The Inverse Electrical Impedance Tomography (EIT) problem on recovering electrical conductivity tensor and potential in the body based on the measurement of the boundary voltages on the m electrodes for a given electrode current is analyzed. A PDE constrained optimal control framework in Besov space is developed, where the electrical conductivity tensor and boundary voltages are control parameters, and the cost functional is the norm difference of the boundary electrode current from the given current pattern and boundary electrode voltages from the measurements. The novelty of the control-theoretic model is its adaptation to the clinical situation when additional "voltage-to-current" measurements can increase the size of the input data from m up to m! while keeping the size of the unknown parameters fixed. The existence of the optimal control and Fréchet differentiability in the Besov space along with optimality condition is proved. Numerical analysis of the simulated model example in the 2D case demonstrates that by increasing the number of input boundary electrode currents from m to m2 through additional "voltage-to-current" measurements the resolution of the electrical conductivity of the body identified via gradient method in Besov space framework is significantly improved.
Citation: Ugur G. Abdulla, Vladislav Bukshtynov, Saleheh Seif. Cancer detection through Electrical Impedance Tomography and optimal control theory: theoretical and computational analysis[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 4834-4859. doi: 10.3934/mbe.2021246
[1] | Qinyan shen, Jiang wang, Liangying zhao . To investigate the internal association between SARS-CoV-2 infections and cancer through bioinformatics. Mathematical Biosciences and Engineering, 2022, 19(11): 11172-11194. doi: 10.3934/mbe.2022521 |
[2] | Yue Hu, Xiaoqin Mei, Dong Tang . Long non-coding RNA XIST is down-regulated and correlated to better prognosis in ovarian cancer. Mathematical Biosciences and Engineering, 2020, 17(3): 2070-2081. doi: 10.3934/mbe.2020110 |
[3] | Yongyin Han, Maolin Liu, Zhixiao Wang . Key protein identification by integrating protein complex information and multi-biological features. Mathematical Biosciences and Engineering, 2023, 20(10): 18191-18206. doi: 10.3934/mbe.2023808 |
[4] | Li-Sha Pan, Zacharia Ackbarkha, Jing Zeng, Min-Li Huang, Zhen Yang, Hao Liang . Immune marker signature helps to predict survival in uveal melanoma. Mathematical Biosciences and Engineering, 2021, 18(4): 4055-4070. doi: 10.3934/mbe.2021203 |
[5] | Changxiang Huan, Jiaxin Gao . Insight into the potential pathogenesis of human osteoarthritis via single-cell RNA sequencing data on osteoblasts. Mathematical Biosciences and Engineering, 2022, 19(6): 6344-6361. doi: 10.3934/mbe.2022297 |
[6] | Yutong Man, Guangming Liu, Kuo Yang, Xuezhong Zhou . SNFM: A semi-supervised NMF algorithm for detecting biological functional modules. Mathematical Biosciences and Engineering, 2019, 16(4): 1933-1948. doi: 10.3934/mbe.2019094 |
[7] | Babak Khorsand, Abdorreza Savadi, Javad Zahiri, Mahmoud Naghibzadeh . Alpha influenza virus infiltration prediction using virus-human protein-protein interaction network. Mathematical Biosciences and Engineering, 2020, 17(4): 3109-3129. doi: 10.3934/mbe.2020176 |
[8] | Moxuan Zhang, Quan Zhang, Jilin Bai, Zhiming Zhao, Jian Zhang . Transcriptome analysis revealed CENPF associated with glioma prognosis. Mathematical Biosciences and Engineering, 2021, 18(3): 2077-2096. doi: 10.3934/mbe.2021107 |
[9] | Jian-Di Li, Gang Chen, Mei Wu, Yu Huang, Wei Tang . Downregulation of CDC14B in 5218 breast cancer patients: A novel prognosticator for triple-negative breast cancer. Mathematical Biosciences and Engineering, 2020, 17(6): 8152-8181. doi: 10.3934/mbe.2020414 |
[10] | Sufang Wu, Hua He, Jingjing Huang, Shiyao Jiang, Xiyun Deng, Jun Huang, Yuanbing Chen, Yiqun Jiang . FMR1 is identified as an immune-related novel prognostic biomarker for renal clear cell carcinoma: A bioinformatics analysis of TAZ/YAP. Mathematical Biosciences and Engineering, 2022, 19(9): 9295-9320. doi: 10.3934/mbe.2022432 |
The Inverse Electrical Impedance Tomography (EIT) problem on recovering electrical conductivity tensor and potential in the body based on the measurement of the boundary voltages on the m electrodes for a given electrode current is analyzed. A PDE constrained optimal control framework in Besov space is developed, where the electrical conductivity tensor and boundary voltages are control parameters, and the cost functional is the norm difference of the boundary electrode current from the given current pattern and boundary electrode voltages from the measurements. The novelty of the control-theoretic model is its adaptation to the clinical situation when additional "voltage-to-current" measurements can increase the size of the input data from m up to m! while keeping the size of the unknown parameters fixed. The existence of the optimal control and Fréchet differentiability in the Besov space along with optimality condition is proved. Numerical analysis of the simulated model example in the 2D case demonstrates that by increasing the number of input boundary electrode currents from m to m2 through additional "voltage-to-current" measurements the resolution of the electrical conductivity of the body identified via gradient method in Besov space framework is significantly improved.
[1] | D. S. Holder, Electrical impedance tomography: methods, history and applications, CRC Press, 2004. |
[2] |
E. Somersalo, M. Cheney, D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52 (1992), 1023–1040. doi: 10.1137/0152055
![]() |
[3] |
S. Laufer, A. Ivorra, V. Reuter, Electrical impedane characterization of normal and cancerous human hepatic tissue, Physiol. Meas., 31 (2010), 995–1009. doi: 10.1088/0967-3334/31/7/009
![]() |
[4] | A. P. Calderon, On an inverse boundary value problem, in Seminar on Numerical Analysis and Its Applications to Continuum Physics, Soc. Brasileira de Mathematica, Rio de Janeiro, (1980), 65–73. |
[5] | J. Sylvester, G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Physiol. Meas., (1987), 153–169. |
[6] |
A. I. Nachman, Reconstructions from boundary measurements, Ann. Math., 128 (1988), 531–576. doi: 10.2307/1971435
![]() |
[7] |
G. Alessandrini, Stable determination of conductivity by boundary measurements, Appl. Anal., 27 (1988), 153–172. doi: 10.1080/00036818808839730
![]() |
[8] |
K. Astala, L. Palvarinta, Calderon's inverse conductivity problem in the plane, Ann. Math., 163 (2006), 265–299. doi: 10.4007/annals.2006.163.265
![]() |
[9] |
C. Kenig, J. Sjöstrand, G. Uhlmann, The Calderon problem with partial data, Ann. Math., 165 (2007), 567–591. doi: 10.4007/annals.2007.165.567
![]() |
[10] |
C. Kenig, J. Sjöstrand, G. Uhlmann, The Calderon problem with partial data on manifolds and aplications, Anal. PDE, 6 (2013), 2003–2048. doi: 10.2140/apde.2013.6.2003
![]() |
[11] |
A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. Math., 143 (1996), 71–96. doi: 10.2307/2118653
![]() |
[12] |
K. Knudsen, M. Lassas, J. Mueller, S. Siltanen, D-Bar method for electrical impedance tomography with discontinuous conductivities, SIAM J. Appl. Math., 67 (2007), 893–913. doi: 10.1137/060656930
![]() |
[13] |
K. Knudsen, M. Lassas, J. Mueller, S. Siltanen, Reconstructions of piecewise constant conductivities by the D-bar method for electrical impedance tomography, J. Phys. Conf. Ser., 124 (2008), 012029. doi: 10.1088/1742-6596/124/1/012029
![]() |
[14] |
K. Knudsen, M. Lassas, J. Mueller, S. Siltanen, Regularized D-bar method for the inverse conductivity problem, Inverse Probl. Imaging, 3 (2009), 599–624. doi: 10.3934/ipi.2009.3.599
![]() |
[15] |
V. Kolehmainen, M. Lassas, P. Ola, S. Siltanen, Recovering boundary shape and conductivity in electrical impedance tomography, Inverse Problems and Imaging, Inverse Probl. Imaging, 7 (2013), 217–242. doi: 10.3934/ipi.2013.7.217
![]() |
[16] |
J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure Appl. Math., 43 (1990), 201–232. doi: 10.1002/cpa.3160430203
![]() |
[17] |
J. M. Lee, G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math., 42 (1989), 1097–1112. doi: 10.1002/cpa.3160420804
![]() |
[18] |
M. Lassas, G. Uhlmann, On determining a Riemannian manifold from the Dirichlet-to-Neumann map, Ann. Sci. Ecole Norm. Sup., 34 (2001), 771–787. doi: 10.1016/S0012-9593(01)01076-X
![]() |
[19] |
M. Lassas, G. Uhlmann, M. Taylor, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Commun. Anal. Geom., 11 (2003), 207–221. doi: 10.4310/CAG.2003.v11.n2.a2
![]() |
[20] |
M. I. Belishev, The Calderon problem for two-dimensional manifolds by the BC-Method, SIAM J Math. Anal., 35 (2003), 172–182. doi: 10.1137/S0036141002413919
![]() |
[21] |
K. Astala, M. Lassas, L. Palvarinta, Calderon's inverse problem for anisotropic conductivity in the plane, Comm. PDEs, 30 (2005), 207–224. doi: 10.1081/PDE-200044485
![]() |
[22] |
R. V. Kohn, M. Vogelius, Determining conductivity by boundary measurements, Comm. Pure Appl. Math., 37 (1984), 289–298. doi: 10.1002/cpa.3160370302
![]() |
[23] |
R. V. Kohn, M. Vogelius, Determining conductivity by boundary measurements. Ⅱ. Interior results, Comm. Pure Appl. Math., 38 (1985), 643–667. doi: 10.1002/cpa.3160380513
![]() |
[24] |
W. R. B. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Problems, 13 (1997), 125–134. doi: 10.1088/0266-5611/13/1/010
![]() |
[25] |
G. Alessandrini, R. Gaburro, The local Calderon problem and the determination at the boundary of the conductivity, Comm. PDEs, 34 (2009), 918–936. doi: 10.1080/03605300903017397
![]() |
[26] |
R. Gaburro, W. R. B. Lionheart, Recovering Riemannian metrics in monotone families from boundary data, Inverse Probl., 25 (2009), 045004. doi: 10.1088/0266-5611/25/4/045004
![]() |
[27] |
R. Gaburro, E. Sinicich, Lipschitz stability for the inverse conductivity problem for a conformal class of anisotropic conductivities, Inverse Probl., 31 (2015), 015008. doi: 10.1088/0266-5611/31/1/015008
![]() |
[28] |
G. Alessandrini, M.V. de Hoop, R. Gaburro, Uniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities, Inverse Probl., 33 (2017), 125013. doi: 10.1088/1361-6420/aa982d
![]() |
[29] |
A. Lechleiter, A. Rieder, Newton regularization for impedance tomography: convergence by local injectivity, Inverse Probl., 24 (2008), 065009. doi: 10.1088/0266-5611/24/6/065009
![]() |
[30] |
B. Harrach, Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes, Inverse Probl., 35 (2019), 024005. doi: 10.1088/1361-6420/aaf6fc
![]() |
[31] | M. Ammari, H. Kang, Reconstruction of Small Inhomogeneities from Boundary, Springer, 2004. |
[32] | O. Kwon, J. K. Seo, J. R. Yoon, A real-time algorithm for the location search of discontinuous conductivities with one measurement, Inverse Probl., 55 (2002), 1–29. |
[33] |
H. Ammari, L. Qiu, F. Santosa, W. Zhang, Determining anisotropic conductivity using diffusion tensor imaging data in magneto-acoustic tomography with magnetic induction, Inverse Probl., 33 (2017), 125006. doi: 10.1088/1361-6420/aa907e
![]() |
[34] |
J. K. Seo, E. J. Woo, Magnetic resonance electrical impedance tomography, SIAM Rev., 53 (2011), 40–68. doi: 10.1137/080742932
![]() |
[35] |
T. Widlak, O. Scherzer, Hybrid tomography for conductivity imaging, Inverse Probl., 28 (2012), 084008. doi: 10.1088/0266-5611/28/8/084008
![]() |
[36] |
H. Ammari, G. S. Alberti, B. Jin, J. K. Seo, W. Zhang, The linearized inverse problem in multifrequency electrical impedance tomography, SIAM J. Imaging Sci., 9 (2016), 1525–1551. doi: 10.1137/16M1061564
![]() |
[37] |
J. K. Seo, J. Lee, S. W. Kim, H. Zribi, E.J. Woo, Frequency-difference electrical impedance tomography: algorithm development and feasibility study, Phys. Meas., 29 (2008), 929–941. doi: 10.1088/0967-3334/29/8/006
![]() |
[38] | B. Jin, Y. Xu, J. Zou, A convergent adaptive finite element method for electrical impedance tomography, IMA J. Numer. Anal., 37 (2017), 1520–1550. |
[39] |
G. Matthias, J. Bangti, X. Lu, An analysis of finite element approximation in electrical impedance tomography, Inverse Probl., 30 (2014), 045013. doi: 10.1088/0266-5611/30/4/045013
![]() |
[40] |
B. Jin, T. Khan, P. Maass, A reconstruction algorithm for electrical impedance tomography based on sparsity regularization, Int. J. Numer. Methods, 89 (2012), 337–353. doi: 10.1002/nme.3247
![]() |
[41] |
B. Harrah, M. N. Minh, Enhancing residual-based techniques with shape reconstruction features in Electrical Impedance Tomography, Inverse Probl., 32 (2016), 125002. doi: 10.1088/0266-5611/32/12/125002
![]() |
[42] |
M. Alsaker, J. L. Mueller, A D-bar algorithm with a priori information for 2-dimensional electrical impedance tomography, SIAM J. Imaging Sci., 9 (2016), 1619–1654. doi: 10.1137/15M1020137
![]() |
[43] |
M. Dodd, J. Mueller, A real-time D-bar algorithm for 2d electrical impedance tomography data, Inverse Probl. Imaging, 8 (2014), 1013–1031. doi: 10.3934/ipi.2014.8.1013
![]() |
[44] |
S. J. Hamilton, M. Lassas, S. Siltanen, A direct reconstruction method for anisotropic electrical impedance tomography, Inverse Probl., 30 (2014), 075007. doi: 10.1088/0266-5611/30/7/075007
![]() |
[45] |
S. J. Hamilton, M. Lassas, S. Siltanen, A hybrid segmentation and D-bar method for electrical impedance tomography, SIAM J. Imaging Sci., 9 (2016), 770–793. doi: 10.1137/15M1025992
![]() |
[46] |
N. Hyvönen, L. Pälvärinta, J. P. Tamminen, Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps, Inverse Probl. Imaging, 12 (2018), 373–400. doi: 10.3934/ipi.2018017
![]() |
[47] |
M. V. Klibanov, J. Li, W. Zhang, Convexification of electrical impedance tomography with restricted Dirichlet-to-Neumann map data, Inverse Probl., 35 (2019), 035005. doi: 10.1088/1361-6420/aafecd
![]() |
[48] | J. P. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems, Springer, 2005. |
[49] |
J. P. Kaipio, V. Kolehmainen, E. Somersalo, M. Vauhkonen, Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography, Inverse Probl., 16 (2000), 1487. doi: 10.1088/0266-5611/16/5/321
![]() |
[50] |
J. P. Kaipio, V. Kolehmainen, M. Vauhkonen, E. Somersalo, Inverse problems with structural prior information, Inverse Probl., 15 (1999), 713. doi: 10.1088/0266-5611/15/3/306
![]() |
[51] | S. Lasanen, J. M. L. Huttunen, L. Roininen, Whittle-Matern priors for Bayesian statistical inversion with applications in electrical impedance tomography, Inverse Probl. Imaging, (2014), 561–586. |
[52] | M. Lassas, E. Saksman, S. Siltanen, Discretization-invariant Bayesian inversion and Besov space priors, Inverse Probl. Imaging, (2009), 87–122. |
[53] |
M. Dunlop, A. M. Stuart, The Bayesian formulation of EIT: analysis and algorithms, Inverse Probl. Imaging, 10 (2016), 1007–1036. doi: 10.3934/ipi.2016030
![]() |
[54] | L. C. Evans, Partial Differential Equations, Graduate studies in mathematics, 1998. |
[55] |
U. G. Abdulla, On the Optimal Control of the Free Boundary Problems for the Second Order Parabolic Equations. Ⅰ. Well-posedness and Convergence of the Method of Lines, Inverse Probl. Imaging, 7 (2013), 307–340. doi: 10.3934/ipi.2013.7.307
![]() |
[56] |
U. G. Abdulla, On the Optimal Control of the Free Boundary Problems for the Second Order Parabolic Equations. Ⅱ. Convergence of the Method of Finite Differences, Inverse Probl. Imaging, 10 (2016), 869–898. doi: 10.3934/ipi.2016025
![]() |
[57] |
U. G. Abdulla, J. M. Goldfarb, Fréchet differentiability in Besov spaces in the optimal control of parabolic free boundary problems, J. Inverse Ill Posed Probl., 26 (2018), 211–227. doi: 10.1515/jiip-2017-0014
![]() |
[58] |
U. G. Abdulla, E. Cosgrove, J. Goldfarb, On the Fréchet differentiability in optimal control of coefficients in parabolic free boundary problems, Evol. Equ. Control. Theory, 6 (2017), 319–344. doi: 10.3934/eect.2017017
![]() |
[59] |
U. G. Abdulla, B. Poggi, Optimal control of the multiphase Stefan problem, Appl. Math. Optim., 80 (2019), 479–513. doi: 10.1007/s00245-017-9472-7
![]() |
[60] |
U. G. Abdulla, V. Bukshtynov, A. Hagverdiyev, Gradient method in Hilbert-Besov spaces for the optimal control of parabolic free boundary problems, J. Comput. Appl. Math., 346 (2019), 84–109. doi: 10.1016/j.cam.2018.06.043
![]() |
[61] | U. G. Abdulla, B. Poggi, Optimal Stefan problem, Calc. Var. Partial Differ. Equ., 59 (2020), 1–40. |
[62] | O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, Volume Ⅰ, Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York -Toronto, Ont.-London, 1978, viii+345 pp. |
[63] | O. V. Besov, V.P. Il'in, S.M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, Volume Ⅱ, Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York -Toronto, Ont.-London, 1979, vii+311 pp. |
[64] | S. M. Nikol'skii, Approximation of Functions of Several Variables and Imbedding Theorems, Springer-Verlag, New York-Heidelberg, 1975, vii+418 pp. |
[65] |
P. E. Gill, W. Murray, M.A. Saunders, SNOPT: An SQP algorithm for large-scale constrained optimization, SIAM Rev., 47 (2005), 99–131. doi: 10.1137/S0036144504446096
![]() |
[66] | F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251–265. |
1. | Edward A. Rietman, Jacob G. Scott, Jack A. Tuszynski, Giannoula Lakka Klement, Personalized anticancer therapy selection using molecular landscape topology and thermodynamics, 2017, 8, 1949-2553, 18735, 10.18632/oncotarget.12932 | |
2. | Edward A. Rietman, Sophie Taylor, Hava T. Siegelmann, Marco A. Deriu, Marco Cavaglia, Jack A. Tuszynski, Using the Gibbs Function as a Measure of Human Brain Development Trends from Fetal Stage to Advanced Age, 2020, 21, 1422-0067, 1116, 10.3390/ijms21031116 | |
3. | Elizabeth J. Brant, Edward A. Rietman, Giannoula Lakka Klement, Marco Cavaglia, Jack A. Tuszynski, Xu-jie Zhou, Personalized therapy design for systemic lupus erythematosus based on the analysis of protein-protein interaction networks, 2020, 15, 1932-6203, e0226883, 10.1371/journal.pone.0226883 | |
4. | J. James Frost, Kenneth J. Pienta, Donald S. Coffey, Symmetry and symmetry breaking in cancer: a foundational approach to the cancer problem, 2018, 9, 1949-2553, 11429, 10.18632/oncotarget.22939 | |
5. | Edward A. Rietman, John Platig, Jack A. Tuszynski, Giannoula Lakka Klement, Thermodynamic measures of cancer: Gibbs free energy and entropy of protein–protein interactions, 2016, 42, 0092-0606, 339, 10.1007/s10867-016-9410-y | |
6. | Edward Rietman, Jack A. Tuszynski, 2018, Chapter 8, 978-3-319-74973-0, 139, 10.1007/978-3-319-74974-7_8 | |
7. | Ellen Kure Fischer, Antonio Drago, A molecular pathway analysis stresses the role of inflammation and oxidative stress towards cognition in schizophrenia, 2017, 124, 0300-9564, 765, 10.1007/s00702-017-1730-y | |
8. | Chang Yu, Edward A. Rietman, Hava T. Siegelmann, Marco Cavaglia, Jack A. Tuszynski, Application of Thermodynamics and Protein–Protein Interaction Network Topology for Discovery of Potential New Treatments for Temporal Lobe Epilepsy, 2021, 11, 2076-3417, 8059, 10.3390/app11178059 | |
9. | Nicolas Carels, Domenico Sgariglia, Marcos Guilherme Vieira Junior, Carlyle Ribeiro Lima, Flávia Raquel Gonçalves Carneiro, Gilberto Ferreira da Silva, Fabricio Alves Barbosa da Silva, Rafaela Scardini, Jack Adam Tuszynski, Cecilia Vianna de Andrade, Ana Carolina Monteiro, Marcel Guimarães Martins, Talita Goulart da Silva, Helen Ferraz, Priscilla Vanessa Finotelli, Tiago Albertini Balbino, José Carlos Pinto, A Strategy Utilizing Protein–Protein Interaction Hubs for the Treatment of Cancer Diseases, 2023, 24, 1422-0067, 16098, 10.3390/ijms242216098 | |
10. | Giulia Pozzati, Jinrui Zhou, Hananel Hazan, Giannoula Lakka Klement, Hava T. Siegelmann, Jack A. Tuszynski, Edward A. Rietman, A Systems Biology Analysis of Chronic Lymphocytic Leukemia, 2024, 4, 2673-7523, 163, 10.3390/onco4030013 |