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Abstract: The Inverse Electrical Impedance Tomography (EIT) problem on recovering electrical con-
ductivity tensor and potential in the body based on the measurement of the boundary voltages on the
m electrodes for a given electrode current is analyzed. A PDE constrained optimal control framework
in Besov space is developed, where the electrical conductivity tensor and boundary voltages are con-
trol parameters, and the cost functional is the norm difference of the boundary electrode current from
the given current pattern and boundary electrode voltages from the measurements. The novelty of the
control-theoretic model is its adaptation to the clinical situation when additional “’voltage-to-current”
measurements can increase the size of the input data from m up to m! while keeping the size of the un-
known parameters fixed. The existence of the optimal control and Fréchet differentiability in the Besov
space along with optimality condition is proved. Numerical analysis of the simulated model example in
the 2D case demonstrates that by increasing the number of input boundary electrode currents from m to
m? through additional ”voltage-to-current” measurements the resolution of the electrical conductivity
of the body identified via gradient method in Besov space framework is significantly improved.
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1. Introduction and problem description

This paper analyzes inverse EIT problem of estimating an unknown conductivity inside the body
based on voltage measurements on the surface of the body when electric currents are applied through a
set of contact electrodes. Let Q € R” be an open and bounded set representing body, and assume A (x) =
(al- j (x));lj:1 be a matrix representing the electrical conductivity tensor at the point x € Q. Electrodes,
(Ep)f-,, with contact impedances vector Z := (Z;)]”.; € R} are attached to the periphery of the body,
dQ. Electric current vector [ := (I;)/", € R™ is applied to the electrodes. Vector [ is called current
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pattern if it satisfies conservation of charge condition

=0, (L.1)

(ngE

l

—

The induced constant voltage on electrodes is denoted by U := (U;)]~., € R™. By specifying ground or
zero potential it is assumed that

(ngE

U, = 0. (1.2)
l

1

EIT problem is to find the electrostatic potential « : Q — R and boundary voltages U on (E;);",. The
mathematical model of the EIT problem is described through the following boundary value problem
for the second order elliptic partial differential equation:

— Z aij(x)uy;) . =0, xeQ (1.3)
i,j=1
du(x) "
s =0, xE&Q—lulEl (1.4)
u(x)—f—ZlaaLf/(;;) = U, x€E,l=1,m (1.5)
du(x) L
, aﬂd s=1, I=T,m (1.6)
where
du(x)

be a co-normal derivative at x, and v = (v!, ..., v") is the outward normal at a point x to dQ. Electrical
conductivity matrix A = (g;;) is positive definite with

Y ayx 5l§,>u25 V& eR" >0 (1.7)

i,j=1

The following is the
EIT Problem: Given electrical conductivity tensor A, electrode contact impedance vector Z, and
electrode current pattern I it is required to find electrostatic potential u and electrode voltages U
satisfying (1.2)—(1.6):
(A,Z,1) — (u,U).

The goal of the paper is to analyze the inverse EIT problem of determining conductivity tensor A
from the measurements of the boundary voltages U*.

Inverse EIT Problem: Given electrode contact impedance vector Z, electrode current pattern 1
and boundary electrode measurement U*, it is required to find electrostatic potential u and electrical
conductivity tensor A satisfying (1.2)—(1.6) with U = U*.
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EIT problem has many important applications in medicine, industry, geophysics and material sci-
ence [1]. Mathematical model (1.2)—(1.6) for the EIT Problem, referred as complete electrode model,
was suggested in [2] in the isotropic case A = o/, where [ is a unit matrix (Eq (1.8)). This model sug-
gests the replacement of the complete potential measurements along the boundary with measurements
of constant potential along the electrodes with contact impedances. In [2] it was demonstrated that the
complete electrode model is physically more relevant, and it is capable of predicting the experimen-
tally measured voltages to within 0.1 percent. Existence and uniqueness of the solution to the problem
(1.2)—(1.6) was proved in [2].

We are especially motivated by medical applications on the detection of cancerous tumors from
breast tissue or other parts of the body. Relevance of the inverse EIT problem for cancer detection is
based on the fact that the conductivity of the cancerous tumor is higher than the conductivity of normal
tissues [3]. Inverse EIT Problem is an ill-posed problem and belongs to the class of so-called Calderon
type inverse problems, due to celebrated work [4], where the well-posedness of the inverse problem
for the identification of the conductivity coefficient o :  — R of the second-order elliptic PDE

div(o(x)Vu) =0 (1.8)

through Dirichlet-to-Neumann or Neumann-to-Dirichlet boundary maps is presented. Significant de-
velopment in Calderon’s inverse problem in the class of smooth conductivity functions with spatial
dimension n > 3, concerning questions on uniqueness, stability, reconstruction procedure, reconstruc-
tion with partial data was achieved in [5-10]. Global uniqueness in spatial dimension n = 2 and
reconstruction procedure through scattering transform and employment of the D-bar method was pre-
sented in a key paper [11]. Further essential development of the D-bar method for the reconstruction
of discontinuous parameters, regularization due to the inaccuracy of measurements, joint recovery of
the shape of the domain and conductivity are pursued in [12-15]. The inverse EIT problem with un-
known anisotropic conductivity tensor as in (1.3) is highly ill-posed, and even with a perfect Dirichlet
to Neumann map there is a non-uniqueness [16]. This is the structural non-uniqueness, and one can
talk about the identification of the conductivity tensor up to diffeomorphisms which keep the boundary
fixed [11,16-21]. An alternative approach is based on imposing apriori structural constraints on the
class of anisotropies [22-28].

