Research article Special Issues

Space-velocity thermostatted kinetic theory model of tumor growth

  • Received: 22 April 2021 Accepted: 10 June 2021 Published: 21 June 2021
  • The competition between cancer cells and immune system cells in inhomogeneous conditions is described at cell scale within the framework of the thermostatted kinetic theory. Cell learning is reproduced by increased cell activity during favorable interactions. The cell activity fluctuations are controlled by a thermostat. The direction of cell velocity is changed according to stochastic rules mimicking a dense fluid. We develop a kinetic Monte Carlo algorithm inspired from the direct simulation Monte Carlo (DSMC) method initially used for dilute gases. The simulations generate stochastic trajectories sampling the kinetic equations for the distributions of the different cell types. The evolution of an initially localized tumor is analyzed. Qualitatively different behaviors are observed as the field regulating activity fluctuations decreases. For high field values, i.e. efficient thermalization, cancer is controlled. For small field values, cancer rapidly and monotonously escapes from immunosurveillance. For the critical field value separating these two domains, the 3E's of immunotherapy are reproduced, with an apparent initial elimination of cancer, a long quasi-equilibrium period followed by large fluctuations, and the final escape of cancer, even for a favored production of immune system cells. For field values slightly smaller than the critical value, more regular oscillations of the number of immune system cells are spontaneously observed in agreement with clinical observations. The antagonistic effects that the stimulation of the immune system may have on oncogenesis are reproduced in the model by activity-weighted rate constants for the autocatalytic productions of immune system cells and cancer cells. Local favorable conditions for the launching of the oscillations are met in the fluctuating inhomogeneous system, able to generate a small cluster of immune system cells with larger activities than those of the surrounding cancer cells.

    Citation: Léon Masurel, Carlo Bianca, Annie Lemarchand. Space-velocity thermostatted kinetic theory model of tumor growth[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 5525-5551. doi: 10.3934/mbe.2021279

    Related Papers:

  • The competition between cancer cells and immune system cells in inhomogeneous conditions is described at cell scale within the framework of the thermostatted kinetic theory. Cell learning is reproduced by increased cell activity during favorable interactions. The cell activity fluctuations are controlled by a thermostat. The direction of cell velocity is changed according to stochastic rules mimicking a dense fluid. We develop a kinetic Monte Carlo algorithm inspired from the direct simulation Monte Carlo (DSMC) method initially used for dilute gases. The simulations generate stochastic trajectories sampling the kinetic equations for the distributions of the different cell types. The evolution of an initially localized tumor is analyzed. Qualitatively different behaviors are observed as the field regulating activity fluctuations decreases. For high field values, i.e. efficient thermalization, cancer is controlled. For small field values, cancer rapidly and monotonously escapes from immunosurveillance. For the critical field value separating these two domains, the 3E's of immunotherapy are reproduced, with an apparent initial elimination of cancer, a long quasi-equilibrium period followed by large fluctuations, and the final escape of cancer, even for a favored production of immune system cells. For field values slightly smaller than the critical value, more regular oscillations of the number of immune system cells are spontaneously observed in agreement with clinical observations. The antagonistic effects that the stimulation of the immune system may have on oncogenesis are reproduced in the model by activity-weighted rate constants for the autocatalytic productions of immune system cells and cancer cells. Local favorable conditions for the launching of the oscillations are met in the fluctuating inhomogeneous system, able to generate a small cluster of immune system cells with larger activities than those of the surrounding cancer cells.



    加载中


    [1] B. Wennberg, Y. Wondmagegne, The Kac Equation with a Thermostatted Force Field, J. Stat. Phys., 124 (2006), 859–880. doi: 10.1007/s10955-005-9020-8
    [2] C. Bianca, Thermostatted kinetic equations as models for complex systems in physics and life sciences, Phys. Life Rev., 9 (2012), 359–399. doi: 10.1016/j.plrev.2012.08.001
    [3] C. Bianca, V. Coscia, On the coupling of steady and adaptive velocity grids in vehicular traffic modelling, Appl. Math. Lett., 24 (2011), 149–155. doi: 10.1016/j.aml.2010.08.035
    [4] J. A. Carrillo, M. Fornasier, G. Toscani, F. Vecil, Particle, Kinetic, and Hydrodynamic Models of Swarming, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences (eds G. Naldi, L. Pareschi, and G. Toscani), Birkhäuser, Boston, (2010), 297–336.
    [5] C. Bianca, A. Lemarchand, Density evolution by the low-field limit of kinetic frameworks with thermostat and mutations, Commun. Nonlinear Sci. Numer. Simul., 20 (2015), 14–23. doi: 10.1016/j.cnsns.2014.05.009
    [6] C. Bianca, C. Dogbe, A. Lemarchand, The role of nonconservative interactions in the asymptotic limit of thermostatted kinetic models, Acta Applicandae Mathematicae, 189 (2015), 1–24.
    [7] C. Bianca, A. Lemarchand, Miming the cancer-immune system competition by kinetic Monte Carlo simulations, J. Chem. Phys., 145 (2016), 154108. doi: 10.1063/1.4964778
    [8] L. Masurel, C. Bianca, A. Lemarchand, On the learning control effects in the cancer-immune system competition, Physica A, 506 (2018), 462–475. doi: 10.1016/j.physa.2018.04.077
    [9] S. J. Oiseth and M. S. Aziz, Cancer Immunotherapy: A Brief Review of the History, Possibilities, and Challenges Ahead, J. Cancer Metast. Treatment, 3 (2017), 250–261. doi: 10.20517/2394-4722.2017.41
    [10] T. Blankenstein, P. G. Coulie, E. Gilboa, E. M. Jaffee, The determinants of tumour immunogenicity, Nat. Rev. Cancer, 12 (2012), 307–313. doi: 10.1038/nrc3246
    [11] M. D. Vesely, R. D. Schreiber, Cancer immunoediting: Antigens, mechanisms, and implications to cancer immunotherapy, Ann. N. Y. Acad. Sci., 1284 (2013), 1–5. doi: 10.1111/nyas.12105
    [12] I. Sagiv-Barfi, D. K. Czerwinski, S. Levy, I. S. Alam, A. T. Mayer, S. S. Gambhir, et al, Eradication of spontaneous malignancy by local immunotherapy, Sci. Transl. Med., 10 (2018), eaan4488. doi: 10.1126/scitranslmed.aan4488
    [13] P. Guermonprez, J. Valladeau, L. Zitvogel, C. Théry, S. Amigorena, Antigen presentation and T cell stimulation by dendritic cells, Annu. Rev. Immunol., 20 (2002), 621–667. doi: 10.1146/annurev.immunol.20.100301.064828
    [14] P. Sharma, S. Hu-Lieskovan, J. A. Wargo, A. Ribas, Primary, adaptive, and acquired resistance to cancer immunotherapy, Cell, 168 (2017), 707–723. doi: 10.1016/j.cell.2017.01.017
    [15] T. Tsukahara, S. Kawaguchi, T. Torigoe, H. Asanuma, E. Nakazawa, K. Shimozawa, et al, Prognostic significance of HLA class I expression in osteosarcoma defined by anti-pan HLA class I monoclonal antibody, EMR8-5, Cancer Sci., 97 (2006), 1374–1380. doi: 10.1111/j.1349-7006.2006.00317.x
    [16] G. P. Dunn, A. T. Bruce, H. Ikeda, L. J. Old, R. D. Schreiber, Cancer immunoediting: From immunosurveillance to tumor escape, Nat. Immunol., 3 (2002), 991–998. doi: 10.1038/ni1102-991
    [17] F. H. Igney, P. H. Krammer, Immune escape of tumors: Apoptosis resistance and tumor counterattack, J. Leukoc. Biol., 71 (2002), 907–920.
    [18] L. Zitvogel, L. Apetoh, F. Ghiringhelli, F. André, A. Tesniere, G. Kroemer, The anticancer immune response: indispensable for therapeutic success?, J. Clin. Invest., 118 (2008), 1991–2001. doi: 10.1172/JCI35180
    [19] G. P. Dunn, L. J. Old, R. D. Schreiber, The Three Es of Cancer Immunoediting, Annu. Rev. Immunol., 22 (2004), 329–360. doi: 10.1146/annurev.immunol.22.012703.104803
    [20] F. A. Mahmoud, N. I. Rivera, The role of C-reactive protein as a prognostic indicator in advanced cancer, Curr. Oncol. Rep., 4 (2002), 250–255. doi: 10.1007/s11912-002-0023-1
    [21] B. J. Coventry, M. L. Ashdown, M. A. Quinn, S. N. Markovic, S. L. Yatomi-Clarke, A. P. Robinson, CRP identifies homeostatic immune oscillations in cancer patients: A potential treatment targeting tool?, J. Transl. Med., 7 (2009), 102. doi: 10.1186/1479-5876-7-102
    [22] M. Sawamura, S. Yamaguchi, H. Murakami, T. Kitahara, K. Itoh, T. Maehara, et al, Cyclic haemopoiesis at 7- or 8-day intervals, Br. J. Haematol., 88 (1994), 215–218. doi: 10.1111/j.1365-2141.1994.tb05004.x
    [23] O. Lejeune, M. A. J. Chaplain, I. El Akili, Oscillations and bistability in the dynamics of cytotoxic reactions mediated by the response of immune cells to solid tumours, Math. Comput. Model., 47 (2008), 649–662. doi: 10.1016/j.mcm.2007.02.026
    [24] D. Liu, S. Ruan, D. Zhu, Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions, Math. Biosci. Eng., 9 (2012), 347–368. doi: 10.3934/mbe.2012.9.347
    [25] H. Dritschel, S. L. Waters, A. Roller, H. M. Byrne A mathematical model of cytotoxic and helper T cell interactions in a tumour microenvironment, Lett. Biomath., 5 (2018), 1–33.
    [26] R. F. Alvarez, J. A. M. Barbuto, R. Venegeroles, A nonlinear mathematical model of cell-mediated immune response for tumor phenotypic heterogeneity, J. Theor. Biol., 471 (2019), 42–50. doi: 10.1016/j.jtbi.2019.03.025
    [27] A. d'Onofrio, F. Gatti, P. Cerrai, L. Freschi, Delay-induced oscillatory dynamics of tumour-immune system interaction, Math. Comput. Model., 51 (2010), 572–591. doi: 10.1016/j.mcm.2009.11.005
    [28] P. Bi, S. Ruan, X. Zhang Periodic and chaotic oscillations in a tumor and immune system interaction model with three delays, Chaos, 24 (2014), 023101. doi: 10.1063/1.4870363
    [29] C. Yoon, S. Kim, H. J. Hwang, Global well-posedness and pattern formations of the immune system induced by chemotaxis, Math. Biosci. Eng., 17 (2020), 3426–-3449. doi: 10.3934/mbe.2020194
    [30] H.-C. Wei, Mathematical modeling of tumor growth: The MCF-7 breast cancer cell line, Math. Biosci. Eng., 16 (2019), 6512–-6535. doi: 10.3934/mbe.2019325
    [31] A. Alsisi, R. Eftimie, D. Trucu, Non-local multiscale approach for the impact of go or grow hypothesis on tumour-viruses interactions, Math. Biosci. Eng., 18 (2021), 5252-–5284. doi: 10.3934/mbe.2021267
    [32] G. Nicolis, I. Prigogine, Self-Organization in Nonequilibrium Systems, Wiley, New York, 1977.
    [33] R. Lefever, G. Nicolis, P. Borckmans, The brusselator: it does oscillate all the same, J. Chem. Soc., Faraday Trans. 1, 84 (1988), 1013–1023. doi: 10.1039/f19888401013
    [34] N. Herranz, J. Gil, Mechanisms and functions of cellular senescence, J. Clin. Invest., 128 (2018), 1238–1246. doi: 10.1172/JCI95148
    [35] D. C. Macallan, B. Asquith, A. J. Irvine, D. L. Wallace, A. Worth, H. Ghattas, et al., Measurement and modeling of human T cell kinetics, Eur. J. Immunol., 33 (2003), 2316–2326.
    [36] D. C. Macallan, D. Wallace, Y. Zhang, C. De Lara, A. T. Worth, H. Ghattas, et al., Rapid turnover of effector-memory CD4(+) T cells in healthy humans, J. Exp. Med., 200 (2004), 255–260. doi: 10.1084/jem.20040341
    [37] L. Westera, J. Drylewicz, I. den Braber, T. Mugwagwa, I. van der Maas, L. Kwast, et al., Closing the gap between T-Cell life span estimates from stable Isotope-Labeling studies in mice and humans, Blood, 122 (2013), 2205–2212.
    [38] R. Ahmed, L. Westera, J. Drylewicz, M. Elemans, Y. Zhang, E. Kelly, et al., Reconciling estimates of cell proliferation from stable isotope labeling experiments, PLoS Comput. Biol., 11 (2015), e1004355. doi: 10.1371/journal.pcbi.1004355
    [39] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon, Oxford, 1994.
    [40] F. Alexander, A. Garcia, Direct Simulation Monte Carlo, Comput. Phys., 11 (1997), 588–593. doi: 10.1063/1.168619
    [41] C. A. Siegrist, Vaccine immunology in Vaccines (eds S. A. Plotkin, W. A. Orenstein, and P. A. Offit), Saunders Elsevier, New York, (2008), 17–36.
    [42] O. Leo, A. Cunningham, P. L. Stern Vaccine Immunology in Understanding Modern Vaccine, Perspectives in Vaccinology, Vol. 1, (eds N. Gar\c{c}on and P.L. Stern), Elsevier, Amsterdam, (2011) 25–59.
    [43] H. Gonzalez, C. Hagerling, Z. Werb, Roles of the immune system in cancer: From tumor initiation to metastatic progression, Genes Dev., 32 (2018), 1267–1284. doi: 10.1101/gad.314617.118
    [44] D. A. McQuarrie, Statistical Mechanics, Harper & Row, New York, 1975.
    [45] P. Dziekan, A. Lemarchand, B. Nowakowski, Particle dynamics simulations of Turing patterns, J. Chem. Phys., 137 (2012), 074107. doi: 10.1063/1.4743983
    [46] G. Morgado, B. Nowakowski, A. Lemarchand, Scaling of submicrometric Turing patterns in concentrated growing systems, Phys. Rev. E, 98 (2018), 032213. doi: 10.1103/PhysRevE.98.032213
    [47] J. Hoshen, R. Kopelman, Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm, Phys. Rev. B., 14 (1976), 3438–3445. doi: 10.1103/PhysRevB.14.3438
    [48] A. Lemarchand, I. Nainville, M. Mareschal, Fractal Dimension of Reaction-Diffusion Wave Fronts, Europhys. Lett., 36 (1996), 227–231. doi: 10.1209/epl/i1996-00209-3
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1862) PDF downloads(78) Cited by(2)

Article outline

Figures and Tables

Figures(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog