Research article

Cancer detection through Electrical Impedance Tomography and optimal control theory: theoretical and computational analysis


  • Received: 24 December 2020 Accepted: 31 May 2021 Published: 03 June 2021
  • The Inverse Electrical Impedance Tomography (EIT) problem on recovering electrical conductivity tensor and potential in the body based on the measurement of the boundary voltages on the $ m $ electrodes for a given electrode current is analyzed. A PDE constrained optimal control framework in Besov space is developed, where the electrical conductivity tensor and boundary voltages are control parameters, and the cost functional is the norm difference of the boundary electrode current from the given current pattern and boundary electrode voltages from the measurements. The novelty of the control-theoretic model is its adaptation to the clinical situation when additional "voltage-to-current" measurements can increase the size of the input data from $ m $ up to $ m! $ while keeping the size of the unknown parameters fixed. The existence of the optimal control and Fréchet differentiability in the Besov space along with optimality condition is proved. Numerical analysis of the simulated model example in the 2D case demonstrates that by increasing the number of input boundary electrode currents from $ m $ to $ m^2 $ through additional "voltage-to-current" measurements the resolution of the electrical conductivity of the body identified via gradient method in Besov space framework is significantly improved.

    Citation: Ugur G. Abdulla, Vladislav Bukshtynov, Saleheh Seif. Cancer detection through Electrical Impedance Tomography and optimal control theory: theoretical and computational analysis[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 4834-4859. doi: 10.3934/mbe.2021246

    Related Papers:

  • The Inverse Electrical Impedance Tomography (EIT) problem on recovering electrical conductivity tensor and potential in the body based on the measurement of the boundary voltages on the $ m $ electrodes for a given electrode current is analyzed. A PDE constrained optimal control framework in Besov space is developed, where the electrical conductivity tensor and boundary voltages are control parameters, and the cost functional is the norm difference of the boundary electrode current from the given current pattern and boundary electrode voltages from the measurements. The novelty of the control-theoretic model is its adaptation to the clinical situation when additional "voltage-to-current" measurements can increase the size of the input data from $ m $ up to $ m! $ while keeping the size of the unknown parameters fixed. The existence of the optimal control and Fréchet differentiability in the Besov space along with optimality condition is proved. Numerical analysis of the simulated model example in the 2D case demonstrates that by increasing the number of input boundary electrode currents from $ m $ to $ m^2 $ through additional "voltage-to-current" measurements the resolution of the electrical conductivity of the body identified via gradient method in Besov space framework is significantly improved.