Inverse EIT Problem is more difficult than Calderon’s problem due to the fact that the infinite-
dimensional conductivity function o (or tensor A) and finite-dimensional voltage vector U must be
identified based on the finitely many boundary electrode voltage measurements. The input data is a
finite-dimensional current vector, whereas in Calderon’s problem input data is given through infinite-
dimensional boundary operator “’Dirichlet-to-Neuman” or "Neuman-to-Dirichlet”. Therefore, the in-
verse EIT problem is highly ill-posed, and powerful regularization methods are required for its solution.
It is essential to note that the size of the input current vector is limited to the number of electrodes, and
there is no flexibility to increase its size. It would be natural to suggest that the multiple data sets -
input currents can be implemented for the identification of the same conductivity function. However,
note that besides the unknown conductivity function, there is an unknown boundary voltage vector
with a size directly proportional to the size of the input current vector. Accordingly, multiple ex-
periments with “current-to-voltage” measurements are not reducing underdeterminacy of the inverse
problem. One can prove uniqueness and stability results by restricting isotropic conductivity to the
finite-dimensional subset of piecewise analytic functions provided that the number of electrodes is
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large enough [29, 30]. Within the last three decades, many methods developed for the numerical so-
lution of the ill-posed inverse EIT problem both in isotropic and anisotropic conductivities. Without
any ambition to present a full review, we refer to some significant developments such as recovery
of the small inclusions from boundary measurements [31, 32]; hybrid conductivity imaging meth-
ods [33-35]; multi-frequency EIT imaging methods [36,37]; finite element and adaptive finite element
method [38,39]; imaging algorithms based on the sparsity reconstruction [36,40]; globally convergent
method for shape reconstruction in EIT [41]; D-bar method, diction reconstruction method, recover-
ing boundary shape and imaging the anisotropic electrical conductivity [42—46]; globally convergent
regularization method using Carleman weight function [47].

Inverse EIT problem was widely studied in the framework of Bayesian statistics [48]. In [49]
inverse EIT problem is formulated as a Bayesian problem of statistical inference and the Markov Chain
Monte Carlo method with various prior distributions is implemented for calculation of the posterior
distributions of the unknown parameters conditioned on measurement data. In [50] Bayesian model
of the regularized version of the inverse EIT problem is analyzed. In [51] the Bayesian method with
Whittle-Matérn priors is applied to the inverse EIT problem. In general, the strategy of the Bayesian
approach to the inverse EIT problem in the infinite-dimensional setting is twofold. The first approach
is based on discretization followed by the application of finite-dimensional Bayesian methods. All the
described papers followed this approach, which is outlined in [48]. The alternative approach is based
on direct application of the Bayesian methods in functional spaces before discretization [52,53].

The goal of the paper is to introduce a variational formulation of the inverse EIT problem as a PDE
constrained optimal control problem in a Besov space. The novelty of the control-theoretic model is its
adaptation to the clinical situations when additional ’voltage-to-current” measurements can increase
the size of the input data from the number of electrodes m up to m! while keeping the size of the
unknown parameters fixed. Our method theoretically applies to both isotropic and anisotropic conduc-
tivities. Therefore, we pursue the anisotropic case in theoretical analysis, although numerical results
are demonstrated only in the isotropic case. We prove the existence of the optimal control and Fréchet
differentiability in the Besov space setting. The formula for the Fréchet gradient and optimality con-
dition is derived. Based on the Fréchet differentiability result we develop a projective gradient method
in Besov spaces. Extensive numerical analysis in the 2D case by implementing the projective gradient
method, re-parameterization via PCA, and Tikhonov regularization is pursued. Numerical analysis of
the simulated model example in the 2D case demonstrates that by increasing the number of boundary
input currents from m to m? through additional “voltage-to-current” measurements the resolution of the
electrical conductivity of the body identified via gradient method in Besov space framework is signifi-
cantly improved. The organization of the paper is as follows. In Section 2 we introduce the notations of
the functional spaces. In Section 3 we introduce the Inverse EIT Problem as PDE constrained optimal
control problem. In Section 4 we formulate the main results. Proofs of the main results are presented in
Section 5. In Section 6 we present the results of the computational analysis for the 2D model. Finally,
in Section 7 we outline the main conclusions.

2. Notations

In this section, assume Q is a domain in R",

e For 1 < p < oo, L,(Q) is a Banach space of measurable functions on Q with finite norm
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ullz,0) = (/Q\u(x)|”dx>’l7.

In particular if p =2, L,(Q) is a Hilbert space with inner product

(-8)1a0) = /Q F(x)g(x)dx

e L..(Q) is a Banach space of measurable functions on Q with finite norm

[ullz(g) := esssup|u(x)|
x€Q

e For s € Z;, W;(Q) is the Banach space of measurable functions on Q with finite norm

<=

HMHW;(Q) = (/Q Z !D“u(x)\pdx>

|af<s

ol =0+ ...+ oy, Dk:aixk, D% =

DY'...D% . In particular if p = 2, H5(Q) := W;(Q) is a Hilbert space with inner product

where o = (04,00, ...,0,), @; are nonnegative integers,

(f,8)ms0) = Y, (D¥f(x),D%g(x))1,(0)

o <s

e Fors ¢Z,, B),(Q) is the Banach space of measurable functions on Q with finite norm

H””B;;(Q) = HuHWp[s](Q) + [”]B;‘,(Q)

where

- oxls] Ixls]
[u]s0) '—/Q/Q X — y|1FPG—TD) dXdy>

Mut) _ Muty) »

<=

and H®(Q) := B5(Q) is an Hilbert space.
e ba(Q) = (Loo(Q)), is the Banach space of bounded and finitely additive signed measures on Q
and the dual space of L..(Q) with finite norm

19 1lba(0) = [01(Q),
|¢](Q) is total variation of ¢ and defined as |¢|(Q) = supZ o (E;), where the supremum is taken

over all partitions UE; of E into measurable subsets E;.
e M™*" is a space of real m X n matrices.
o ¥ = Lo(Q;M"™") is the Banach space of n x n matrices of L.(Q) functions.
o < :=ba(Q;M"") = (Lm(Q;M”X”))/ is the Banach space of n x n matrices of ba(Q) measures.
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3. Optimal control problem

We formulate Inverse EIT Problem as the following PDE constrained optimal control problem.
Given electrode current pattern / and corresponding electrode voltage measurement vector U™, consider
the minimization of the cost functional

U
’/ - ds—Il‘ 4 BlU—U? 3.1)
E
on the control set
m
Ve=1{v=(AU)e (Lw(Q;M"X”)ﬂHS(Q;M”X”)> XR’”‘ Y U,=0
=1

AL+ [[Allge + U <R, ETAE > p|E P, VE € R", p >0}

where 8 > 0, and u = u(-;v) € H'(Q) is a solution of the elliptic problem (1.3)—(1.5). This optimal
control problem will be called Problem _¢. The first term in the cost functional ¢ (v) characterizes
the mismatch of the condition (1.6) in light of the Robin condition (1.5).

