for constrained engineering
design problems, Eng. Comput., 27 (2010), 155–182.

32. A. H. Gandomi, X. S. Yang, A. H. Alavi, Cuckoo search algorithm: A metaheuristic approach to
solve structural optimization problems, Eng. Comput., 29 (2013), 17–35.

33. M. Y. Cheng, D. Prayogo, Symbiotic Organisms Search: A new metaheuristic optimization
algorithm, Comput. Struct., 139 (2014), 98–112.

5860

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

34. M. Zhang, W. Luo, X. Wang, Differential evolution with dynamic stochastic selection for
constrained optimization, Inf. Sci., 178 (2008), 3043–3074.

35. H. Liu, Z. Cai, Y. Wang, Hybridizing particle swarm optimization with differential evolution for
constrained numerical and engineering optimization, Appl. Soft Comput., 10 (2010), 629–640.

36. A. Sadollah, A. Bahreininejad, H. Eskandar, M. Hamdi, Mine blast algorithm: A new population
based algorithm for solving constrained engineering optimization problems, Appl. Soft Comput.,
13 (2013), 2592–2612.

37. A. H. Gandomi, X. S. Yang, A. H. Alavi, Cuckoo search algorithm: A metaheuristic approach
tosolve structural optimization problems, Eng. Comput., 29 (2013), 17–35.

38. R. Krohling, L. dos Santos Coelho, Coevolutionary particle swarm optimization using Gaussian
distribution for solving constrained optimization problems, IEEE Trans. Syst. Man Cyber. B
Cyber., 36 (2006), 1407–1416.

39. K. Deb, An efficient constraint handling method for genetic algorithms, Comput. Methods Appl.
Mech. Eng., 186 (2000), 311–338.

40. K. S. Lee, Z. W. Geem, A new meta-heuristic algorithm for continuous engineering optimization:
harmony search theory and practice, Comput. Methods Appl. Mech. Eng., 194 (2005),
3902–3933.

41. N. Mohammad, S. Ali, H. C. Young, H. K. Joong, A comprehensive review on water cycle
algorithm and its applications, Neural Comput. Appl., 32 (2020), 7433–17488.

42. A. Sadollah, H. Eskandar, H. M. Lee, D. G. Yoo, J. H. Kim, Water cycle algorithm: A detailed
standard code, Softwarex, 5 (2016), 37–43.

43. E. Osaba, J. Del Ser, A. Sadollah, M. N. Bilbao, D. Camacho, A discrete water cycle algorithm
for solving the symmetric and asymmetric traveling salesman problem, Appl. Soft Comput., 71
(2018), 277–290.

44. M. Seyed, P. Abedi, A. Alireza, S. Ali, H. Joong, Gradient-based water cycle algorithm with
evaporation rate applied to chaos suppression, Appl. Soft Comput., 53 (2017), 420–440.

45. G. G. Wang, Y. Tan, Improving metaheuristic algorithms with information feedback models, IEEE
Trans. Cybern., 49 (2019), 542–555.

46. G. G. Wang, L. Guo, A. H. Gandomi, G. S. Hao, H. Wang, Chaotic krill herd algorithm, Inf. Sci.,
274 (2014), 17–34.

47. W. Deng, J. Xu, X. Z. Gao, H. Zhao, An enhanced MSIQDE algorithm with novel multiple
strategies for global optimization problems, IEEE Trans. Syst. Man Cybern. Syst., 2020 (2020).

48. Y. Jiang, Q. Luo, Y. Wei, L. Abualigah, An efficient binary Gradient-based optimizer for feature
selection, Math. Biosci. Eng., 18 (2021), 3813–3854.

Appendix

CWCA MATLAB source code
%---
function [Xmin, Fmin] = CWCA(objective_function, LB, UB, nvars, Fnum, Nmax)

nvar = nvars; % Dimension
N = 50; % Population size
Nsr = 8; % Number of rivers
C = 2;

5861

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

Nwat = N-Nsr; % Raindrops
Fmin = inf;

%------------- Initialization (In module and Angle mode)----------------------------------
zigma_NCn = inf*ones(1, Nwat + 1);

for i=1: N
x_age(i, :) = 4*pi*(rand(1, nvar)-0.5); % Argument
x_mod(i, :) = 0.5*(UB - LB).*rand(1, nvar); % Module
x_R(i,:) = x_mod(i, :).*cos(x_age(i,:));
x_I(i, :) = x_mod(i,:).*sin(x_age(i,:));
sq_x(i, :) = sqrt(x_R(i, :).^2 + x_I(i, :).^2);
x(i, :) = sign(sin(x_I(i, :)/sq_x(i, :)))*sq_x(i, :) + 0.5*(UB + LB);

end
LB_bound = repmat(LB, N, 1);
UB_bound = repmat(UB, N, 1);
x =max(x, LB_bound);
x = min(x, UB_bound);

for i =1 : N
xx(i, :) = objective_function(x(i, :), Fnum);

end
[~, index1] = sort(xx, 'ascend');
Sr = x(index1(1: Nsr+1),:);
sr_R=x_R(index1(1: Nsr+1), :);
sr_I = x_I(index1(1: Nsr+1), :);
SR = sr;
SR_R = sr_R;
SR_I = sr_I;