    加载中


    [1] D. S. Holder, Electrical impedance tomography: methods, history and applications, CRC Press, 2004.
    [2] E. Somersalo, M. Cheney, D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52 (1992), 1023–1040. doi: 10.1137/0152055
    [3] S. Laufer, A. Ivorra, V. Reuter, Electrical impedane characterization of normal and cancerous human hepatic tissue, Physiol. Meas., 31 (2010), 995–1009. doi: 10.1088/0967-3334/31/7/009
    [4] A. P. Calderon, On an inverse boundary value problem, in Seminar on Numerical Analysis and Its Applications to Continuum Physics, Soc. Brasileira de Mathematica, Rio de Janeiro, (1980), 65–73.
    [5] J. Sylvester, G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Physiol. Meas., (1987), 153–169.
    [6] A. I. Nachman, Reconstructions from boundary measurements, Ann. Math., 128 (1988), 531–576. doi: 10.2307/1971435
    [7] G. Alessandrini, Stable determination of conductivity by boundary measurements, Appl. Anal., 27 (1988), 153–172. doi: 10.1080/00036818808839730
    [8] K. Astala, L. Palvarinta, Calderon's inverse conductivity problem in the plane, Ann. Math., 163 (2006), 265–299. doi: 10.4007/annals.2006.163.265
    [9] C. Kenig, J. Sjöstrand, G. Uhlmann, The Calderon problem with partial data, Ann. Math., 165 (2007), 567–591. doi: 10.4007/annals.2007.165.567
    [10] C. Kenig, J. Sjöstrand, G. Uhlmann, The Calderon problem with partial data on manifolds and aplications, Anal. PDE, 6 (2013), 2003–2048. doi: 10.2140/apde.2013.6.2003
    [11] A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. Math., 143 (1996), 71–96. doi: 10.2307/2118653
    [12] K. Knudsen, M. Lassas, J. Mueller, S. Siltanen, D-Bar method for electrical impedance tomography with discontinuous conductivities, SIAM J. Appl. Math., 67 (2007), 893–913. doi: 10.1137/060656930
    [13] K. Knudsen, M. Lassas, J. Mueller, S. Siltanen, Reconstructions of piecewise constant conductivities by the D-bar method for electrical impedance tomography, J. Phys. Conf. Ser., 124 (2008), 012029. doi: 10.1088/1742-6596/124/1/012029
    [14] K. Knudsen, M. Lassas, J. Mueller, S. Siltanen, Regularized D-bar method for the inverse conductivity problem, Inverse Probl. Imaging, 3 (2009), 599–624. doi: 10.3934/ipi.2009.3.599
    [15] V. Kolehmainen, M. Lassas, P. Ola, S. Siltanen, Recovering boundary shape and conductivity in electrical impedance tomography, Inverse Problems and Imaging, Inverse Probl. Imaging, 7 (2013), 217–242. doi: 10.3934/ipi.2013.7.217
    [16] J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure Appl. Math., 43 (1990), 201–232. doi: 10.1002/cpa.3160430203
    [17] J. M. Lee, G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math., 42 (1989), 1097–1112. doi: 10.1002/cpa.3160420804
    [18] M. Lassas, G. Uhlmann, On determining a Riemannian manifold from the Dirichlet-to-Neumann map, Ann. Sci. Ecole Norm. Sup., 34 (2001), 771–787. doi: 10.1016/S0012-9593(01)01076-X
    [19] M. Lassas, G. Uhlmann, M. Taylor, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Commun. Anal. Geom., 11 (2003), 207–221. doi: 10.4310/CAG.2003.v11.n2.a2
    [20] M. I. Belishev, The Calderon problem for two-dimensional manifolds by the BC-Method, SIAM J Math. Anal., 35 (2003), 172–182. doi: 10.1137/S0036141002413919
    [21] K. Astala, M. Lassas, L. Palvarinta, Calderon's inverse problem for anisotropic conductivity in the plane, Comm. PDEs, 30 (2005), 207–224. doi: 10.1081/PDE-200044485
    [22] R. V. Kohn, M. Vogelius, Determining conductivity by boundary measurements, Comm. Pure Appl. Math., 37 (1984), 289–298. doi: 10.1002/cpa.3160370302
    [23] R. V. Kohn, M. Vogelius, Determining conductivity by boundary measurements. Ⅱ. Interior results, Comm. Pure Appl. Math., 38 (1985), 643–667. doi: 10.1002/cpa.3160380513
    [24] W. R. B. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Problems, 13 (1997), 125–134. doi: 10.1088/0266-5611/13/1/010