Note that the variational formulation of the EIT Problem is a particular case of the Problem ¢,
when the conductivity tensor A is known, and therefore is removed from the control set by setting
R=+ocand B =0:

U
‘ / L ds—Il‘ s inf 3.2)
1=1"'"E

in a control set ”
W={Uer"| Y U =0} (3.3)
=1

where u = u(-;v) € H'(Q) is a solution of the elliptic problem (1.3)~(1.5). This optimal control prob-
lem will be called Problem .#. It is a convex PDE constrained optimal control problem (Remark 1,
Section 4).

Inverse EIT problem on the identification of the electrical conductivity tensor A with m input data
(1), is highly ill-posed. Optimal control Problem _# inherits ill-posedness of the inverse EIT prob-
lem. Next, we formulate an optimal control problem which is adapted to the situation when the size
of the input data can be increased through additional measurements while keeping the size of the un-
known parameters fixed. Let I' := I is a current pattern input, and U' = (Uy, ...,U,,) is a corresponding
boundary electrode voltage measurements. Consider m — 1 new permutations of boundary voltages

Uj:(Uj,...,Um,Ul,...7Uj_l)’ j:2,_‘_’m (3.4)

applied to electrodes E1,Ep, ..., Ej, respectively. Assume that the “voltage—to—current” measurement
allows us to measure associated currents I/ = (Ij ., I3,). By setting U' = U* and having a new set of
m? input data (U ) ' ;> we now consider optimal control problem on the minimization of the new cost
functional

m m Uj—uf(x) ) i}
:ZZ‘/ s 1| 4 Bl U (3.5)
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on a control set Vg, where each function u/ (AU Y ),j =1,...,m, solves elliptic PDE problem (1.3)-
(1.5) with U replaced by U/. This optimal control problem will be called Problem .#". Note that the
number of input currents in the Problem .#” has increased from m to m>. However, the size of unknown
control vector is unchanged, and in particular there are only m unknown voltages Uy, ..., U,,, whereas
all vectors U/, j = 2,...,m, are formed by their permutation as in (3.4). The price we pay for this gain
is the increase of the number of PDE constraints, which has increased from 1 to m. It should be noted
that similar approach can be pursued to increase the size of input data up to m! by adding possible
permutations of U in (3.4).

We effectively use Problem .# to generate model examples of the inverse EIT problem which ad-
equately represents the diagnosis of the cancerous tumor in reality. Computational analysis based on
the Fréchet differentiability result and gradient method in Besov spaces for the Problems _# and %" is
pursued in realistic model examples.

4. Main results

Let bilinear form B : H'(Q) x H'(Q) — R be defined as

n m 1
Blu,n :/ a;juy Ny, dx + —/ unds. 4.1)
[ ] Qi7j2_1 %X X, ZZZI Zl E
Definition 4.1. For a given v € Vg, u = u(-;v) € H'(Q) is called a solution of the problem (1.3)—(1.5)
if
4|
Blun] =Y - / nUds, vneHY Q). 4.2)
=121 JE
For a given control vector v € Vg and corresponding u(-;v) € H'(Q), consider the adjoined problem:
Z(aijl//xi)xj - 07 X e Q (43)
ij
oy "
i 20— | |E 4.4
5 =0 x€9Q H ! (4.4)
81// u—"U —_—
Zi——=2 ds+21 E;,l= 4.5
Y+ 7 s+20, xck, ,m (4.5)

Definition 4.2. v € H'!(Q) is called a solution of the adjoined problem (4.3)—(4.5) if

T[ /M—Ul 1
B = —12 ds+2I|ds,Y\n e H . 4.6
wnl=X [, 72, " s 2n)ds vn e r' @) *6)

In Lemma 5.1, Section 5 it is demonstrated that for a given v € Vg, both elliptic problems are

uniquely solvable.

Definition 4.3. Let V be a convex and closed subset of the Banach space H. We say that the functional
# 'V — R is differentiable in the sense of Fréchet at the point v € V if there exists an element
J'(v) € H' of the dual space such that

FAh) = Zv)=( 7' (v),h)y+o(hv) 4.7)
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where v+h € VN {u: ||lu|| <y} for some y > 0; (-,-)y is a pairing between H and its dual H’, and

o(h,v)

——=—0, as|h||—0.
1]

The expression d_# (v) = (_#'(v),-)y is called a Fréchet differential of ¢ atv € V, and the element
JZ'(v) € H' is called Fréchet derivative or gradient of # atveV.

Note that if Fréchet gradient _#’(v) exists at v € V, then the Fréchet differential d_¢# (v) is uniquely
defined on a convex cone ( [55-61])

H,={weH:w=Au—v),A €[0,4o0),ucV}.

The following are the main results of the paper:

Theorem 4.4. (Existence of an Optimal Control). Problem / has a solution, i.e.,

Vi={v=(AU)eVg, F(v)= F=inf Z(v)}#0. (4.8)

veVR

Theorem 4.5. (Fréchet Differentiability): The functional ¥ (v) is differentiable on Vg in the sense of
Fréchet; the Fréchet differential d_¢ (v) and the gradient 7'(A,U) € ' x R™ are

<j/(v)76V>H: _/ Z ule//xlﬁaijdx

ij=1
+ 3 (Lo [ Btaa] [ St 2pw-)au. @)
J(4U) = (F4Aa0), #54.0))
_ <_(wxiuxj)zj:1,(éz[/lsl UZZ—uds—z,} /Elle(élk—wk(s))ds+2ﬁ(Uk—U,j‘))Z;> (4.10)

l

where u = u(-;v),y = y(-;v); wk = aa—(;‘k = u(;A,er), k=1,2,..,m, is a solution of (1.3)—(1.5)
with v = (A,ex), ex € R is a unit vector in xi-direction; &y is a Kronecker delta; 6v = (0A,0U) =
((6aij)} =1, (8Uk)L,) is a variation of the control vector v € Vi such that v+ v € V.

Corollary 1. (Optimality Condition) If v € Vi is an optimal control in Problem ¢, then the following
variational inequality is satisfied:

(J'W),v=v), >0, Ve V. @.11)

Corollary 2. (Fréchet Differentiability): The functional J¢ (v) is differentiable on Vg in the sense of
Fréchet and the Fréchet gradient %' (c,U) € £ xR™ is

H'0) = (A (AU), HH(A,U)) =

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4834—-4859.
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O N e R e

E; I 1
4.12)

where W/ (-),j = 1,...,m, be a solution of the adjoined PDE problem (4.3)—(4.5) with u(-),U and I
replaced with u/(-),U’, I/ respectively, and

O =

m+k—j+1, if j > k.

Remark 1. Existence and uniqueness of the solution to the EIT problem (1.2)—(1.6) is established
in [2]. Note that if (ﬁ,U ) is a solution of the EIT Problem (1.2)—(1.6), then U is a minimizer of the
Problem .# with minimum value .# () = 0, and # is a corresponding optimal state vector solving
(1.3)=(1.5) with U = U. Functional (3.2) in the optimal control Problem .# is convex due to the
following formula

ﬂ(aU1+(1—a)U2)_aﬂ(U1)+(1—a)ﬂ(UZ)—a(l—a)izﬁ‘/E(U}—U,Z—u1+u2)ds2
=1 !

where U!',U? € W,a € [0,1];u' = u(-;U"),i = 1,2 is a solution of (1.3)—~(1.5) with U = U’ Therefore,
Problem .¢ is a convex minimization problem with a unique global minimizer U

4.1. Gradient Method in Banach Space

Fréchet differentiability result of Theorem 4.5 and the formula (4.10) for the Fréchet derivative
suggest the following algorithm based on the projective gradient method in Banach space H for the
Problem ¢#.

Step 1. Set N = 0 and choose initial vector function (A°,U°) € Vz where

m
AV = (a?j);lj:l, Ul =?,...,uY), Y U =0.
[=0

Step 2. Solve the PDE problem (1.3)~(1.5) to find "V = u(-;AN,U") and _# (AN, U").

Step 3. If N =0, move to Step 4. Otherwise, check the following criteria:

/(AN,UN)—/(AN_I,UN_I)
/(ANfl,UNfl)

[aY =AM _ N o
e A

<&,

<E€ (4.13)

where € is the required accuracy. If the criteria are satisfied, then terminate the iteration. Other-
wise, move to Step 4.

Step 4. Solve the PDE problem (1.3)—(1.5) to find w¥ = u(-; AV e;),k=1,...,m.
Step 5. Solve the adjoined PDE problem (4.3)—(4.5) to find yy = (AN, UV, u).
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Step 6. Choose stepsize parameter oy > 0 and compute a new control vector components AVt =
(@ (x)r _,, ONF1 € R™ as follows:

ij ij=1°
ay ! (x) = a0 + oy, i j=1,...n, (4.14)
~ m UN_MN(S) 1
UM =UN — o [ 2(/ l—ds—l)/ — (& —wh (s))ds
k K — 0N l; e Z I E,Zz( ik —wy (s))
2B - U)| k=1,00m. (4.15)

Step 7. Replace (AN TN+ with (AN*! UN*T1) € Vi as follows

u, if @yt (o) <,
aytl ) =qay(x), ifu<ayt(x) <R, (4.16)
R, if @ytl(x) >R,
- 13
N+1 N+1 N+1
ultt =g’ —EkZIUkﬂk:l,...,m. (4.17)

Then replace N with N + 1 and move to Step 2.

Based on formula (4.12) similar algorithm is implemented for solving Problem .%7".

Remark 2. Corresponding differentiability and optimality results of Theorem 4.5 and Corollary 1 can
be easily established for Problem .#, and the gradient .#/, coincides with ¢/, from (4.10). Similar
algorithm for the iterative gradient method for the identification of U € R™ can be developed for the
Problem .#.

4.2. Increase of input data for simulations and clinical applications

The new optimal control framework for the inverse EIT problem and the results outlined in Sec-
tions 3, 4 suggest the following multi-stage algorithm with the increase of data both in simulations, as
well as in clinical applications.

Stage 1. Simulation: By selecting boundary current pattern / = (I;);”, and electrical conductivity
matrix A e = (a; j) we simulate the EIT model example with A = Ay, by solving convex minimization
Problem .7, and find its unique minimizer U* € W. We then simulate inverse EIT problem with true
solution (Asye, Urrye ), Where Uy is identified with U*.

Clinical Application: Implement the “current—to—voltage” procedure: by injecting current pattern
I = (I)]", on the electrodes E;, [ = 1,...,m, take the measurement of the voltages U* = (U}, ...,U,).

Stage 2. Simulation & Clinical Application: Solve the optimal control Problem _¢# with m input
data I = (I;)/", by the gradient descent method described in Section 4.1, and recover optimal control
(Gtrues Urrue)- If precision and accuracy is not satisfactory, move to next stage to increase the input data
without affecting optimal control.

Stage 3. Simulation: To increase the size of input data from m to m*> we apply the same set
of boundary voltages U;" to different electrodes E; using a “rotation scheme”, i.e., we denote U I =
U*, I' = I and consider m — 1 new permutations of boundary voltages as in (3.4) applied to electrodes
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E1,E;,..., E, respectively. For each boundary voltage vector U/ we solve elliptic PDE problem (6.1)—
(6.3) to obtain the distribution of electrical potential u;(-) = u(-;U’) over boundary dQ. By using
“voltage—to—current” formula (6.4), we calculate current pattern I/ associated with U/. Thus, a new
set (I )’]’.’:1 contains m? input data. Then we solve Problem .#" with extended data set by the gradient
descent method described in Section 4.1, and recover an optimal control (Gjye,Usrye). Note that
despite increase of the input data from m to m?, (G;yye, Usrye) is still an optimal control in Problem
H .

Clinical Application: To increase the size of input data from m to m?, we implement “voltage—to—
current” procedure: by injecting m — 1 new sets of voltages U J ,J =2,...,m, from (3.4) on the electrodes
E;, I =1,...,m, take the measurement of the currents I/ = (I{,...,I;,). Then as in Simulation we solve
Problem %~ with extended data set, and recover an optimal control (G,ue, Urrye )-

Stage 3 can be repeated to increase the size of the input data from m up to m! while keeping the
optimal control unchanged. Precisely, one can apply any set of permutations of U* to electrodes, and
implement “voltage—to—current” measurements to deduce the corresponding set of electrode current
vectors, and solve the Problem %" to find an optimal control (Gtye, Usrye )-

5. Proofs of the main results

Well-posedness of the elliptic problems (1.3)—(1.5) and (4.3)—(4.5) follow from the Lax-Milgram
theorem [54].

Lemma 5.1. For Vv € Vg there exists a unique solution u = u(-,v) € H'(Q) to the problem (1.3)~(1.5)
which satisfy the energy estimate

lulZ o) <CY. 22U (5.1)
=1

Proof: Step 1. Introduction of the equivalent norm in H'(Q). Let

1
mn 2
el 1) := U |Vu|2dx+2/ u2ds] : (5.2)
0 =17E

and prove that this is equivalent to the standard norm of H'(Q), i.e., there is ¢ > 1 such that Vu € H'(Q)

Ml o) < el gy < ellullz gy (5.3)

The second inequality immediately follows due to bounded embedding H'(Q) < L*(dQ) ( [54]). To
prove the first inequality assume on the contrary that

Vk >0, JureH'(Q) such that il i1 () > K|kl 1 () -
Without loss of generality, we can assume that ||uy|| = 1, and therefore
||Vuk||L2(Q)—> 0, ””kHLz(E/)—) 0, ask—oco, [=1,2,..m. 5.4

Since {u} is a bounded sequence in H'(Q), it is weakly precompact in H'(Q) and strongly precompact
in both L»(Q) and L(9Q) ([62-64]). Therefore, there exists a subsequence {uy; } and u € H 1(Q) such

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4834—-4859.



4845

that uy; converges to u weakly in H 1(Q) and strongly in L,(Q) and L,(dQ). Without loss of generality,
we can assume that the whole sequence {u;} converges to u. From the first relation of (5.4) it follows
that Vuy, converges to zero strongly, and therefore also weakly in L?(Q). Due to uniqueness of the
limit, Vu = 0, and therefore u = const a.e. in Q, and on the dQ in the sense of traces. According to
the second relation in (5.4), and since |E;| > 0, it follows that const = 0. This fact contradicts with
||ux|| = 1, and therefore the second inequality is proved.

Step 2. Application of the Lax-Milgram theorem. Since v € Vg, by using Cauchy-Bunyakowski-
Schwartz (CBS) inequality, bounded trace embedding H'(Q) < L?(dQ) and (5.3) we have the follow-
ing estimations for the bilinear form B:

[Blu, | < allully1 ()Nl gy Blitsu) = Blullz o) (5.5)

where o, B > 0 are independent of u,n. Note that the component U of the control vector v defines a
bounded linear functional U : H!(Q) — R according to the right-hand side of (4.2):

A

U
U(n):= Zz,l | nds. (5.6)

Indeed, by using CBS inequality and bounded trace embedding H'(Q) < L?(dQ) we have

A 1,3 1
0| <121 (X Z%U7) 2 Inly00) < Clnllm o) (5.7)
=1

From (5.5), (5.7) and Lax-Milgram theorem ( [54]) it follows that there exists a unique solution of the
problem (1.3)—(1.5) in the sense of Definition 4.2.

Step 3. Energy estimate. By choosing 1) as a weak solution u in (4.2), using (1.7) and Cauchy’s
inequality with € we derive

m

n c
uHVuH%z(QﬁZoZHuuimS—Z 2U1+618Q| ( /E |u!2ds) (5.8)
=1 !

I=1 €10

where zp = r<nll<n Z;!. By choosing & = (2|9Q|)~'zo from (5.8) it follows that
m

m
Il < € .2 07, (5.9)

From (5.3) and (5.9), energy estimate (5.1) follows. Lemma is proved.m

Corollary 3. For v € Vi there exists a unique solution W = y(-,v) € H'(Q) of the adjoined problem
(4.3)—(4.5) which satisfy the energy estimate

1l < CZZ— [/

where u = u(-;v) € H'(Q) is a solution of the problem (1.3)~(1.5) .

7 “ds —1,] (5.10)
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Proof of Theorem 4.4. Let {v;} = {(A¥,U*)} C Vk be a minimizing sequence

lim 7 (ve) = Je.

Since {AX} is a bounded sequence in H&(Q;M"*"), it is weakly precompact in H¢(Q;M"*") and
strongly precompact in Ly (Q;M"*") [62-64]. Therefore, there exists a subsequence {A%»} which
converges weakly in HE(Q;M™*") and strongly in L,(Q;M" ") to some element A € HE(Q;M"").
Since any strong convergent sequence in L, (Q;M"*") has a subsequence which converges a.e. in Q,
without loss of generality one can assume that the subsequence A converges to A a.e. in Q, which
implies that A € Lo.(Q; M™") N HE(Q; M™") N V. Since U* is a bounded sequence in R” it has a
subsequence which converges to some U € R™|U| < R. Without loss of generality we can assume that
the whole minimizing sequence vy = (A, U¥) converges v = (A,U) € Vi in the indicated way.

Let u; = u(x;vi), u = u(x;v) € H'(Q) are weak solutions of (1.3)—(1.5) corresponding to v and v
respectively. By Lemma 5.1 uy satisfy the energy estimate (5.1) with U* on the right hand side, and
therefore it is uniformly bounded in H'!(Q). By the Rellich-Kondrachov compact embedding theorem
there exists a subsequence {uy,} which converges weakly in H 1(Q) and strongly in both L,(Q) and
L(2Q) to some function i € H'(Q)( [62-64]). Without loss of generality assume that the whole
sequence u;, converges to i weakly in H'(Q) and strongly both in L,(Q) and L,(dQ). For any fixed
n € C'(Q) weak solution u; satisfies the following integral identity

k k
Y. . —_— = —_ . .11
/Q E auukxjnxldx-i-lzlzl /Eluknds IE]ZZ /E]T[Ul ds (5.11)

i,j=1

Due to weak convergence of Vuy to Vii in L (Q;R"), strong convergence of uy to i in L, (dQ), strong
convergence of af.‘j to a;j in Lr(Q) and convergence of U kto U, passing to the limit as k — oo, from
(5.11) it follows

a; jly Ny, dx + —/ inds = —/ nUds. (5.12)
/Q Z Lj2x; X, I_ZIZ[ E I_ZIZ[ E

i,j=1

Due to density of C'(Q) in H'(Q) ( [62-64]) the integral identity (5.12) is satisfied for arbitrary n €
H! (Q). Hence, i is a weak solution of the problem (1.3)—(1.5) corresponding to the control vector
v = (A,U) € Vg. Due to uniqueness of the weak solution it follows that i = u, and the sequence uy
converges to the weak solution u = u(x;v) weakly in H'(Q), and strongly both in L,(Q) and L,(2Q).
The latter easily implies that