%--
for i = 1:Nsr+1

cost(i) = objective_function(SR(i,:), Fnum); % Calculate fitness values
end

cs = sort(cost, 'ascend')';
cs = cs(1: Nsr+1);
CN = cs-max(cs);
Pn = abs(CN/(sum(CN)));
Pn(Nsr+1) = [];
NCn = round(Nwat*Pn);

while (sum(NCn) ~= Nwat)
i = Nsr;

while sum(NCn) > Nwat
if NCn(i) <= 1

i = i-1;
end

NCn(i) = NCn(i)-1;
end

5862

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

i = 1;
while sum(NCn) < Nwat

NCn(i) = NCn(i)+1;
end
end

NCn = sort(NCn, 'descend');
Sr = sr(1: Nsr, :);
sr_R = sr_R(1: Nsr, :);
sr_I=sr_I(1: Nsr, :);
zigma_NCn = [0];

for i = 1:Nsr
zigma_NCn = [zigma_NCn sum(NCn(1: i))];

end
end
%------------- Initialization ----------------------------------
for j = 1:Nwat

water_age(j, :) = 4*pi*(rand(1, nvar)-0.5);
water_mod(j, :) = 0.5*(UB - LB).*rand(1, nvar);
water_R(j, :) = water_mod(j, :).*cos(water_age(j, :));
water_I(j, :) = water_mod(j, :).*sin(water_age(j,:));
sq_water = sqrt(water_R(j, :).^2 + water_I(j, :).^2);
water(j, :) = sign(sin(water_I(j, :)/sq_water))*sq_water + 0.5*(UB + LB);

end
WATER_R = water_R;
WATER_I = water_I;
WATER = water;

%--
Sea = sr(1,:);
sea_R = sr_R(1, :);
sea_I = sr_I(1, :);

%--------------- The main loop ------------------------------
Locate = 1;

for ii = 1:Nmax % Maximum number of iterations
%--------------- The stream flows to the river --------------------------

stp = 1;
for i = 1: Nsr_k

for j=(zigma_NCn(i) + 1): zigma_NCn(i+1)
%----------- Real component update --------

new_WATER_R= WATER_R(j, :) + C.* rand(1, nvar).*(sr_R(i, :) - WATER_R(j, :));
%----------- Imaginary part update --------

new_WATER_I= WATER_I(j, :) + C.* rand(1,nvar).*(sr_I(i, :) - WATER_I(j, :));
sq_new_WATER = sqrt(new_WATER_R.^2 + new_WATER_I.^2);
new_WATER =

sign(sin(new_WATER_I/sq_new_WATER))*sq_new_WATER+0.5*(UB+LB);

5863

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

if objective_function(WATER(j, :),Fnum) > objective_function(new_WATER, Fnum)
WATER(j, :) = new_WATER;
WATER_R(j, :) = new_WATER_R;
WATER_I(j, :) = new_WATER_I;

end
end
end
%------------Rivers flow to the sea --------------------------
for i = 1:Nsr_k

new_sr = [];
%----------- Real component update --------

new_sr_R = sr_R(i, :) + C.*rand(1,nvar).*(sea_R - sr_R(i,:));
%----------- Imaginary part update --------

new_sr_I = sr_I(i, :) + C.*rand(1, nvar).*(sea_I - sr_I(i, :));
sq_new_sr = sqrt(new_sr_R.^2 + new_sr_I.^2);
new_sr = sign(sin(new_sr_I/sq_new_sr))*sq_new_sr + 0.5*(UB + LB);

if objective_function(sr(i, :), Fnum) > objective_function(new_sr, Fnum)
sr_R(i, :) = new_sr_R;
sr_I(i, :) = new_sr_I;
sr(i, :) = new_sr;

end
end
%------------ Replacement of rivers and streams --------------------

new_sr = [];
for i = 1:Nsr_k

for j=(zigma_NCn(i)+1):zigma_NCn(i+1)
if objective_function(sr(i,:), Fnum)>objective_function(WATER(j,:),Fnum)

temp = WATER(j, :);
temp_R = WATER_R(j, :);
temp_I = WATER_I(j, :);
WATER(j, :) = sr(i, :);
WATER_R(j, :) = sr_R(i, :);
WATER_I(j,:) = sr_I(i,:);
sr(i, :) = temp;
sr_R(i, :) = temp_R;
sr_I(i, :) = temp_I;
end

end
end
%------------- River and sea location update ----------------------
for i = 1:Nsr_k

if objective_function(sea, Fnum)>objective_function(sr(i, :), Fnum)
temp = sr(i, :);
temp_R = sr_R(i, :);

5864

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5836–5864.

temp_I = sr_I(i, :);
sr(i, :) = sea;
sr_R(i, :) = sea_R;
sr_I(i, :) = sea_I;
sea = temp;
sea_R = temp_R;
sea_I = temp_I;

end
end

Xmin = sea;
Fmin = objective_function(sea,Fnum);
f(ii) = Fmin;

end
end
%----------------------End--

©2021 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0)