    [25] G. Alessandrini, R. Gaburro, The local Calderon problem and the determination at the boundary of the conductivity, Comm. PDEs, 34 (2009), 918–936. doi: 10.1080/03605300903017397
    [26] R. Gaburro, W. R. B. Lionheart, Recovering Riemannian metrics in monotone families from boundary data, Inverse Probl., 25 (2009), 045004. doi: 10.1088/0266-5611/25/4/045004
    [27] R. Gaburro, E. Sinicich, Lipschitz stability for the inverse conductivity problem for a conformal class of anisotropic conductivities, Inverse Probl., 31 (2015), 015008. doi: 10.1088/0266-5611/31/1/015008
    [28] G. Alessandrini, M.V. de Hoop, R. Gaburro, Uniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities, Inverse Probl., 33 (2017), 125013. doi: 10.1088/1361-6420/aa982d
    [29] A. Lechleiter, A. Rieder, Newton regularization for impedance tomography: convergence by local injectivity, Inverse Probl., 24 (2008), 065009. doi: 10.1088/0266-5611/24/6/065009
    [30] B. Harrach, Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes, Inverse Probl., 35 (2019), 024005. doi: 10.1088/1361-6420/aaf6fc
    [31] M. Ammari, H. Kang, Reconstruction of Small Inhomogeneities from Boundary, Springer, 2004.
    [32] O. Kwon, J. K. Seo, J. R. Yoon, A real-time algorithm for the location search of discontinuous conductivities with one measurement, Inverse Probl., 55 (2002), 1–29.
    [33] H. Ammari, L. Qiu, F. Santosa, W. Zhang, Determining anisotropic conductivity using diffusion tensor imaging data in magneto-acoustic tomography with magnetic induction, Inverse Probl., 33 (2017), 125006. doi: 10.1088/1361-6420/aa907e
    [34] J. K. Seo, E. J. Woo, Magnetic resonance electrical impedance tomography, SIAM Rev., 53 (2011), 40–68. doi: 10.1137/080742932
    [35] T. Widlak, O. Scherzer, Hybrid tomography for conductivity imaging, Inverse Probl., 28 (2012), 084008. doi: 10.1088/0266-5611/28/8/084008
    [36] H. Ammari, G. S. Alberti, B. Jin, J. K. Seo, W. Zhang, The linearized inverse problem in multifrequency electrical impedance tomography, SIAM J. Imaging Sci., 9 (2016), 1525–1551. doi: 10.1137/16M1061564
    [37] J. K. Seo, J. Lee, S. W. Kim, H. Zribi, E.J. Woo, Frequency-difference electrical impedance tomography: algorithm development and feasibility study, Phys. Meas., 29 (2008), 929–941. doi: 10.1088/0967-3334/29/8/006
    [38] B. Jin, Y. Xu, J. Zou, A convergent adaptive finite element method for electrical impedance tomography, IMA J. Numer. Anal., 37 (2017), 1520–1550.
    [39] G. Matthias, J. Bangti, X. Lu, An analysis of finite element approximation in electrical impedance tomography, Inverse Probl., 30 (2014), 045013. doi: 10.1088/0266-5611/30/4/045013
    [40] B. Jin, T. Khan, P. Maass, A reconstruction algorithm for electrical impedance tomography based on sparsity regularization, Int. J. Numer. Methods, 89 (2012), 337–353. doi: 10.1002/nme.3247
    [41] B. Harrah, M. N. Minh, Enhancing residual-based techniques with shape reconstruction features in Electrical Impedance Tomography, Inverse Probl., 32 (2016), 125002. doi: 10.1088/0266-5611/32/12/125002
    [42] M. Alsaker, J. L. Mueller, A $D$-bar algorithm with a priori information for 2-dimensional electrical impedance tomography, SIAM J. Imaging Sci., 9 (2016), 1619–1654. doi: 10.1137/15M1020137
    [43] M. Dodd, J. Mueller, A real-time $D$-bar algorithm for 2d electrical impedance tomography data, Inverse Probl. Imaging, 8 (2014), 1013–1031. doi: 10.3934/ipi.2014.8.1013
    [44] S. J. Hamilton, M. Lassas, S. Siltanen, A direct reconstruction method for anisotropic electrical impedance tomography, Inverse Probl., 30 (2014), 075007. doi: 10.1088/0266-5611/30/7/075007
    [45] S. J. Hamilton, M. Lassas, S. Siltanen, A hybrid segmentation and $D$-bar method for electrical impedance tomography, SIAM J. Imaging Sci., 9 (2016), 770–793. doi: 10.1137/15M1025992