A )= lim 7 (va) = 7.

n—co

Therefore, v € V, is an optimal control and (4.8) is proved. m

Proof of Theorem 4.5. Let v = (A,U) € Vg is fixed and v = (8A,6U) is an increment such that
P=v+8veVgand u=u(-;v),i=u(-;v+8v) € H'(Q) are respective weak solutions of the problem
(1.3)—(1.5). Since u(-;A,U) is a linear function of U it easily follows that

k 81/[

=30, = u(Ae) € HY(Q), k=1,2,...,m

w
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is a solution of (1.3)—(1.5) with v = (A,e;), ex € R™ is a unit vector in x;-direction. Straightforward
calculation imply that

8Uk ,;2[/

where 0y is a Kronecker delta.
In order to prove the Fréchet differentiability with respect to A, assume that U = 0 and transform
the increment of _# as follows

1
dS—Ili|/ —(51k—wk)ds+2[3(Uk—U,j), k=1,...,m.
E Z

§ 7= F(viv)— F(v)= iZIZ/El2(/Elu;UldH—Il)SuderRl, (5.13)

l
wi= 32 f o) < £z sulg 5.14)

where du = it — u. By subtracting integral identities (4.2) for i and u, and by choosing test function
N = y(+;v) as a solution of the adjoined problem (4.3)—(4.5) we have

/QZ (&lijuxj +a;j(6u)y; + 5a,~j(5u)xj) Wy, dx + Z Zl youds = 0. (5.15)
iy I=1

| JE;

By choosing 1 = du in the integral identity (4.6) for the weak solution y of the adjoined problem we
have

/Zaljl//xﬁuxjdx—kZ/ Ulds—f—ZIl—l[/]ds:O. (5.16)

Adding (5.15) and (5.16) we derive

o] u—Ul - N o N
,_le/Elz(/El ~ dS(x)—i—Il)SudS—/Q(—%"Sa,jule[/xi §5a,j(5u)le/fxi)dx. (5.17)

1

From (5.13) and (5.17) it follows that

6.7 = | Y Saijdx+Ri+ Ry (5.18)
0%;

where

= | ¥ 6ai;(3u, . (5.19)
Q75
To complete the proof it remains to prove that
R] +R2 = O(HSA”LOO(Q;M'IX”)) as ||6A||Lw(Q;M”X” — 0. (520)

By subtracting integral identities (4.2) for & and u again, and by choosing test function 1 = du we have
/Zau (Ou), 5u dx—i—Z / (Ou) 2ds = — /Z&zl]ux (Ou)y,d (5.21)
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By using positive definiteness of A € Vi and by applying Cauchy inequality with € > 0 to the right
hand side, from (5.21) it follows that

n’ll c
Vul*dx+ —/ Su 2ds<e/ v5u2dx+—/ Saij|*|Vul*. 5.22
p f,Ivourart Yo [ (durds<e [ [V8u : Jp Lo vul. 52

By choosing € = 11/2 and by applying the energy estimate (5.1) from (5.22) we derive
118ullis gy < CIIBAIZ gagren) (523)
From (5.19) it follows that

[Ra| < C[8A][1.(gamm IV Oull L0 IVWlLy0): (5.24)

From (5.1), (5.3), (5.10), (5.14), (5.23) and (5.24), desired estimation (5.20) follows. Theorem is
proved.m

6. Numerical results

In this section we describe computational results for solving the Inverse EIT Problem in the 2D case
(n = 2) according to the algorithm outlined in Section 4.1.

6.1. Computational model in 2D space

We pursue computational analysis of the inverse EIT problem with isotropic electrical conductivity
tensor A(x), i.e., A(x) = o(x)I, where [ is a 2 x 2 unit matrix. Problem _# consists of minimization of
the functional ¢ (o,U) defined in (3.1) on control set Vg, where u = u(-;0,U) solves the elliptic PDE
problem

div(o(x)Vu(x)) =0, xeQ (6.1)
du(x) "

5= 0, x€d0— ZL:JI E (6.2)
u(x) + 216 (x) agi") =U, x€E,l=T,m (6.3)

where n is an exterior unit normal vector on dQ. The first term in the cost functional ¢ (o,U) char-
acterizes mismatch of the condition

/ o2 g 1 1 =Tm (6.4)
E;

on
in light of the Robin condition (6.3). We choose Q as a disk
Q:{xER2: x%+x%<ré} (6.5)

of radius rp = 0.1 with m = 16 equidistant electrodes E; with half-width w = 0.12 rad covering ap-
proximately 61% of the boundary dQ as shown in Figure 1(a).
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E,
6 —_— 4 0.5
~ ~
Ey \153 0.45
0.4
Eg / \Ez
0.35
E, l l E 0.3
9 1
a
. 0.25
e\ /e
1 16 . 0z
E> /E 0.15
™~ ~ 0.1
12 E 14

(@ (b) ©

Figure 1. (a) Equispaced geometry of electrodes E; placed over boundary dQ. (b) True
electrical conductivity O;(x). (c) Electrical currents I; (positive in red, negative in blue)
injected by electrodes E;. Black arrows show the distribution of flux ¢ (x)Vu(x) of the elec-
trical potential u in the interior of domain Q.

Assume that the actual (true) electrical conductivity Oz, (x) is given analytically as follows:

(0.4, X%+ (x2 —0.05) < (0.03)?
0.4, (x1 +0.075)% + (x2 +0.01)* < (0.0063)*
Oirue(x) = § 0.4, (x1 +0.015)% + (x2 +0.02)* < (0.0122)? (6.6)
0.4, (x1 —0.025)% 4 (x +0.055)% < (0.0235)2
\ 0.2, otherwise

It is measured in (Ohm-m)~! and we set 6. = 0.4 for cancer-affected parts (4 spots of different size)
and oy, = 0.2 to the remaining healthy part as it is demonstrated in Figure 1(b). Electrical currents I;
injected through electrodes E; are outlined in Table 1 and shown schematically in Figure 1(c). Fig-
ure 1(c) shows the distribution of flux o (x)Vu(x) of the electrical potential u in the interior of domain
Q corresponding to O ye(x).

Table 1. “Current—to—voltage” model parameters: electrical currents /; injected by electrodes
E;, 1 =1,...,16, with contact impedances Z;, and initial guess for boundary voltages U ;y;.
The unit system used for all values is SI.

Electrode, [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
[-10%, A 32 3 7 6 -1 42 4 3 5 4 3 -5 2 -4
Z-100hm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ul ini» V -1 1 -1 1 -1 1 -11 -1 1 -1 1 -1 1 -1 1
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Our optimization framework integrates computational facilities for solving state PDE problem
(6.1)—(6.3), adjoint PDE problem (4.3)—(4.5), and evaluation of the Fréchet gradient according to
(4.10), (4.12). These facilities are incorporated by using FreeFem++ (see [66] for details), an open—
source, high—level integrated development environment for obtaining numerical solutions of PDEs
based on the Finite Element Method. To solve the PDE problem (6.1)—(6.3) numerically, spatial dis-
cretization is carried out by implementing triangular finite elements, P2 piecewise quadratic (continu-
ous) representation for electrical potential u(x) and PO piecewise constant representation for conduc-
tivity field o(x). The system of algebraic equations obtained after such discretization is solved with
UMFPACK, a solver for nonsymmetric sparse linear systems. The same technique is used for the numer-
ical solution of the adjoint problem (4.3)—(4.5). All computations are performed using 2D domain Q
(6.5) which is discretized using mesh .# (n,) created by specifying n, = 96 vertices over boundary dQ
and totaling 1996 triangular finite elements inside Q.

Unless otherwise stated, as an initial guess in the projective gradient algorithm described in Sec-
tion 4.1 we choose a constant approximation to (6.6), given by G;,; = % (o, + o,) = 0.3. Initial guess
for boundary voltages is provided in Table 1 which is consistent with the ground potential condition
(1.2). Determining the Robin part of the boundary conditions in (6.3) we equally set the electrode con-
tact impedance Z; = 0.1. The iterative optimization algorithm is performed by the Sparse Nonlinear
OPTimizer SNOPT, a software package for solving large-scale nonlinear optimization problems [65].
It employs a sparse sequential quadratic programming (SQP) algorithm with limited-memory quasi-
Newton approximations to the Hessian of the Lagrangian. This makes SNOPT especially effective for
nonlinear problems with computationally expensive functionals and gradients. We set a termination

conditions for SNOPT according to ‘ ’ < 10~° or maximum number of optimization iterations

I
/Nl

Niax = 250, whichever comes first.

Remark 3. Corollary 2 in the context of the model example claims that the Fréchet gradient
H'(o,U) € ba(Q) x R™ is

%//(G,U) = (%(G,U},%(G,U}) —

(—iVuj.Vy/j’(’zn"i [/ Lt/d B l}/E%%MdS_FZﬁ(Uk_U;))Zil)_ 6.7)
J= l

j=11=1

6.2. Numerical results for EIT and inverse EIT problems

To test the effectiveness of the gradient descent method, we simulate a realistic model example
of the inverse EIT problem which adequately represent the diagnosis of the breast cancer in reality.
Simulation and computational analysis consist of three stages as it is outlined in Section 4.2.

Stage 1. By selecting boundary current pattern I = (Il) | (see Table 1) we simulate the EIT model
example with 6 = 0y, by solving Problem .# with the gradlent descent method described in Sec-
tion 4.1 (see Remark 2), and identify an optimal control Uy,,.. Practical analogy of this step is the
implementation of the “current—to—voltage” procedure: by injecting current pattern / = (Il) >, on the
electrodes E;, [ =1,...,16, take the measurement of the voltages U* = (Uy,...,U]). In our numerical
simulations Us,,. is identified with U*.
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The numerical results of Stage 1 is demonstrated in a Figure 2. Electrical currents (/;) }21 specified
in Table 1 are injected through 16 electrodes E;, [ = 1,..., 16, and electrical conductivity field o(x)
is assumed to be known, i.e., 6(x) = Oy (x). Recall that the Problem .# is a convex minimization
problem with unique global minimizer U and with infima .%, = .# (U) = 0 (see Remark 1, Section 4).
Figure 2(a) shows the optimal solution for control U (empty blue circles) reconstructed from the initial
guess U, ;,; (filled black circles) provided in Table 1. Figure 2(b) demonstrates fast convergence with
respect to functional in 6 iterations.

4 o) (0]
3 o ©
(o] (o]
2 o
i1 ® e e e e o o o
S of ©
2le o 6%¢ o o o o
_2,
(@) (o)
_37 O
_4 O O
-5 o : / 0™
0 2 2 6 8 10 12 14 16 0 1 2 3 4 5 6
l N

(a) (b)

Figure 2. (a) Empty blue circles show optimal solution U reconstructed from the initial
guess U, jp; (filled black circles) provided in Table 1. (b) Cost functional .# (N) as a function
of optimization iteration N in solving the EIT Problem to find optimal solution (i(x),U).

Stage 2. Solve the Problem ¢ with limited data / = (11)1121 by the gradient descent method de-
scribed in Section 4.1, and recover optimal control (G;ye, Usrye )-

Numerical result of Stage 2 without regularization (8 = 0) is demonstrated in a Figure 3. Further-
more, in all subsequent Figures, we mark the location of four cancer-affected regions from known
O:rue by dashed circles. Figure 3(b) demonstrates that the electrical conductivity field o(x) is poorly
reconstructed without any signature to identify spots with cancer-affected tissues. Fast convergence
with respect to functional in just 6 iterations is demonstrated in Figure 7(a). However, there is no con-
vergence with respect to all control parameters as shown in Figure 3(a,b). Although the U-component
deviates slightly from actual experimental data U* (see Stage I) identified with filled red circles in
Figure 3(a), the optimal solution 6(x) obtained for the o-component is significantly different from
the true solution 6;,.. This is a consequence of the ill-posedness of the inverse EIT problem due to
non-uniqueness of the solution.
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Figure 3. (a) Empty blue circles show optimal solution U reconstructed from the initial guess
U, ini (filled black circles) provided in Table 1. Filled red circles represent actual experimental
data U* (also blue circles in Figure 2(a)). (b) Reconstructed electrical conductivity field & (x).
Dashed circles represent the location of four cancer-affected regions taken from known 6;,.

U,
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l
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Figure 4. (a) Empty blue circles show optimal solution U reconstructed from the initial guess
U in; (filled black circles) provided in Table 1. Filled red circles represent actual experimental
data U™ (also blue circles in Figure 2(a)). (b) Reconstructed electrical conductivity field 6 (x).
Dashed circles represent the location of four cancer-affected regions taken from known 6y,.

Stage 3. To increase the size of input data we apply the same set of boundary voltages U;" to dif-
ferent electrodes E; using a “rotation scheme”, i.e., we denote U I'= y*,I' =T and consider 15 new
permutations of boundary voltages as in (3.4) applied to electrodes E;, Ej,...,E;q respectively. For
each boundary voltage vector U/ we solve elliptic PDE problem (6.1)—(6.3) to obtain the distribution
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of electrical potential u;(-) = u(-;U /) over boundary dQ. By using “voltage—to—current” formula (6.4),
we calculate current pattern I/ associated with U/. Thus, a new set (I/ )l.gl contains 256 input data.
Practical analogy of this step is implementation of the “voltage—to—current” procedure: by injecting
15 new sets of voltages U/, j = 2,...,16, from (3.4) on the electrodes Ej, [ = 1,...,16, take the mea-
surement of the currents I/ = (I { b ,11] ¢)- Then we solve Problem %" with extended data set by the
gradient descent method described in Section 4.1, and recover an optimal control ( Gy e, Usrye )-

Numerical result of Stage 3 without regularization (8 = 0) is demonstrated in a Figure 4. Contrary
to previous results, the electrical conductivity field o (x) is reconstructed much better matching the two
biggest spots while not perfectly capturing their shapes. Reconstruction result for boundary voltage U
is also improved.

Finally, we evaluate the effect of adding regularization term (8 > 0) in the cost functional (3.5).
The outcomes with respect to different values of regularization parameter S (blue dots) are shown
in Figure 5(a). The dashed line represents the result of optimization with f = 0. Numerical results
demonstrate that small values of 8 (roughly when B < 10~%) have no significant effect towards de-
creasing the values of the cost functional #". Significant improvement at different scales is observed
when 8 > 107!, To identify optimal value for 8, we examine additionally o and U solution norms

O —Otrye -U* . . . .
No = w and Ny = % presented in Figure 5(b). Based on the numerical results, we pick
rue 2

up the value (shown by hexagons) B* = 0.3162 as the best value in terms of improvement of solutions
simultaneously with respect to both controls ¢ and U. Figure 6 shows optimal solution (& (x),U) ob-
tained by choosing f* = 0.3162. Overall optimization performance in the last case is also enhanced
by much faster convergence. Figure 7(b) provides the comparison for convergence results obtained for
two different cases, namely without regularization (blue dots), and with regularization with parameter
B* =0.3162 (red dots).
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. oo, *
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[ ] 0
e g e ----- .- 10
10 ® ° ° so00g - - - ".0..'0‘-.-. -------------
° 2| %o 0
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107 #“. = 0 ° ox_ %o
® ...
°
-8 L L L J -6 L L L J
10 -6 —4 -2 0 2 10 -6 —4 -2 0 2
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(@) (b)
Figure 5. (a) Cost functional .#” values and (b) solution norms Ng = W and Ny =
true 2
|U|l_]£]‘ | evaluated at termination (dots) for different values of regularization parameter 3 in
(3.1) and (dashed lines) when 8 = 0. The best results obtained at f* = 0.3162 are shown by
hexagons.
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Figure 6. (a) Empty blue circles show optimal solution U reconstructed from the initial guess
U, ini (filled black circles) provided in Table 1. Filled red circles represent actual experimental
data U* (also blue circles in Figure 2(a)). (b) Reconstructed electrical conductivity field
6 (x). Dashed circles represent the location of four cancer-affected regions taken from known
Otrue- Optimal solution (6 (x),U) is obtained by solving the Problem .#* with regularization
parameter $* = 0.3162 in (3.5).
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Figure 7. Cost functional ¢ (N) as a function of optimization iteration N in solving the EIT
Inverse Problem to find optimal solution (& (x),U) (a) without and (b) with applying addi-
tional data acquired through rotating boundary voltages U;. Convergence in (b) is compared
for two cases: (blue dots) without regularization, and (red dots) when applying regularization
with parameter f* = 0.3162.
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7. Conclusions

This paper analyzes the inverse EIT problem on recovering electrical conductivity tensor and po-
tential in the body based on the measurement of the boundary voltages on the electrodes for a given
electrode current. We analyze the inverse EIT problem in a PDE constrained optimal control frame-
work in the Besov space, where the electrical conductivity tensor and boundary voltages are control
parameters, and the cost functional is the norm declinations of the boundary electrode current from the
given current pattern and boundary electrode voltages from the measurements. The state vector is a so-
lution of the second-order elliptic PDE in divergence form with bounded measurable coefficients under
mixed Neumann/Robin type boundary condition. The following are the main results of the paper:

e The novelty of the control-theoretic model is its adaptation to the clinical situations when addi-
tional ’voltage-to-current” measurements can increase the size of the input data from the number
of boundary electrodes m up to m!, while keeping the size of the unknown parameters fixed. Pre-
cisely, given m “current-to-voltage” measurements, one can form up to m! permutations of it and
generate new “voltage-to-current” measurements. The idea of using permutations of the original
voltage measurement implies that the size of the boundary electrode voltage component of the
control vector remains unchanged, while up to m! new measurements are gained.

e Existence of the optimal control in the Besov space setting is proved.

e Fréchet differentiability is proved and the formula for the Fréchet gradient expressed in terms of
the adjoined problem is derived. A necessary optimality condition is established. An effective
numerical method based on the projective gradient method in Besov spaces is developed.

e Numerical analysis of the simulated model example in the 2D case demonstrates that by increas-
ing the number of input boundary electrode currents from m to m? through additional ”voltage-
to-current” measurements the resolution of the electrical conductivity of the body identified via
gradient method in Besov space framework is significantly improved.
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