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Abstract: Since the meta-heuristic water cycle algorithm (WCA) was presented, it has been used 
extensively in scientific computation and engineering optimization. The aims of this study are to 
improve the exploration and exploitation capabilities of the WCA algorithm, accelerate its 
convergence speed, and enhance its calculation accuracy. In this paper, a novel complex-valued 
encoding WCA (CWCA) is proposed. The positions of rivers and streams are divided into two parts, 
that is, the real part and imaginary part, and modified formulas for the new positions of rivers and 
streams are proposed. To evaluate the performance of the CWCA, 12 benchmark functions and four 
engineering examples were considered. The experimental results indicated that the CWCA had 
higher precision and convergence speed than the real-valued WCA and other well-known 
meta-heuristic algorithms. 
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1. Introduction 

Generally, the objective of optimization is to find the optimal feasible response, considering the 
constraints of a problem. As a modern optimization method, meta-heuristic algorithms have been 
proposed by researchers in recent years, for example, the genetic algorithm (GA) [1], particle swarm 
optimization (PSO) [2], simulated annealing (SA) [3], glowworm swarm optimization (GSO) [4], 
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harmony search (HS) [5], bacterial foraging optimization [6], earthworm optimization [7], bat 
algorithm (BA) [8], elephant herding behavior algorithm [9], krill herd algorithm [10], water cycle 
algorithm (WCA) [10], and various improved versions of the meta-heuristic optimization algorithm 
[45–48]. To date, hundreds of meta-heuristics have been proposed and used successfully to solve 
complex optimization problems. 

In 2012, Eskandar et al. presented the WCA and used it to solve real-valued optimization issues. 
The real-valued WCA is a meta-heuristic optimization algorithm inspired by the water cycle process 
in nature. It considers how rivers and streams flow into the sea. A simplified water cycle system 
diagram is illustrated in Figure 1. In the WCA, the initial population comprises raindrops; the best 
raindrop represents the ocean. Many good raindrops represent a river, and the remaining raindrops 
represent streams that flow to the ocean and rivers. The rivers flow to the ocean, which is the lowest 
terrain location. 

 

Figure 1. Simplified water cycle process. 

Since the WCA was proposed, it has been used extensively in scientific computation and 
engineering optimization. In 2014, Ail et al. applied the WCA to multi-objective optimization [12]. 
Zhang et al. applied the WCA to solve engineering optimization problems [13]. In 2015, Ail et al. 
proposed the WCA with the evaporation rate (ERWCA) for unconstrained and constrained 
optimization [14]. In [41], a comprehensive and exhaustive review was conducted on the WCA and 
its applications in a wide variety of study fields, including mechanical engineering, electrical and 
electronic engineering, civil engineering, industrial engineering, water resources and hydropower 
engineering, computer engineering, and mathematics. In [42], the detailed open source code for the 
WCA was provided, and its performance and efficiency for solving optimization problems was 
demonstrated. In [43], an enhanced discrete version of the WCA called DWCA was proposed to 
solve the symmetric and asymmetric traveling salesman problem. The designed solver was tested on 
over 33 problem datasets, and the statistical significance of the performance gaps for this benchmark 
was validated using results from non-parametric tests, not only in terms of optimality but also in 
terms of convergence speed. In [44], an extended version of WCA, that is, gradient-based WCA 
(GWCA) with the evaporation rate, was introduced to enhance the performance of the standard WCA 
by incorporating a local optimization operator in a so-called gradient-based approach. The 
experimental results demonstrated the feasibility and efficiency of the proposed GWCA. 

In this paper, the complex-valued encoding WCA (CWCA) is proposed, which uses the 
complex number coding method of the complex-valued BA [15] and individual genes in the 
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evolutionary algorithm [16,17]. A diploid is adopted in the indication of individual genes, which 
significantly enhances the individual’s in information capacity. Finally, twelve benchmark functions 
and four engineering examples were considered to evaluate the performance of the CWCA. The test 
results indicated that the CWCA had higher precision and convergence speed than the real-valued 
WCA and other well-known meta-heuristic algorithms. 

2. Mathematical model for the real-valued water cycle 

In the WCA, the initial population is represented by NN pop   matrix: 
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where popN  represents the population size and N  represents the design variables. Initially, the 

popN  stream is randomly generated, and srN  good individuals represent a sea or river. The stream 

that has the minimum value among all streams is identified as the ocean. srN  represents the 

summation of the number of rivers. 
The remainder of the populations are computation using 

1sr

Sea

N Number of Rivers                          (2) 

srpopstream NNN  .                                   (3) 

The total volume of water flowing in a river and/or the ocean varies from stream to stream. The 
number of specified streams for a river or the ocean can be calculated as 

1
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where nNS  denotes the number of rivers and f represents the fitness function. 