    [46] N. Hyvönen, L. Pälvärinta, J. P. Tamminen, Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps, Inverse Probl. Imaging, 12 (2018), 373–400. doi: 10.3934/ipi.2018017
    [47] M. V. Klibanov, J. Li, W. Zhang, Convexification of electrical impedance tomography with restricted Dirichlet-to-Neumann map data, Inverse Probl., 35 (2019), 035005. doi: 10.1088/1361-6420/aafecd
    [48] J. P. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems, Springer, 2005.
    [49] J. P. Kaipio, V. Kolehmainen, E. Somersalo, M. Vauhkonen, Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography, Inverse Probl., 16 (2000), 1487. doi: 10.1088/0266-5611/16/5/321
    [50] J. P. Kaipio, V. Kolehmainen, M. Vauhkonen, E. Somersalo, Inverse problems with structural prior information, Inverse Probl., 15 (1999), 713. doi: 10.1088/0266-5611/15/3/306
    [51] S. Lasanen, J. M. L. Huttunen, L. Roininen, Whittle-Matern priors for Bayesian statistical inversion with applications in electrical impedance tomography, Inverse Probl. Imaging, (2014), 561–586.
    [52] M. Lassas, E. Saksman, S. Siltanen, Discretization-invariant Bayesian inversion and Besov space priors, Inverse Probl. Imaging, (2009), 87–122.
    [53] M. Dunlop, A. M. Stuart, The Bayesian formulation of EIT: analysis and algorithms, Inverse Probl. Imaging, 10 (2016), 1007–1036. doi: 10.3934/ipi.2016030
    [54] L. C. Evans, Partial Differential Equations, Graduate studies in mathematics, 1998.
    [55] U. G. Abdulla, On the Optimal Control of the Free Boundary Problems for the Second Order Parabolic Equations. Ⅰ. Well-posedness and Convergence of the Method of Lines, Inverse Probl. Imaging, 7 (2013), 307–340. doi: 10.3934/ipi.2013.7.307
    [56] U. G. Abdulla, On the Optimal Control of the Free Boundary Problems for the Second Order Parabolic Equations. Ⅱ. Convergence of the Method of Finite Differences, Inverse Probl. Imaging, 10 (2016), 869–898. doi: 10.3934/ipi.2016025
    [57] U. G. Abdulla, J. M. Goldfarb, Fréchet differentiability in Besov spaces in the optimal control of parabolic free boundary problems, J. Inverse Ill Posed Probl., 26 (2018), 211–227. doi: 10.1515/jiip-2017-0014
    [58] U. G. Abdulla, E. Cosgrove, J. Goldfarb, On the Fréchet differentiability in optimal control of coefficients in parabolic free boundary problems, Evol. Equ. Control. Theory, 6 (2017), 319–344. doi: 10.3934/eect.2017017
    [59] U. G. Abdulla, B. Poggi, Optimal control of the multiphase Stefan problem, Appl. Math. Optim., 80 (2019), 479–513. doi: 10.1007/s00245-017-9472-7
    [60] U. G. Abdulla, V. Bukshtynov, A. Hagverdiyev, Gradient method in Hilbert-Besov spaces for the optimal control of parabolic free boundary problems, J. Comput. Appl. Math., 346 (2019), 84–109. doi: 10.1016/j.cam.2018.06.043
    [61] U. G. Abdulla, B. Poggi, Optimal Stefan problem, Calc. Var. Partial Differ. Equ., 59 (2020), 1–40.
    [62] O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, Volume Ⅰ, Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York -Toronto, Ont.-London, 1978, viii+345 pp.
    [63] O. V. Besov, V.P. Il'in, S.M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, Volume Ⅱ, Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York -Toronto, Ont.-London, 1979, vii+311 pp.
    [64] S. M. Nikol'skii, Approximation of Functions of Several Variables and Imbedding Theorems, Springer-Verlag, New York-Heidelberg, 1975, vii+418 pp.
    [65] P. E. Gill, W. Murray, M.A. Saunders, SNOPT: An SQP algorithm for large-scale constrained optimization, SIAM Rev., 47 (2005), 99–131. doi: 10.1137/S0036144504446096
    [66] F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251–265.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2395) PDF downloads(155) Cited by(5)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog