The temporal evolution of a contagious viral disease is modelled as the dynamic progression of different classes of population with individuals interacting pairwise. This interaction follows a binary mechanism typical of kinetic theory, wherein agents aim to improve their condition with respect to a mutual utility target. To this end, we introduce kinetic equations of Boltzmann-type to describe the time evolution of the probability distributions of the multi-agent system. The interactions between agents are defined using principles from price theory, specifically employing Cobb-Douglas utility functions for binary exchange and the Edgeworth box to depict the common exchange area where utility increases for both agents. Several numerical experiments presented in the paper highlight the significance of this mechanism in driving the phenomenon toward endemicity.
Citation: Giulia Bertaglia, Lorenzo Pareschi, Giuseppe Toscani. Modelling contagious viral dynamics: a kinetic approach based on mutual utility[J]. Mathematical Biosciences and Engineering, 2024, 21(3): 4241-4268. doi: 10.3934/mbe.2024187
The temporal evolution of a contagious viral disease is modelled as the dynamic progression of different classes of population with individuals interacting pairwise. This interaction follows a binary mechanism typical of kinetic theory, wherein agents aim to improve their condition with respect to a mutual utility target. To this end, we introduce kinetic equations of Boltzmann-type to describe the time evolution of the probability distributions of the multi-agent system. The interactions between agents are defined using principles from price theory, specifically employing Cobb-Douglas utility functions for binary exchange and the Edgeworth box to depict the common exchange area where utility increases for both agents. Several numerical experiments presented in the paper highlight the significance of this mechanism in driving the phenomenon toward endemicity.
[1] | V. V. Aristov, Biological systems as nonequilibrium structures described by kinetic methods, Results Phys., 13 (2019), 102232. https://doi.org/10.1016/j.rinp.2019.102232 doi: 10.1016/j.rinp.2019.102232 |
[2] | G. Dimarco, B. Perthame, G. Toscani, M. Zanella, Kinetic models for epidemic dynamics with social heterogeneity, J. Math. Biol., 83 (2021), 4. https://doi.org/10.1007/s00285-021-01630-1 doi: 10.1007/s00285-021-01630-1 |
[3] | G. Dimarco, G. Toscani, M. Zanella, Optimal control of epidemic spreading in the presence of social heterogeneity, Phil. Trans. R. Soc. A, 380 (2022), 20210160. https://doi.org/10.1098/rsta.2021.0160 doi: 10.1098/rsta.2021.0160 |
[4] | J. Franceschi, L. Pareschi, M. Zanella, From agent-based models to the macroscopic description of fake-news spread: the role of competence in data-driven applications, Partial Differ. Equations Appl., 3 (2022), 68. https://doi.org/10.1007/s42985-022-00194-z doi: 10.1007/s42985-022-00194-z |
[5] | L. Pareschi, G. Toscani, Interacting Multiagent Systems, Kinetic Equations And Monte Carlo Methods, Oxford University Press, 2013. |
[6] | V. V. Aristov, A. S. Buchelnikov, Y. D. Nechipurenko, The use of the statistical entropy in some new approaches for the description of biosystems, Entropy, 24 (2022), 172. https://doi.org/10.3390/e24020172 doi: 10.3390/e24020172 |
[7] | R. Zivieri, N. Pacini, G. Finocchio, M. Carpentieri, Rate of entropy model for irreversible processes in living systems, Sci. Rep., 7 (2017), 9134. https://doi.org/10.1038/s41598-017-09530-5 doi: 10.1038/s41598-017-09530-5 |
[8] | Y. Demirel, Information in biological systems and the fluctuation theorem, Entropy, 16 (2014), 1931–1948. https://doi.org/10.3390/e16041931 doi: 10.3390/e16041931 |
[9] | F. Y. Edgeworth, Mathematical Psychics: An Essay on the Application of Mathematics to the Moral Sciences, Kegan Paul, London, 1881. |
[10] | G. Bertaglia, Asymptotic-preserving neural networks for hyperbolic systems with diffusive scaling, in Advances in Numerical Methods for Hyperbolic Balance Laws and Related Problems (eds. G. Albi, W. Boscheri, and M. Zanella), SEMA SIMAI Springer Series, Springer, (2023), 23–48. https://doi.org/10.1007/978-3-031-29875-2_2 |
[11] | G. Bertaglia, L. Liu, L. Pareschi, X. Zhu, Bi-fidelity stochastic collocation methods for epidemic transport models with uncertainties, Netw. Heterog. Media, 17 (2022), 401–425. https://doi.org/10.3934/nhm.2022013 doi: 10.3934/nhm.2022013 |
[12] | G. Bertaglia, C. Lu, L. Pareschi, X. Zhu, Asymptotic-preserving neural networks for multiscale hyperbolic models of epidemic spread, Math. Models Methods Appl. Sci., 32 (2022), 1949–1985. https://doi.org/10.1142/S0218202522500452 doi: 10.1142/S0218202522500452 |
[13] | G. Bertaglia, L. Pareschi, Hyperbolic models for the spread of epidemics on networks: kinetic description and numerical methods, ESAIM Math. Model. Numer. Anal., 55 (2021), 381–407. https://doi.org/10.1051/m2an/2020082 doi: 10.1051/m2an/2020082 |
[14] | N. Guglielmi, E. Iacomini, A. Viguerie, Delay differential equations for the spatially resolved simulation of epidemics with specific application to COVID‐19, Math. Models Methods Appl. Sci., 45 (2022), 4752–4771. https://doi.org/10.1002/mma.8068 doi: 10.1002/mma.8068 |
[15] | N. Guglielmi, E. Iacomini, A. Viguerie, Identification of time delays in COVID-19 data, Epidemiol. Methods, 12 (2023), 1–20. https://doi.org/10.1515/em-2022-0117 doi: 10.1515/em-2022-0117 |
[16] | Y. Tatsukawa, M. R. Arefin, K. Kuga, J. Tanimoto, An agent-based nested model integrating within-host and between-host mechanisms to predict an epidemic, PLoS ONE, 18 (2023), e0295954. https://doi.org/10.1371/journal.pone.0295954 doi: 10.1371/journal.pone.0295954 |
[17] | A. C. Lowen, S. Mubareka, J. Steel, P. Palese, Influenza virus transmission is dependent on relative humidity and temperature, PLoS Pathog., 3 (2007), 1470–1476. https://doi.org/10.1371/journal.ppat.0030151 doi: 10.1371/journal.ppat.0030151 |
[18] | C. J. E. Metcalf, O. N. Bjornstad, B. T. Grenfell, V. Andreasen, Seasonality and comparative dynamics of six childhood infections in pre-vaccination Copenhagen, Proc. R. Soc. B Biol. Sci., 276 (2009), 4111–4118. https://doi.org/10.1098/rspb.2009.1058 doi: 10.1098/rspb.2009.1058 |
[19] | A. Viguerie, M. Carletti, G. Silvestri, A. Veneziani, Mathematical modeling of periodic outbreaks with waning immunity: A possible long-term description of COVID-19, Mathematics, 11 (2023), 4918. https://doi.org/10.3390/math11244918 doi: 10.3390/math11244918 |
[20] | K. Bohl, S. Hummert, S. Werner, D. Basanta, A. Deutsch, S. Schuster, et al., Evolutionary game theory: molecules as players, Mol. Biosyst., 10 (2014), 3066–3074. https://doi.org/10.1039/C3MB70601J doi: 10.1039/C3MB70601J |
[21] | W. Casey, S. E. Massey, B. Mishra, How signalling games explain mimicry at many levels: from viral epidemiology to human sociology, J. R. Soc. Interface, 18 (2021), 20200689. https://doi.org/10.1098/rsif.2020.0689 doi: 10.1098/rsif.2020.0689 |
[22] | R. Della Marca, N. Loy, A. Tosin, An SIR model with viral load-dependent transmission, J. Math. Biol., 86 (2023), 61. https://doi.org/10.1007/s00285-023-01901-z doi: 10.1007/s00285-023-01901-z |
[23] | R. Della Marca, N. Loy, A. Tosin, An SIR–like kinetic model tracking individuals' viral load, Netw. Heterog. Media, 17 (2022), 467. https://doi.org/10.3934/nhm.2022017 doi: 10.3934/nhm.2022017 |
[24] | N. Loy, A. Tosin, A viral load-based model for epidemic spread on spatial networks, Math. Biosci. Eng., 18 (2021), 5635–5663. https://doi.org/10.3934/mbe.2021285 doi: 10.3934/mbe.2021285 |
[25] | G. Albi, W. Boscheri, G. Bertaglia, G. Dimarco, L. Pareschi, G. Toscani, et al., Kinetic modelling of epidemic dynamics: social contacts, control with uncertain data, and multiscale spatial dynamics, in Predicting Pandemics in a Globally Connected World (eds. N. Bellomo and M. Chaplain), Springer-Nature, 1 (2022), 43–108. https://doi.org/10.1007/978-3-030-96562-4_3 |
[26] | W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics–I, Bull. Math. Biol., 53 (1991), 33–55. https://doi.org/10.1007/BF02464423 doi: 10.1007/BF02464423 |
[27] | G. Bertaglia, W. Boscheri, G. Dimarco, L. Pareschi, Spatial spread of COVID-19 outbreak in Italy using multiscale kinetic transport equations with uncertainty, Math. Biosci. Eng., 18 (2021), 7028–7059. https://doi.org/10.3934/mbe.2021350 doi: 10.3934/mbe.2021350 |
[28] | G. Bertaglia, L. Pareschi, Hyperbolic compartmental models for epidemic spread on networks with uncertain data: Application to the emergence of COVID-19 in Italy, Math. Models Methods Appl. Sci., 31 (2021), 2495–2531. https://doi.org/10.1142/S0218202521500548 doi: 10.1142/S0218202521500548 |
[29] | D. M. Morens, G. K. Folkers, A. S. Fauci, What is a pandemic?, J. Infect. Dis., 200 (2009), 1018–1021. https://doi.org/10.1086/644537 doi: 10.1086/644537 |
[30] | C. Cercignani, The Boltzmann Equation and Its Applications, Springer Series in Applied Mathematical Sciences, Springer–Verlag, 67 (1988). https://doi.org/10.1007/978-1-4612-1039-9 |
[31] | G. Dimarco, L. Pareschi, G. Toscani, M. Zanella, Wealth distribution under the spread of infectious diseases, Phys. Rev. E, 102 (2020), 022303. https://doi.org/10.1103/PhysRevE.102.022303 doi: 10.1103/PhysRevE.102.022303 |
[32] | L. Pareschi, G. Toscani, Self-similarity and power-like tails in nonconservative kinetic models, J. Stat. Phys., 124 (2006), 747–779. https://doi.org/10.1007/s10955-006-9025-y doi: 10.1007/s10955-006-9025-y |
[33] | G. Toscani, C. Brugna, S. Demichelis, Kinetic models for the trading of goods, J. Stat. Phys., 151 (2013), 549–566. https://doi.org/10.1007/s10955-012-0653-0 doi: 10.1007/s10955-012-0653-0 |
[34] | L. Pareschi, G. Russo, An introduction to Monte Carlo methods for the Boltzmann equation, ESAIM: Proc., 10 (2001), 35–75. https://doi.org/10.1051/proc:2001004 doi: 10.1051/proc:2001004 |