In nature, streams are formed by raindrops, and then they join each other to constitute new 
rivers. A part of a streams flows directly into the ocean. All streams and rivers end up in the open 
ocean (the best point). Figure 2 shows a schematic of a stream flowing into a river. The star 
represents the river and the circles represent the stream. 
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Figure 2. Schematic of a stream flowing into a river. 

In Figure 2, a stream flows into a river using a random distance: 

),0( dCX  , 1C ,                           (5) 

where C is a numerical value between 1 and 2 (near to 2). The best numerical value is chosen as 2. 
d represents the current distance between the stream and river current distance. X  is a random 
number between 0 and ( dC ). 

The position update for streams and rivers is determined 

1 ( )k k k k
Stream Stream River StreamX X rand C X X                          (6) 

1 ( )k k k
River River Sea RiverX X rand C X X      ,                      (7) 

where rand represents a random number uniformly distributed between 0 and 1. If the current 
solution provided by a stream is better than that of its connecting river, the positions of the river and 
stream are swapped. Such a swap can also occur for rivers and the ocean. 

New raindrops form streams in different places to avoid being trapped in local optima. The 
rainfall condition is as follows: 

sr
k

vierOcean NkepsXX ,...,2,1,|| Re  ,                      (8) 

where eps  is a small numerical constant. 

The stream and river location update formulas are 

( )new
StreamX LB rand UB LB                                  (9) 

( )new
RiverX LB rand UB LB    ,                              (10) 

where LB  represents the lower bound and UB  represents the upper bound. The best newly 
formed raindrop is treated as a river running into the ocean. The remaining raindrops form new 
streams that flow into the rivers or ocean. 

In Figure 3, the circles, stars, and diamonds represent streams, rivers, and the ocean, 
respectively. In view to the above description, the WCA steps are as follows: 

Step 1. Initialize parameters srpop NN , , and the number of maximum iterations .iterMax  

Step 2. Randomly generate the initial population, composite initial rivers, streams, and ocean 
using Eqs (1)–(3). 

New 

position 

River

Stream 

d

X 
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Step 3. Calculate the intensity of streams flowing into the rivers and ocean using Eq (4). 
Step 4. Determine the streams’ flow into the rivers, and the rivers’ flow into the ocean using Eqs 

(6) and (7). 
Step 5. According to the fitness function value, swap the positions of the streams, rivers, and 

ocean. 
Step 6. If the termination condition is not satisfied [using Eq (8)], the process of raining occurs 

using Eqs (9) and (10); otherwise, go to Step 4. 
Step 7. Stop the algorithm if the termination condition is satisfied; otherwise, go to Step 4. 

 

Figure 3. Schematic of a water cycle system. 

3. Complex-valued encoding WCA 

3.1. Complex-valued encoding method  

In the CWCA, the imaginary and real parts of the complex number are updated respectively for 
each individual, which leads to inherent parallelism, improves the diversity of individuals, and 
enhances its exploitation and exploration capabilities, and it does not fall into the local optimum. 

3.1.1. Initialize the CWCA population 

In the WCA, first, an interval popkk NkUBLB ,...,2,1],,[ 
 
is defined, and the popN

 
complex 

modulus and phase angle are randomly generated using 
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The M2  complex number is obtained as follows: 
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 cos sin , 1,2,Rk Ik k k k popX iX i k N                        (13) 

Therefore, in the CWCA, the initial population represented by a matrix of streams of size popN N  

is composed as follows: 
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where popN
 
denotes the complex modulus. 

3.1.2. Updating method of the CWCA 

In the CWCA, the new positions of rivers and streams are determined as follows: the real parts 
are updated using 

1
_ _ _ _( )k k k k

R Stream R Stream R River R StreamX X rand C X X                    (15) 

1
_ _ _ _( )k k k

R River R River R Sea R RiverX X rand C X X      ,                (16) 

and the imaginary parts are updated using  

1
_ _ _ _( )k k k k

I Stream I Stream I River I StreamX X rand C X X                     (17) 

1
_ _ _ _( )k k k
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3.1.3. Fitness value 

The fitness value is determined as follows: First, the complex value is converted into a real 
value and then its fitness value is calculated. The real-valued fitness function is determined using the 
complex modules and the sign is updated using the amplitude angle: 
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where kX  denotes the converted real variables. 

3.2. Pseudocode of the CWCA 

The pseudocode of the CWCA is as follows: 

Pseudocode of the CWCA 

1. BEGIN 

2.  Initial population parameters: ,, srpop NN  and let 0,
2

k k
k

LB UB     ,  2 ,2k    . 

3.  Convert the complex value into real variables [Eqs (19) and (20)]. Using Eqs (14), (2) and (3), 

randomly generate the initial population and form the initial rivers, streams, and ocean, 

respectively. 

4.  Evaluate the intensity of flow for rivers [Eq (4)]. 

5.  while ( iterMaxiter  ) 

6:          Calculate the real part using Eqs (14) and (15). 

7.          Calculate the imaginary part using Eqs (17) and (18).  

8.          Convert the complex value into real variables using Eqs (19) and (20). 

Swap the positions of the rivers, streams, and ocean with respect to their fitness values.

9.        for each river do 

10.            if 
k

sea RiverX X eps   

11.               Rain began, and new streams and rivers are generated [Eqs (11–13)] 

12.            end if 

13.      end for 

14.  end while 

15.   Output the optimal solution 

16.  END 

4. Experimental results and comparisons 

The experimental setup was as follows: MATLAB R2012a, AMD Athlon™*4 640 processor, 
and 2 GB memory. The CWCA was used to solve 12 benchmark functions [18,19] and four 
engineering design problems. The performance of CWCA was compared with that of GSO [4], 
artificial bee colony (ABC) [20], WCA [11], and ERWCA [14] using the standard deviation and 
mean. The control parameters of the algorithms were set as follows: 

● GSO: Parameters popN  =50, 00 ;20,100 KG    linearly decreased to 1 and was set to 

NP  [4]. 
● ABC: Parameters popN  = 50, .5DLimit   [20]. 

● WCA: Parameters popN  =s 50, 8srN  (number of rivers), with .2C  [11].  
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● ERWCA: Parameters popN  = 50, 8srN , with .2C  [14]. 

● CWCA: Parameters popN = 50, 8srN , with 2C , ].2,2[],
2

,0[  


 k
kk

k

UBLB
 

For the simulation experiments, the mean outcomes of 25 independent runs for 0401 ff   are 

listed in Table 2, the test results for functions 0805 ff   are listed in Table 3, and the test results for 

functions 1209 ff   are listed in Table 4. The unrestrained benchmark functions are presented in 

Table 1. The results perform 25 generations. “Best,” “Mean,” “Worst,” “Std,” and “ANOVA” 
represent the optimal value, mean value, worst value, standard deviation, and analysis of variance, 
respectively. 

Table 1. Test functions for the benchmark. 
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Table 2. Test results for the benchmark functions 0401 ff  . 

Functions Algorithms Results 

 Best Mean Worst Std. 

01( 50)f D   GSO 0.207355483 0.643658692 1.381211712 0.305186488 

ABC 0.02164161 0.266296242 1.0272904 0.308026332 

WCA 27.27537295 60.81289202 125.1674416 24.49799538 

ERWCA 3.65357E–16 2.23497E–13 1.2168E–12 2.98299E–13 

CWCA 1.9495E–207 7.9173E–188 1.9695E–186 0 

02 ( 50)f D   GSO 0.190471323 0.523626056 1.926347272 0.35741995 

ABC 0.083559555 0.159897637 0.284741881 0.054138322 

WCA 12.77983257 73286.99059 1666293.509 332935.3144 

ERWCA 5.40146E–09 0.000105465 0.002580972 0.000515735 

CWCA 3.0115E–108 4.8137E–101 5.05153E–100 1.29853E–100

03( 50)f D   GSO 5614.494834 9162.038749 13171.78451 2191.964722 

ABC 49854.83613 63062.58662 80673.90543 7903.826327 

WCA 22036.10203 40160.29047 71405.33553 11778.719 

ERWCA 1.48038E–14 3.58088451 31.08218217 7.333461723 

CWCA 1.0586E–175 1.0027E–155 2.0513E–154 4.1614E–155 

04( 50)f D   GSO 7.482344366 11.02103367 15.22690812 1.805226231 

ABC 68.25830295 80.27564106 87.87728499 4.794442375 

WCA 48.67045644 66.08139632 81.93733451 7.664963523 

ERWCA 2.43589E–10 5.55482E–08 2.43961E–07 5.29924E–08 

CWCA 7.15741E–99 3.31169E–92 3.17129E–91 7.72028E–92 

4.1. Experimental results for the benchmark functions 

As shown in Table 2, the best values produced by the CWCA were more accurate than those 

obtained using the proposed WCA and the other meta-heuristic optimization algorithms. For four 

functions, the standard deviation of the CWCA was less than that of GSO, ABC, WCA, and ERWCA, 

which implies that the CWCA had better stability in terms of optimizing high-dimensional unimodal 

functions. Figures 4–7 show that the fitness functions converged to a curve. Hence, it can be 

concluded that the proposed CWCA had a higher convergence rate and higher computation precision 
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than meta-heuristic algorithms such as GSO, ABC, WCA, ERWCA, and CWCA. Figures 8–11 show 

the analysis of ANOVA using a graph. The ERWCA and CWCA obtained stable optimal values. 

Figure 9 show that most of the algorithms produced a stable value, except the WCA, when solving 

function 02f . 

Table 3. Test results for the benchmark functions 0805 ff  . 

Functions Algorithms Results 

 Best Mean Worst Std. 

05( 50)f D   GSO 566 1131.64 1950 342.5811193 

ABC 13,559 27,666.12 44,007 7900.040123 

WCA 8099 13,872.64 24,084 4340.085031 

ERWCA 0 0.76 19 3.8 

CWCA 0 0 0 0 

06( 50)f D   GSO 102.9655468 130.6203352 186.189766 18.88401764 

ABC 219.8304665 322.5058351 377.4759954 40.06728218 

WCA 299.2085116 440.4852994 533.5915321 59.06933452 

ERWCA 0 1.989918114 49.74795285 9.949590571 

CWCA 0 0 0 0 

07 ( 50)f D   GSO 5.764211343 8.469214323 10.36140998 1.216196283 

ABC 16.85525103 18.18606241 18.93602973 0.470872533 

WCA 5.598512115 16.86361644 20.34625814 4.444925239 

ERWCA 2.84823E–09 1.74804E–05 0.000429133 8.57614E–05 

CWCA 8.88178E–16 8.88178E–16 8.88178E–16 0 

08( 50)f D   GSO 1.11022E–16 0.052857507 0.073410582 0.033637865 

ABC 3.33067E–16 0.003443108 0.073410582 0.014668708 

WCA 6.24611E–13 0.063455934 0.195437086 0.047329549 

ERWCA 0 5.41167E–14 8.64864E–13 1.70589E–13 

CWCA 0 0 0 0 

It can be noted from Table 3 that the CWCA located the optimal solutions of the functions 

0605 , ff  and 08f  with a standard deviation of 0. For function 07f , the precision and mean value 

were higher than those for the other meta-heuristic optimization algorithms. Building on the results 
shown in Figures 12–15, it can be concluded that the CWCA converged faster and its precision was 
higher than that of the other meta-heuristic optimization algorithms. Figures 16–19 show the 
ANOVA graphical analysis results. The results demonstrated that both the ERWCA and CWCA had 
better stability than the other meta-heuristic optimization algorithms. 
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Table 4. Test results for the benchmark functions 1209 ff  . 

Functions Algorithms Results 

 Best Mean Worst Std. 

09( 2)f D   GSO –1.031628453 –1.031628453 –1.031628453 4.2276E–16 

ABC –1.031628453 –1.031628453 –1.031628453 4.03633E–12 

WCA –1.031628453 –1.031628453 –1.031628453 1.16441E–10 

ERWCA –1.031628453 –1.031628453 –1.031628453 6.06115E–14 

CWCA –1.031628453 –1.031628453 –1.031628453 8.87086E–11 

10( 2)f D   GSO 3 3 3 4.39868E–13 

ABC 3 6.829312618 34.11721073 9.461128153 

WCA 3 3.000000007 3.000000081 1.62655E–08 

ERWCA 3 3 3 7.70669E–12 

CWCA 3 3.000000005 3.000000093 1.8483E–08 

11( 3)f D   GSO –3.862782148 –3.862781304 –3.86277018 2.56717E–06 

ABC –3.862782148 –3.831845002 –3.0897641 0.154600208 

WCA –3.862782148 –3.862782122 –3.862781721 8.52233E–08 

ERWCA –3.862782148 –3.862782148 –3.862782148 1.67437E–11 

CWCA –3.862782148 –3.862782148 –3.862782147 7.21169E–11 

12( 6)f D   GSO –3.322368009 –3.274490605 –3.199245153 0.059836344 

ABC –3.322367256 –3.322206338 –3.319008561 0.000668069 

WCA –3.322367865 –3.283354564 –3.186190502 0.058086807 

ERWCA –3.322368011 –3.312831524 –3.203161909 0.033006674 

CWCA –3.322368011 –3.322367989 –3.322367817 4.5094E–08 
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Figure 4. 01f  function evolution curve.     Figure 5. 02f  function evolution curve. 
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Figure 6. 03f  function evolution curve.       Figure 7. 04f  function evolution curve. 
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Figure 8. ANOVA for function 01f .            Figure 9. ANOVA for function 02f . 
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Figure 10. ANOVA for function 03f .          Figure 11. ANOVA for function 04f . 
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Figure 12. Fitness function evolution curve for 05f . 
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Figure 13. Fitness function evolution curve for 06f . 
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Figure 14. Fitness function evolution curve for 07f . 



5849 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 5836–5864. 

0 20 40 60 80 100
0

5

10

15

20

Iteration

av
er

ag
e 

fit
ne

ss
 v

al
ue

 

 

GSO

ABC

WCA
ERWCA

CWCA

5 10 15

0
0.5

1
1.5

 

 

 

Figure 15. Fitness function evolution curve for 08f . 
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Figure 16. ANOVA for function 05f .       Figure 17. ANOVA for function 06f . 
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Figure 18. ANOVA for function 07f .       Figure 19. ANOVA for function 08f . 
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Figure 20. Fitness function evolution curve for 09f . 
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Figure 21. Fitness function evolution curve for 10f . 
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Figure 22. Fitness function evolution curve for 11f . 
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Figure 23. Fitness function evolution curve for 12f . 
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Figure 24. ANOVA for function 09f .         Figure 25. ANOVA for function 10f . 
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Figure 26. ANOVA for function 11f .         Figure 27. ANOVA for function 12f . 
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As shown in Table 4, for 09f , all algorithms produced optimal solutions, and the solutions of 

GSO were the most stable. For functions 10f and 11f , the solutions for most algorithms achieved the 

same order of magnitude, but the standard deviation of the CWCA was the best. For function 12f , 

both the ERWCA and CWCA obtained optimal solutions, but the CWCA had the best stability. 
Figures 20–27 shows that the CWCA had excellent performance when solving multimodal 
low-dimensional problems. 

4.2. Engineering design problem 

The mathematical model for general constrained optimization is defined [21] as 

( );

( ) 0, 1, , ,

( ) 0, 1, , ,

, 1, , ,

j

i

i i i

Minimize f x

subject to g x j q

h x i q m

l x u i D

 

  

  







                     (21) 

where ),...,,( 21 Dxxxx   represents the D -dimensional decision variables, ）xf (  denotes the 

objective function, 0)( xg j  represents q  inequality constraints, and )(xhi  represents qm   
equality constraints. The functions jgf ,

 
and ih  are nonlinear or linear functions. ii ul ,  denote 

the lower and upper bounds, respectively. 
Generally, when practical problems are solved, it is common to convert equality constraints into 

inequality constraints: 

( ) 0, 1, ,ih x i q m     ,                      (22) 

where  denotes the allowed tolerance, which is set to a small value. The best numerical value for 
  is 0.001. According to the feasibility-based rules, each individual’s constraint violation is 

1 2( ) max( , )viol viol violf x f f                              (23) 

1 max( ( )) 1, ,viol jf g x j q  
                      (24) 

2 max( ( ) ) 1, ,viol if h x i q m    
.                  (25) 

Generally, a feasibility-based rule is used [22]: 
Rule 1: Any feasible solution is preferred over any infeasible solution. 
Rule 2: The feasible solution that has a better objective function value is preferred, if choosing 

between two feasible solutions. 
Rule 3: The infeasible solution that has smaller constraint violations is preferred, if choosing 

between two infeasible solutions. 

4.2.1. Pressure vessel design problem 

A cylindrical pressure vessel with hemispherical heads capped at both ends is shown in Figure 

28, where )( 1xTs  denotes the shell thickness, )( 2xTh  denotes the head thickness, )( 3xR  denotes 
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the inner radius, and 4( )L x denotes the cylindrical vessel length. The overall cost, including a 

combination of material cost, single 060  welding cost, and forming cost, is minimized. 

The mathematical model for the pressure vessel design problem is 

2 2
1 3 4 2 3 1 4

1 1 3

2 2 3

2 3
3 3 4 3

4 4

1 2

3 4

( ) 0.6224 1.7781 3.1661 19.84

( ) 0.0193 0

( ) 0.00954 0

4
( ) 1296000 0

3
( ) 240 0

0 , 100

10 , 200

Minimize f x x x x x x xx x x

Subject to g x x x

g x x x

g x x x x

g x x

x x

x x

 

   
   

   

    

  
 
 

         (26) 

 

Figure 28. Schematic of the pressure vessel design problem [23]. 

Table 5. Comparison of the statistical results for the pressure vessel design problem. 

Algorithms Optimal values for variables Optimum cost

sT  hT  R  L  

ES [27] 0.8125 0.4375 42.098087 176.640518 6059.7456 

GSA [28] 1.1250 0.6250 55.9886598 84.4542025 8538.8359 

PSO [29] 0.8125 0.4375 42.091266 176.746500 6061.0777 

GA [21] 0.8125 0.4375 40.323900 200.000000 6288.7445 

GA [22] 0.8125 0.4375 42.097398 176.654050 6059.9463 

GA [23] 0.9375 0.5000 48.329000 112.679000 6410.3811 

DE [30] 0.8125 0.4375 42.098411 176.637690 6059.7340 

ACO [31] 0.8125 0.4375 42.103624 176.572656 6059.0888 

MVO [23] 0.8125 0.4375 42.0907382 176.738690 6060.8066 

WCA [11] 1.7958 0.3933 41.2310 187.6901 5916.0914 

CWCA 0.7782 0.3846 40.3196 200.0000 5885.3327 
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The results obtained using the CWCA to solve the pressure vessel design problem is shown in 
Table 5. The statistical outcomes were compared with those of the meta-heuristic algorithms ES [27], 
GSA [28], PSO [29], GA [24–26], DE [30], MVO [23], WCA [11], and ACO [31]. As shown in Table 
5, the proposed CWCA outperformed all the other optimization algorithms. 

4.2.2. Cantilever beam design problem 

Cantilever beam design optimization aims to minimize the weight of a cantilever beam, which 
is composed of hollow square blocks. In this study, it involved five squares: the first block was fixed, 
and the fifth block had the burden of a vertical load. In Figure 29, five parameters define the shape of 
the cross section of the cubes. 

The mathematical model for the cantilever beam design optimization is 

1 2 3 4 5

3 3 3 3 3
1 2 3 4 5

1 2 3 4

( ) 0.06224( )

61 27 19 7 1
( ) 1 0

0.01 , , , 100

Minimize f x x x x x x

Subject to g x
x x x x x

x x x x

    

      

 

                                    (27) 

 

Figure 29. Schematic of the cantilever beam design problem [23]. 

Table 6. Statistical comparison results for the cantilever beam design problem. 

Algorithms Optimal variable values Optimum 

weight 1x  2x  3x  4x  5x  

CS [32] 6.0089 5.3049 4.5023 3.5077 2.1504 1.3340 

SOS [33] 6.01878 5.3034 4.4958 3.4989 2.1556 1.3340 

MMA [34] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 

MVO [23] 6.0239 5.3060 4.49501 3.4960 2.1527 1.3399 

WCA [11] 5.9799 4.8821 4.4659 3.4733 2.1380 1.30325382

CWCA 5.9783 4.8762 4.4663 3.4791 2.1391 1.30325143
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In the same way, the meta-heuristic optimization algorithms MVO [23], CS [32], SOS [33], 
MMA [34], WCA [11], and CWCA were used. Table 6 shows that the results of the CWCA for the 
cantilever beam design problem were consistent with those of the other engineering optimization 
problems. Both the WCA and CWCA outperformed all the other optimization algorithms. 

4.2.3. Three-bar truss design problem 

The design problem for a three-bar planar truss structure is shown in Figure 30. The volume of a 
statically loaded three-bar truss was minimized, subject to stress ( ) constraints. The objective was 

to find the best cross-sectional areas ( 21, AA ). 

The mathematical model for the three-bar planar truss structure design problem is 

1 2

1 2
1 2

1 1 2

2
2 2

1 1

3

2 1

1 2

2 2
1 1 2 2 1 3

( ) (2 2 )

2
( ) 0

2 2

( ) 0
2 2

1
( ) 0

2

0 , 1

100 , 2 / , / , ,

Minimize f x x x l

x x
Subject to g x P

x x x

x
g x P

x x x

g x P
x x

x x

l cm P kn cm kn cm x A x A A A









  


  



  


  


 

           

(28) 

Table 7. Comparison of the statistical results for the three-bar truss design problem. 

Algorithms Optimal values for variables Optimal weight 

1A  2A  

DEDS [34] 0.78867513 0.40824828 263.8958434 

PSO-DE[35] 0.7886751 0.4082482 263.8958433 

MBA [36] 0.7885650 0.4085597 263.8958522 

CS [37] 0.78867 0.40902 263.9716 

MVO [23] 0.78860276 0.40845307 263.8958499 

WCA [11] 0.7888 0.4080 263.89585025 

CWCA 0.7887 0.4082 263.89584340 

For the three-bar truss design problem, the metaheuristic optimization algorithms MVO [23], 
DEDS [34], PSO-DE [35], MBA [36], CS [37], WCA [11], and CWCA were used. The proposed 
CWCA was compared with the other optimization algorithms (see Table 7). The results obtained 
using the CWCA were very close to those obtained using DEDS. 
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Figure 30. Schematic of the three-bar truss design problem [23]. 

4.2.4. Welded beam design problem 

Figure 31 shows a beam made of low-carbon steel and welded to a rigid support. The welded 
beam was designed to achieve the minimum cost, subject to constraints on shear stress )( , bending 

stress )( in the beam, buckling load on the bar )( bP , end deflection of the beam )( , and side 

constraints. There were four design variables: )(),(),( 321 xtxlxh  and )( 4xb . 

 

Figure 31. Schematic of the welded beam design problem [23]. 

The objective function is expressed as 
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where 

 
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        (30) 

Table 8. Comparison of the statistical results for the welded beam design problem. 

Algorithms Optimal values for variables Optimal 

cost h  l  t  b  

GSA [28] 0.1821 3.856979 10.0000 0.202376 1.87995 

CPSO [38] 0.2023 3.544214 9.048120 0.205723 1.72802 

GA [39] 0.2489 6.1730 8.1789 0.2533 2.4331 

HS [40] 0.2442 6.2231 8.2915 0.2443 2.3807 

MVO [23] 0.2054 3.473193 9.044502 0.205695 1.72645 

WCA [11] 0.2058 3.4697 9.0353 0.2058 1.7252 

CWCA 0.2057 3.4705 9.0366 0.2057 1.7248 

In the same way, the meta-heuristic optimization algorithms MVO [23], GSA [28], CPSO [38], 
GA [39], and HS [40] were applied. The proposed CWCA was compared with the other 
meta-heuristic algorithms (see Table 8). The results showed that the proposed CWCA achieved the 
minimum cost. 

5. Conclusions and future directions 

In recent years, significant attention has been paid to the design of meta-heuristic optimization 
algorithms to solve optimization problems. The aims of this study were to improve the exploration 
and exploitation capabilities of the WCA algorithm, accelerate its convergence speed, and enhance 
its calculation accuracy. A novel CWCA algorithm was proposed, and to evaluate the performance of 
CWCA optimization, 12 benchmark functions and four engineering examples were considered. The 
test results indicated that the CWCA had higher precision and convergence speed than the WCA and 
other popular meta-heuristic optimization algorithms. Further improvements to versions of the WCA 
equipped with the latest, efficient strategies should be considered in future research. Additionally, the 
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CWCA is not well used in some engineering majors, such as mechanical engineering. Despite the 
great potential of this principal field, it is necessary to use and use more meta-heuristic optimization 
algorithms, such as CWCA, to solve large-scale optimization problems. 
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Appendix 

CWCA MATLAB source code 
%----------------------------------------------- 
function [Xmin, Fmin] = CWCA(objective_function, LB, UB, nvars, Fnum, Nmax) 

nvar = nvars;    % Dimension 
N = 50;          % Population size 
Nsr = 8;         % Number of rivers 
C = 2; 
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Nwat = N-Nsr;   % Raindrops 
Fmin = inf; 

%------------- Initialization (In module and Angle mode)---------------------------------- 
zigma_NCn = inf*ones(1, Nwat + 1); 

for i=1: N 
x_age(i, :) = 4*pi*(rand(1, nvar)-0.5);      % Argument 
x_mod(i, :) = 0.5*(UB - LB).*rand(1, nvar);  % Module 
x_R(i,:) = x_mod(i, :).*cos(x_age(i,:)); 
x_I(i, :) = x_mod(i,:).*sin(x_age(i,:)); 
sq_x(i, :) = sqrt(x_R(i, :).^2 + x_I(i, :).^2); 
x(i, :) = sign(sin(x_I(i, :)/sq_x(i, :)))*sq_x(i, :) + 0.5*(UB + LB); 

end 
LB_bound = repmat(LB, N, 1); 
UB_bound = repmat(UB, N, 1); 
x =max(x, LB_bound); 
x = min(x, UB_bound); 

for i =1 : N 
xx(i, :) =  objective_function(x(i, :), Fnum); 

end 
[~, index1] = sort(xx, 'ascend'); 
Sr = x(index1(1: Nsr+1),:); 
sr_R=x_R(index1(1: Nsr+1), :); 
sr_I = x_I(index1(1: Nsr+1), :); 
SR = sr; 
SR_R = sr_R; 
SR_I = sr_I; 

%-------------------------------------------------------------------------- 
for i = 1:Nsr+1 

cost(i) = objective_function(SR(i,:), Fnum);  % Calculate fitness values 
end 

cs = sort(cost, 'ascend')'; 
cs = cs(1: Nsr+1); 
CN = cs-max(cs); 
Pn = abs(CN/(sum(CN))); 
Pn(Nsr+1) = [ ]; 
NCn = round(Nwat*Pn); 

while (sum(NCn) ~= Nwat) 
i = Nsr; 

while sum(NCn) > Nwat 
if NCn(i) <= 1 

i = i-1; 
end 

NCn(i) = NCn(i)-1; 
end 
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i = 1; 
while sum(NCn) < Nwat 

NCn(i) = NCn(i)+1; 
end 
end 

NCn = sort(NCn, 'descend'); 
Sr = sr(1: Nsr, :); 
sr_R = sr_R(1: Nsr, :); 
sr_I=sr_I(1: Nsr, :); 
zigma_NCn = [0]; 

for i = 1:Nsr 
zigma_NCn = [zigma_NCn sum(NCn(1: i))]; 

end 
end 
%------------- Initialization ---------------------------------- 
for j = 1:Nwat 

water_age(j, :) = 4*pi*(rand(1, nvar)-0.5); 
water_mod(j, :) = 0.5*(UB - LB).*rand(1, nvar); 
water_R(j, :) = water_mod(j, :).*cos(water_age(j, :)); 
water_I(j, :) = water_mod(j, :).*sin(water_age(j,:)); 
sq_water = sqrt(water_R(j, :).^2 + water_I(j, :).^2); 
water(j, :) = sign(sin(water_I(j, :)/sq_water))*sq_water + 0.5*(UB + LB); 

end 
WATER_R = water_R; 
WATER_I = water_I; 
WATER = water; 

%------------------------------------------------------ 
Sea = sr(1,:); 
sea_R = sr_R(1, :); 
sea_I = sr_I(1, :); 

%--------------- The main loop ------------------------------ 
Locate = 1; 

for ii = 1:Nmax   % Maximum number of iterations 
%--------------- The stream flows to the river -------------------------- 

stp = 1; 
for i = 1: Nsr_k 

for j=(zigma_NCn(i) + 1): zigma_NCn(i+1) 
%----------- Real component update -------- 

new_WATER_R= WATER_R(j, :) + C.* rand(1, nvar).*( sr_R(i, :) - WATER_R(j, :)); 
%----------- Imaginary part update -------- 

new_WATER_I= WATER_I(j, :) + C.* rand(1,nvar).*( sr_I(i, :) - WATER_I(j, :)); 
sq_new_WATER = sqrt(new_WATER_R.^2 + new_WATER_I.^2); 
new_WATER = 

sign(sin(new_WATER_I/sq_new_WATER))*sq_new_WATER+0.5*(UB+LB); 
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if objective_function(WATER(j, :),Fnum) > objective_function(new_WATER, Fnum) 
WATER(j, :) = new_WATER; 
WATER_R(j, :) = new_WATER_R; 
WATER_I(j, :) = new_WATER_I; 

end 
end 
end 
%------------Rivers flow to the sea -------------------------- 
for i = 1:Nsr_k 

new_sr = []; 
%----------- Real component update -------- 

new_sr_R = sr_R(i, :) + C.*rand(1,nvar).*(sea_R - sr_R(i,:)); 
%----------- Imaginary part update -------- 

new_sr_I = sr_I(i, :) + C.*rand(1, nvar).*(sea_I - sr_I(i, :)); 
sq_new_sr = sqrt(new_sr_R.^2 + new_sr_I.^2); 
new_sr = sign(sin(new_sr_I/sq_new_sr))*sq_new_sr + 0.5*(UB + LB); 

if objective_function(sr(i, :), Fnum) > objective_function(new_sr, Fnum) 
sr_R(i, :) = new_sr_R; 
sr_I(i, :) = new_sr_I; 
sr(i, :) = new_sr; 

end 
end 
%------------ Replacement of rivers and streams -------------------- 

new_sr = []; 
for i = 1:Nsr_k 

for j=(zigma_NCn(i)+1):zigma_NCn(i+1) 
if objective_function(sr(i,:), Fnum)>objective_function(WATER(j,:),Fnum) 

temp = WATER(j, :); 
temp_R = WATER_R(j, :); 
temp_I = WATER_I(j, :); 
WATER(j, :) = sr(i, :); 
WATER_R(j, :) = sr_R(i, :); 
WATER_I(j,:) = sr_I(i,:); 
sr(i, :) = temp; 
sr_R(i, :) = temp_R; 
sr_I(i, :) = temp_I; 
end 

end 
end 
%------------- River and sea location update ---------------------- 
for i = 1:Nsr_k 

if objective_function(sea, Fnum)>objective_function(sr(i, :), Fnum) 
temp = sr(i, :); 
temp_R = sr_R(i, :); 
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temp_I = sr_I(i, :); 
sr(i, :) = sea; 
sr_R(i, :) = sea_R; 
sr_I(i, :) = sea_I; 
sea = temp; 
sea_R = temp_R; 
sea_I = temp_I; 

end 
end 

Xmin = sea; 
Fmin = objective_function(sea,Fnum); 
f(ii) = Fmin; 

end 
end 
%----------------------End------------------------------------------------ 
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