
Content-based image analysis and computer vision techniques are used in various health-care systems to detect the diseases. The abnormalities in a human eye are detected through fundus images captured through a fundus camera. Among eye diseases, glaucoma is considered as the second leading case that can result in neurodegeneration illness. The inappropriate intraocular pressure within the human eye is reported as the main cause of this disease. There are no symptoms of glaucoma at earlier stages and if the disease remains unrectified then it can lead to complete blindness. The early diagnosis of glaucoma can prevent permanent loss of vision. Manual examination of human eye is a possible solution however it is dependant on human efforts. The automatic detection of glaucoma by using a combination of image processing, artificial intelligence and computer vision can help to prevent and detect this disease. In this review article, we aim to present a comprehensive review about the various types of glaucoma, causes of glaucoma, the details about the possible treatment, details about the publicly available image benchmarks, performance metrics, and various approaches based on digital image processing, computer vision, and deep learning. The review article presents a detailed study of various published research models that aim to detect glaucoma from low-level feature extraction to recent trends based on deep learning. The pros and cons of each approach are discussed in detail and tabular representations are used to summarize the results of each category. We report our findings and provide possible future research directions to detect glaucoma in conclusion.
Citation: Amsa Shabbir, Aqsa Rasheed, Huma Shehraz, Aliya Saleem, Bushra Zafar, Muhammad Sajid, Nouman Ali, Saadat Hanif Dar, Tehmina Shehryar. Detection of glaucoma using retinal fundus images: A comprehensive review[J]. Mathematical Biosciences and Engineering, 2021, 18(3): 2033-2076. doi: 10.3934/mbe.2021106
[1] | Wenjun Xia, Jinzhi Lei . Formulation of the protein synthesis rate with sequence information. Mathematical Biosciences and Engineering, 2018, 15(2): 507-522. doi: 10.3934/mbe.2018023 |
[2] | Chaudry Masood Khalique, Kentse Maefo . A study on the (2+1)–dimensional first extended Calogero-Bogoyavlenskii- Schiff equation. Mathematical Biosciences and Engineering, 2021, 18(5): 5816-5835. doi: 10.3934/mbe.2021293 |
[3] | Sixing Tao . Lie symmetry analysis, particular solutions and conservation laws of a (2+1)-dimensional KdV4 equation. Mathematical Biosciences and Engineering, 2023, 20(7): 11978-11997. doi: 10.3934/mbe.2023532 |
[4] | Alexander N. Gorban, Annick Harel-Bellan, Nadya Morozova, Andrei Zinovyev . Basic, simple and extendable kinetic model of protein synthesis. Mathematical Biosciences and Engineering, 2019, 16(6): 6602-6622. doi: 10.3934/mbe.2019329 |
[5] | Mahmoud El-Morshedy, Zubair Ahmad, Elsayed tag-Eldin, Zahra Almaspoor, Mohamed S. Eliwa, Zahoor Iqbal . A new statistical approach for modeling the bladder cancer and leukemia patients data sets: Case studies in the medical sector. Mathematical Biosciences and Engineering, 2022, 19(10): 10474-10492. doi: 10.3934/mbe.2022490 |
[6] | Lan Huang, Shuyu Guo, Ye Wang, Shang Wang, Qiubo Chu, Lu Li, Tian Bai . Attention based residual network for medicinal fungi near infrared spectroscopy analysis. Mathematical Biosciences and Engineering, 2019, 16(4): 3003-3017. doi: 10.3934/mbe.2019149 |
[7] | Luis L. Bonilla, Vincenzo Capasso, Mariano Alvaro, Manuel Carretero, Filippo Terragni . On the mathematical modelling of tumor-induced angiogenesis. Mathematical Biosciences and Engineering, 2017, 14(1): 45-66. doi: 10.3934/mbe.2017004 |
[8] | J. A. Méndez-Bermúdez, José M. Rodríguez, José L. Sánchez, José M. Sigarreta . Analytical and computational properties of the variable symmetric division deg index. Mathematical Biosciences and Engineering, 2022, 19(9): 8908-8922. doi: 10.3934/mbe.2022413 |
[9] | Pu Yang, Zhenbo Li, Yaguang Yu, Jiahui Shi, Ming Sun . Studies on fault diagnosis of dissolved oxygen sensor based on GA-SVM. Mathematical Biosciences and Engineering, 2021, 18(1): 386-399. doi: 10.3934/mbe.2021021 |
[10] | Micaela Morettini, Christian Göbl, Alexandra Kautzky-Willer, Giovanni Pacini, Andrea Tura, Laura Burattini . Former gestational diabetes: Mathematical modeling of intravenous glucose tolerance test for the assessment of insulin clearance and its determinants. Mathematical Biosciences and Engineering, 2020, 17(2): 1604-1615. doi: 10.3934/mbe.2020084 |
Content-based image analysis and computer vision techniques are used in various health-care systems to detect the diseases. The abnormalities in a human eye are detected through fundus images captured through a fundus camera. Among eye diseases, glaucoma is considered as the second leading case that can result in neurodegeneration illness. The inappropriate intraocular pressure within the human eye is reported as the main cause of this disease. There are no symptoms of glaucoma at earlier stages and if the disease remains unrectified then it can lead to complete blindness. The early diagnosis of glaucoma can prevent permanent loss of vision. Manual examination of human eye is a possible solution however it is dependant on human efforts. The automatic detection of glaucoma by using a combination of image processing, artificial intelligence and computer vision can help to prevent and detect this disease. In this review article, we aim to present a comprehensive review about the various types of glaucoma, causes of glaucoma, the details about the possible treatment, details about the publicly available image benchmarks, performance metrics, and various approaches based on digital image processing, computer vision, and deep learning. The review article presents a detailed study of various published research models that aim to detect glaucoma from low-level feature extraction to recent trends based on deep learning. The pros and cons of each approach are discussed in detail and tabular representations are used to summarize the results of each category. We report our findings and provide possible future research directions to detect glaucoma in conclusion.
G-quadruplex or G-tetrad (G4), is a thermodynamically stable structural element that is formed between clusters/stretches/tracts of Guanine (G) residues (|x|≥3) and is intra- or inter-molecular [1,2,3]. The intervening loops whence applicable are composed of one or more nucleotide(s) (N∈{A, U, T, G, C}) (Figure 1). G4 is found in DNA (telomeres, double-strand break sites, transcription start sites) and in the untranslated region(s) (5'-, 3'-UTR, introns) of mRNA [4,5]. In vivo, G4 may function to preserve the telomeric ends of chromosomes, repress or promote transcription and regulate translation [4,5]. The generic representation of an intra-strand G4 may be described as follows:
(((Gt,k)t≥3(Nh,k)h≥1)k=3((Gt,k)t≥3)k=1)m=1 | (Def. 1) |
𝑡 ≔ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝑢𝑎𝑛𝑖𝑛𝑒𝑠 𝑝𝑒𝑟 𝐺 − 𝑟𝑖𝑐ℎ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟
ℎ ≔ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑜𝑝 − 𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝑔𝑒𝑛𝑒𝑟𝑖𝑐 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑖𝑛𝑔 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑠
𝑘 ≔ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑖𝑛𝑑𝑒𝑥
𝑚 ≔ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑎𝑛𝑑𝑠
𝐺 ≔ 𝐺𝑢𝑎𝑛𝑖𝑛𝑒
𝐴 ≔ 𝐴𝑑𝑒𝑛𝑖𝑛𝑒
𝑇 ≔ 𝑇ℎ𝑦𝑚𝑖𝑛𝑒
𝐶 ≔ 𝐶𝑦𝑡𝑜𝑠𝑖𝑛𝑒
𝑁 ≔ 𝐴𝑛𝑦 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒
The high melting temperature (Tm~600C) of G4 implies that the mature quadruplex is stable and refractory to unfolding. This is partly due to stabilizing Hoogsteen (N7gu1-N2gu2; O6gu1-N1gu2) and reverse Hoogsteen (N7gu1-N1gu2; O6gu1-N2gu2) hydrogen bonding as well as π-orbital stacking between the purine rings of non-contiguous guanine pairs (gu1, gu2) (Figure 1) [6,7]. Additionally, the presence of Adenine residues in the intervening loops, variable loop length (h~1-30 Mer) and permutation have all been shown to contribute to the stability and thence persistence of the mature quadruplex [8,9,10,11].
Tm∝(#Adenine/h)=τ.(#Adenine/h)Tm:=Melting temperatureτ:=constant of proportionalityh:=Length of intervening loops | (1) |
Despite the wide range of methods available that can predict G4 formation in DNA/RNA, there is poor agreement between sequence-based motif locators and empirically derived biophysical data [12,13,14,15]. Motif-independent methods such as those that directly measure the GC-content or the GC-/AT-skew of a query sequence and utilize this data to train machine learning algorithms may address some of these discrepancies [16,17,18].
Investigations into transcribed RNA suggests that secondary and tertiary forms (5'- and 3'-UTRs) may not only coexist with stretches of unfolded ribonucleotides, but can also be read by the ribosomal machinery. Non-canonical translation is described as: a) translation from atypical start sites AUG→{CUG, GUG} or b) peptides (≤100 aa) of short open reading frames (sORF)-encoded polypeptides (SEPs) and upstream open reading frames (uORFs) [19,20,21,22]. The latter are rarely silent and can function as modulators of metabolism (S-Adenosylmethionine decarboxylase, AMD1) or transcription (activating transcription factor, ATF4, H19; yeast AP-1 like, YAP1) and as generic transcription factors (general control protein, GCN4) [19]. G4 has also been observed in one or more exons of the prion protein (PRNP, exon 2), zinc finger protein (ZNF669, exon 1), β-amyloid secretase (BACE1, exon 3) and the estrogen receptor 1 (ESR1, exon 4) among several others [16,23,24,25,26,27,28,29].
Whilst the presence of segments of folded mRNA may have a significant influence on the yield of the protein product(s), the effect on sequence whence part of the protein coding segment (PCS) is largely unknown [4,5,30,31,32,33]. Proteopathies are diseases that result directly from agammaegates of truncated and misfolded proteins. These may occur secondary to a faulty translation machinery such as a ribosome that has stalled on encountering a secondary or tertiay folded mRNA sub segment. Recent data suggests ~45% of the human genome may code for proteins that are either intrinsically disordered (IDPs) or comprise one or more sub-segments that are disordered (IDRs) [34]. The absence of delineable structural features notwithstanding, disordered regions are characterized by short linear motifs (SLiMS) and/or molecular recognition features (MoRFs) [34,35]. The improper folding and heightened degradation rates could lead to perturbed proteostasis and thence contribute to the pathogenesis of proteopathies [34,35]. Primary proteopathies are likely to result directly from mutations (point, chromosomal translocations) in the PCS of a gene. These include sickle cell disease (βE6→V6-mediated defective polymerization), amylin-based type Ⅱ Diabetes Mellitus, Cystic Fibrosis (cystic fibrosis transmembrane conductance regulator), Alzheimer's disease (Amyloid β-peptide) and Parkinson's disease (α-synuclein) [36,37]. Secondary proteopathies, in contrast, result from motif or molecular mimicry of a host protein(s) by a pathogen. These are further classified into acute and chronic variants depending on the onset, genesis and/or resolution of the resultant infection or infestation [34,35].
G4 is known to stall the ribosome during translation and the resultant protein is truncated and/or degraded at an accelerated rate. The manuscript subsumes ribosomal read-through of mRNA with a G-quadruplex and assesses influence of the translated product to proteostasis. Here, I present a mathematical model of a short G4 (20–60 Mer) in the PCS, i.e., translatable G-quadruplex (TG4), in the mRNA of a hypothetical gene. The mapping uses several novel indices to annotate, classify and select suitable Guanine-containing codons (α) and amino acids (β). A generic algorithm then computes and validates, as proof-of-principle, possible peptides (pTG4ij) that correspond to the modeled TG4 (pTG4ij∈PTG4~TG4). Co-occurrence, homology and the distribution of overlapping/shared amino acids between PTG4 and the disorder promoting SLiMS are used to infer probable mechanisms of TG4~PTG4 facilitated misfolding. Standard bioinformatics indices (accuracy, precision, recall, p-value) are used to arrive at these conclusions.
The objective of this investigation is to model a short G4 in an arbitrary PCS (TG4) which when translated will result in a set of peptides (PTG4) with an average length that is less than 100 amino acids. The hypothesis explored in this manuscript is that in the event of a ribosomal read-through, the translated mRNA, with its G4 will result in a modified protein product. This protein will then exhibit considerable propensity to misfold on account of the presence of one or more members of the PTG4.
2.1.1 Model of a translatable G-quadruplex (TG4)
SEPs-derived peptides with the lowest molecular weight (~2.5 KDa) and with lengths varying from ~7–20 aa were identified and used to define the boundaries of the peptides that comprise PTG4 [20,21]. The TG4 (m = 1) is therefore, modeled as an intra-strand sub sequence of the mRNA of a hypothetical gene and has a length of ~20–60 Mer. This is represented (with symbols and variable names as explained in Def. 1) as follows:
TG4:=(((Gt,k)3≤t≤9(Nh,k)2≤h≤7)k=3((Gt,k)3≤t≤9)k=1)m=1 | (Def. 2) |
Since the Guanine-rich clusters and loops are contiguous, the aforementioned model (Def.2) of the TG4 may be approximated with a sequence of codons and is as under:
TG4:=(CODq)Lq∈N|COD∈COD | (Def. 3) |
The algorithm to compute L, which is the number of codons needed to model TG4 is presented and is as follows:
1:N←{u∈[20,60)}2:r←N mod 33:e←N−((N mod 3)/3)4:If e<(⌊e⌋+⌈e⌉)/2 then5:L=⌈e/3⌉6:else If e≥(⌊e⌋+⌈e⌉)/2 then7:L=⌊e/3⌋8:end If |
𝑁 ≔ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑖𝑏𝑜𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑚𝑜𝑑𝑒𝑙 𝑇𝐺4
𝐿 : = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑑𝑜𝑛𝑠 𝑛𝑒𝑒𝑑𝑒𝑑 𝑡𝑜 𝑚𝑜𝑑𝑒𝑙 𝑇𝐺4 (7 ≤ 𝐿 < 21)
𝑞 ≔ 𝑞𝑡ℎ 𝑐𝑜𝑑𝑜𝑛
𝑟 ≔ 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = {0, 1, 2}
𝑒, 𝑢 : = 𝐺𝑒𝑛𝑒𝑟𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
𝑪𝑶𝑫 ≔ 𝑆𝑒𝑡 𝑜𝑓 𝑣𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝑡𝑒 𝑐𝑜𝑑𝑜𝑛𝑠
The codons selected for modelling TG4 (Def. 3) comprised suitably scored Guanine-containing vertebrate codons (gCOD+n⊂COD) for the Guanine-rich clusters/stretches/tracks (3≤t≤9;Defs. 1 and 2) and generic/no-stop codons for the intervening loops (Figures 2 and 3). Briefly, a Guanine-containing codon (gCODn) is scored by considering its association with two similar flanking codons, i.e., gCODn-1, gCODn, gCODn+1 such that there is at least one occurrence of 'GGGG' (δ≥1.0) (Figures 2 and 3). This non-trivial case (4≤t≤9) is chosen since its trivial equivalent t = 3, is already subsumed (Defs. 1 and 2). Numerically,
αaminocodon=γ.θ.δ+Ω | (2) |
𝛾 : = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜𝑑𝑜𝑛 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 (𝛾 = 1/64 ≈ 0.02)
𝜃 ≔ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜𝑑𝑜𝑛 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑔𝑟𝑜𝑢𝑝 (𝜃 = {0.04, 0.11, 0.33, 1})
𝛿 ≔ 𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 ′𝐺𝐺𝐺𝐺′(𝛿 = {0, 1, 2, 6})
Ω ≔ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑐𝑜𝑑𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝛿 (Ω = {0, 1, 2})
Since the genetic code is degenerate, amino acids mapped from the selected codons are further scored and grouped (g1, g2, g3) (Figures 3 and 4).
βamino=|gCOD+amino|/|CODamino| | (6) |
gCOD+amino:= set of optimal codons for each amino acid (αaminocodon>0.0000)
CODamino:= Set of codons for each amino acid
Whilst amino acids from groups 1 and 2 (β > 0.00) (3) can represent the modeled G-rich clusters (y∈g1∪g2 = Y), no constraint was imposed on the amino acids (z) used to model the loops (z∈g1∪g2∪g3 = Z) (Figures 3 and 4). The peptidome (PTG4) evaluated by this study is a combinatorial association of peptides such that the molecular weight is ~0.8–2.3 KDa and length of any arbitrary member is ~7–20 aa (Figure 4). This may be represented as follows:
pTG4ij=((((yi,k)1≤i≤3(zi,k)1≤i≤2)k=3(yi)1≤i≤3)(zi)1≤i≤2)j | (Def. 4) |
PTG4=⋃i=20i=7⋃j=Jj=1|pTG4ij| | (Def. 5) |
𝑷𝑻𝑮𝟒 : = 𝑃𝑒𝑝𝑡𝑖𝑑𝑜𝑚𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑇𝐺4
𝑝𝑇𝐺4𝑖𝑗 : = 𝑗𝑡ℎ 𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑 𝑓𝑜𝑟𝑚 𝑜𝑓 𝑃𝑇𝐺4 𝑤𝑖𝑡ℎ "i" 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠
𝑖 : = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠 𝑡ℎ𝑎𝑡 𝑐𝑜𝑚𝑝𝑟𝑖𝑠𝑒 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑 𝑷𝑻𝑮𝟒
𝐽 : = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙 𝑝𝑇𝐺4 𝑓𝑜𝑟 "𝑖" 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠
A dataset that comprises experimentally validated G4-forming mRNA segments of several genes (n = 99) was downloaded (http://scottgroup.med.usherbrooke.ca/G4RNA/) and used to investigate the distribution of G4 [16]. Genes which possess non-redundant RNA (R) sub sequences in the PCS are translated in 6 reading frames using an online tool (http://web.expasy.org/translate). The peptides generated are classified as those: ⅰ) with one or more uninterrupted stretch of N-terminal amino acids of length ≥7 aa (~A), ⅱ) with an in-frame termination signal designated as 'STOP' (~B) and ⅲ) without any termination signal, i.e., absence of a 'STOP' in their sequence (~C). The translated peptides are classified as "VALID" ((B∩A)∪(C∩A)) and then queried for matches with pTG4ij(7≤i≤20,j∈N). The PERL scripts that are required to parse and process the resulting data files have been developed in house and the pseudocode for the same is presented as additional information (Pseudocode, PS1: Supplementary Text 1).
This is done by examining the occurrence of PTG4 in amino acid/protein sequences of disordered regions (IDRs) and full-length proteins with disordered regions (IDPs). DisProt 7.0 (http://disprot.org), is a database of experimentally validated and non-redundant sequences of IDRs and IDPs [38]. The sequences (|IDR| = 1445;|IDP| = 800) that comprise these are queried for occurrences of pTG4ij(7≤i≤20,j∈N) (Supplementary Texts 2 and 3). A preliminary partitioning schema divides these datasets into two distinct subsets, i.e., #pTG4ij≥1 (PT+≡PPOS⊂{IDR, IDP}; (Def.6)) and #pTG4ij = 0 (PT-≡PNEG⊂{IDR, IDP}; (Def. 7)). The extent of co-occurrence of one or more SLiMSw≡SL (w = {1, 2, 3}) with pTG4ij (SL±∈{PPOS, PNEG}) (Defs.8 and 9) is then evaluated to infer relevance of PTG4 to misfolding induced proteostasis. The distribution of overlapping/shared sequences of amino acids ((zn)n≥2∈(pTG4ij∩SLiMSw); zn∈Z; ) (Def.10), is examined in protein sequences from taxonomically diverse organisms with ScanProsite (https://prosite.expasy.org/scanprosite). The proof behind this rationale is presented:
(zn)n≥2 ∈(pTG4ij∩SLiMSw)=((zn)n≥2∈pTG4ij)∩((zn)n≥2∈SLiMSw)Let zn=z′n and zn=z′′n.Rewriting =((z′n)n≥2∈pTG4ij)∩((z′′n)n≥2∈SLiMSw)=((z′n)n≥2,(z′′n)n≥2)=pTG4ij×SLiMSw |
𝒁 : = 𝑆𝑒𝑡 𝑜𝑓 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠 (𝑧𝑛 ∈ 𝒁)
𝑝𝑇𝐺4𝑖𝑗 : = 𝐶𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑 𝑓𝑜𝑟𝑚 𝑜𝑓 𝑷𝑻𝑮𝟒
𝑺𝑳𝒊𝑴𝑺 : = 𝑆𝑒𝑡 𝑜𝑓 𝑠ℎ𝑜𝑟𝑡 𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑡𝑖𝑓𝑠 (𝑆𝐿𝑖𝑀𝑆𝑤 ∈ 𝑺𝑳𝒊𝑴𝑺)
𝑖, 𝑗, 𝑛, 𝑤 : = 𝐼𝑛𝑑𝑖𝑐𝑒𝑠 𝑜𝑓 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝒁, 𝑷𝑻𝑮𝟒, 𝑺𝑳𝒊𝑴𝑺
The indices utilized by this study to establish relevance of matched instances of various motifs/co-motifs in the peptide/protein sequences of interest include the accuracy (A), precision (P), recall (R) and the p-value. A 2X2 table which represents the categorized data (2.1.4) is constructed and used to compute various bioinformatics indices. This is outlined as under:
![]() |
𝑇𝑁 ≔ 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (|𝒔𝑵𝑬𝑮 ∩ 𝑷𝑵𝑬𝑮| = |𝒔𝑵𝑬𝑮|) ≡ 𝑆𝐿−𝑃𝑇− (𝐷𝑒𝑓. 11)
𝐹𝑃 ≔ 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (|𝑺𝑵𝑬𝑮 ∩ 𝑷𝑷𝑶𝑺| = |𝑺𝑵𝑬𝑮|) ≡ 𝑆𝐿−𝑃𝑇+ (𝐷𝑒𝑓. 12)
𝐹𝑁 ≔ 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (|𝒔𝑷𝑶𝑺 ∩ 𝑷𝑵𝑬𝑮| = |𝒔𝑷𝑶𝑺|) ≡ 𝑆𝐿+𝑃𝑇− (𝐷𝑒𝑓. 13)
𝑇𝑃 ≔ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (|𝑺𝑷𝑶𝑺 ∩ 𝑷𝑷𝑶𝑺| = |𝑺𝑷𝑶𝑺|) ≡ 𝑆𝐿+𝑃𝑇+ (𝐷𝑒𝑓. 14)
The equations may then be written as:
(A)=(TN+TP/TN+FP+FN+TP)X100 | (4) |
(P)=(TP/FP+TP)X100 | (5) |
(R)=(TP/FN+TP)X100 | (6) |
The p-values for these analyses are computed by comparing the frequency of occurrence of all pTG4ij in a test sequence (ϕpTG4ij) with the same in randomly-generated (v∈V) sequences of similar lengths (ϕpTG4vij), i.e., 7-50 aa (1≤v≤10000) and > 50 aa (1≤v≤100000) (Pseudocode, PS2: Supplementary Text 1):
p−value=ϕpTG4vij/ϕpTG4ij=(v=|V|∑v=1i=21∑i=7j=J∑j=1pTG4vij)/(i=21∑i=7j=J∑j=1pTG4ij)=(v=|V|∑v=1i=21∑i=7j=J∑j=1pTG4vij/i=21∑i=7j=J∑j=1pTG4ij) | (7) |
The frequency of occurrence of overlapping sequences of amino acids ((zn)n≥2∈(pTG4ij∩SLiMSw); zn∈Z) in pre-compiled and curated protein sequences (ϕ(zn)) across taxa is compared with randomly chosen sequences of comparable lengths (ϕ(vzn); n = 5000). These are used to estimate statistical significance, i.e., p-value = ϕ(vzn)/ϕ(zn) (8).
The data presented discusses implementation of a model of short intra-strand TG4 for various values of α and β, populates PTG4 and establishes the equivalence TG4~PTG4. Co-occurrence and homology studies between PTG4 and the SLiMS in IDRs/IDPs and generic protein sequences across taxa are used to infer probable mechanisms of TG4~PTG4 facilitated misfolding-induced proteostasis.
An association-competent codon not only takes into account the presence of a Guanine residue, but also gives weightage to its position (Figures 1–3, Table 1). This schema partitions standard vertebrate codons into those with a high- (Ranks 1-4;α > 0.0000) or low- (Rank 5;α = 0.0000) propensity to form a contiguous cluster of Guanine residues (Figures 3 and 4, Table 1). Whilst, 'GGG' (Rank 1;α = 2.12) can associate with ({GGG, GxG, xGG, GGx, Gxx, xxG}) bilaterally (δ = 6;Ω = 2), 'GxG' (Rank 2; α = 2.0066) can do so only with 'GGG' (δ = 1;Ω = 2). On the other hand, the codon subsets 'GGx' and 'xGG' (Rank 3;α = 1.0132) can form two clusters of contiguous Guanine residues with 'GGG' and 'xGG'/ 'GGx' unilaterally (δ = 2;Ω = 1). Similarly, the subsets 'xxG' or 'Gxx' (Rank 4;α = 1.0022), can form contiguous Guanines with a single occurrence of 'GGG' (δ = 1;Ω = 1) (Figures 3 and 4, Table 1). Conversely, codons with either a single occurrence of a central Guanine residue 'xGx' or no Guanine residues 'xxx' (Rank 5;α = 0.0000) are unable to form the 'GGGG' and are excluded from this study (Figures 3 and 4, Table 1).
Rank | Codon set, Cardinality | Codon | γ | θ | δ | Ω | α=γ.θ.δ+Ω | aa |
1 | GGG, 1 | GGG | 0.02 | 1.00 | 6 | 2 | 2.1200 | Gly |
2 | GxG, 3 | GUG | 0.02 | 0.33 | 1 | 2 | 2.0066 | Val |
GCG | 0.02 | 0.33 | 1 | 2 | 2.0066 | Ala | ||
GAG | 0.02 | 0.33 | 1 | 2 | 2.0066 | Glu | ||
3 | xGG, 3 | UGG | 0.02 | 0.33 | 2 | 1 | 1.0132 | Trp |
CGG | 0.02 | 0.33 | 2 | 1 | 1.0132 | Arg | ||
AGG | 0.02 | 0.33 | 2 | 1 | 1.0132 | Arg | ||
3 | GGx, 3 | GGU | 0.02 | 0.33 | 2 | 1 | 1.0132 | Gly |
GGC | 0.02 | 0.33 | 2 | 1 | 1.0132 | Gly | ||
GGA | 0.02 | 0.33 | 2 | 1 | 1.0132 | Gly | ||
4 | xxG, 9 | UUG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Leu |
UCG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Ser | ||
UAG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Ter | ||
CUG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Leu | ||
CCG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Pro | ||
CAG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Gln | ||
AUG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Met | ||
ACG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Thr | ||
AAG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Lys | ||
4 | Gxx, 9 | GUU | 0.02 | 0.11 | 1 | 1 | 1.0022 | Val |
GCU | 0.02 | 0.11 | 1 | 1 | 1.0022 | Ala | ||
GAU | 0.02 | 0.11 | 1 | 1 | 1.0022 | Asp | ||
GUC | 0.02 | 0.11 | 1 | 1 | 1.0022 | Val | ||
GCC | 0.02 | 0.11 | 1 | 1 | 1.0022 | Ala | ||
GAC | 0.02 | 0.11 | 1 | 1 | 1.0022 | Asp | ||
GUA | 0.02 | 0.11 | 1 | 1 | 1.0022 | Val | ||
GCA | 0.02 | 0.11 | 1 | 1 | 1.0022 | Ala | ||
GAA | 0.02 | 0.11 | 1 | 1 | 1.0022 | Glu | ||
5 | xGx, 9 | UGU | 0.02 | 0.11 | 0 | 0 | 0.0000 | Cys |
UGC | 0.02 | 0.11 | 0 | 0 | 0.0000 | Cys | ||
UGA | 0.02 | 0.11 | 0 | 0 | 0.0000 | Ter | ||
CGU | 0.02 | 0.11 | 0 | 0 | 0.0000 | Arg | ||
CGC | 0.02 | 0.11 | 0 | 0 | 0.0000 | Arg | ||
CGA | 0.02 | 0.11 | 0 | 0 | 0.0000 | Arg | ||
AGU | 0.02 | 0.11 | 0 | 0 | 0.0000 | Ser | ||
AGC | 0.02 | 0.11 | 0 | 0 | 0.0000 | Ser | ||
AGA | 0.02 | 0.11 | 0 | 0 | 0.0000 | Arg | ||
5 | xxx, 27 | UUU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Phe |
UCU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Ser | ||
UAU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Tyr | ||
UUC | 0.02 | 0.04 | 0 | 0 | 0.0000 | Phe | ||
UCC | 0.02 | 0.04 | 0 | 0 | 0.0000 | Ser | ||
UUA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Leu | ||
UCA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Ser | ||
UAA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Ter | ||
CUU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Leu | ||
CCU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Pro | ||
CAU | 0.02 | 0.04 | 0 | 0 | 0.0000 | His | ||
CUC | 0.02 | 0.04 | 0 | 0 | 0.0000 | Leu | ||
CCC | 0.02 | 0.04 | 0 | 0 | 0.0000 | Pro | ||
CAC | 0.02 | 0.04 | 0 | 0 | 0.0000 | His | ||
CUA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Leu | ||
CCA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Pro | ||
CAA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Gln | ||
AUU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Ile | ||
ACU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Thr | ||
AAU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Asn | ||
AUC | 0.02 | 0.04 | 0 | 0 | 0.0000 | Ile | ||
ACC | 0.02 | 0.04 | 0 | 0 | 0.0000 | Thr | ||
AAC | 0.02 | 0.04 | 0 | 0 | 0.0000 | Asn | ||
AUA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Ile | ||
ACA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Thr | ||
AAA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Lys |
Abbreviations
𝛾: General probability of a codon (𝛾 = 1/64 ≅ 0.02)
𝜃: Probability of codon within a group (𝜃 = {0.04, 0.33, 0.11, 1.00})
𝛿: Number of distinct codon sets that could complete 'GGGG' (𝛿 = {0, 1, 2, 6})
Ω: Number of adjacent positions that contain 𝛿 (Ω = {0, 1, 2})
𝛼: Threshold for selecting codons that may favour G-quadruplex formation
x: Codon specific generic ribonucleotide {𝐴, 𝐺, 𝑈, 𝐶}
aa: Amino acid
Ter: Stop codons {𝑈𝐴𝐺, 𝑈𝐺𝐴, 𝑈𝐴𝐴}
An estimate of the possible combinations of the simplest peptide (∑i=7∑j=Jj=1pTG4ij = 8.00E+03;GlyzGlyzGlyzGly; J = (20)3; i = lengthp(TG4ij) = 7 aa; z∈Z) (Figures 3 and 4, Table 2). This justifies usage of PTG4 (pTG4ij∈PTG4) as a generic representation of the putative peptidome encoded by the TG4 (PTG4). Approximately ~12% (n = 11) of in silico translated amino acid sequences from exon-derived TG4 possesses one of more "STOP" signals and include ESR1, longer RNA variants of PRNP (85 nt) and BCL2 (29 n t, 33 nt, 34 nt) (Table 3; Table 1, Supplementary Text 2). With the exceptions of KCNH2/ZNF669 and the shorter variants of PRNP (14 nt, 15 nt, 20 nt, 24 nt), "VALID" sub sequences are found for BACE1, BCL2, ESR1, PRNP (long) and TERF2 (Table 3; Tables 1A and 1C). Interestingly, all the genes considered possessed at least one occurrence of PTG4 (P = 100%, n = 6) (Table 3; Table 1B). This finding, despite the small sample size is proof-of-principal that the TG4 can be mapped to definite peptide sequences, i.e., TG4~PTG4. Since this can occur only after a ribosomal read through of the G4 containing mRNA, it raises the intriguing possibility that PTG4 whence part of a larger protein may increase its propensity to undergo misfolding. This notion is investigated in non-redundant sequences of IDRs (PTG4~10%, n = 145;0.00≤p-value≤0.20) and IDPs (PTG4~34%, n = 269;0.00≤p-value < 0.5) (Table 4; Tables 2 and 3).
aa | CODamino | gCOD+amino | β | |
Group 1 (n=7) | Ala | 4 | 4 | 1.00 |
Val | 4 | 4 | 1.00 | |
Asp | 2 | 2 | 1.00 | |
Glu | 2 | 2 | 1.00 | |
Trp | 1 | 1 | 1.00 | |
Met | 1 | 1 | 1.00 | |
Gly | 4 | 4 | 1.00 | |
Group 2 (n=7) | Leu | 6 | 2 | 0.3333 |
Gln | 2 | 1 | 0.5 | |
Arg | 6 | 2 | 0.3333 | |
Lys | 2 | 1 | 0.5 | |
Ser | 6 | 1 | 0.1667 | |
Thr | 4 | 1 | 0.25 | |
Pro | 4 | 1 | 0.25 | |
Group 3 (n=6) | Cys | 2 | 0 | 0.00 |
Asn | 2 | 0 | 0.00 | |
Ile | 3 | 0 | 0.00 | |
His | 2 | 0 | 0.00 | |
Phe | 2 | 0 | 0.00 | |
Tyr | 2 | 0 | 0.00 |
Abbreviations
gCOD+amino : Guanine-containing optimal codons excluding STOP (UAG) (𝛼 > 0.000)
COD−amino : Non-optimal codon excluding STOP (UGA, UAA) (𝛼 = 0.000)
𝑪𝑶𝑫𝒂𝒎𝒊𝒏𝒐 = gCOD+amino + COD−amino : All codons for an amino acid
GENE | NAME | G4 (nt) | Ex | STOP(n=11) | VALID(n=59) | |PTG4| |
BACE1 | Beta-secretase 1 | 33 | 3 | n=0 | n=6 | n=2 |
BCL2 | B-cell lymphoma 2 | 33 | 2 | n=1 | n=6 | n=1 |
23 | n=0 | n=6 | ||||
28 | n=0 | n=6 | ||||
29 | n=1 | n=5 | ||||
34 | n=1 | n=5 | ||||
33 | 3 | n=2 | n=5 | |||
ESR1 | Estrogen receptor alpha (ERα) | 36 | 4 | n=1 | n=5 | n=2 |
KCNH2 | Potassium Voltage-Gated Channel sub family H | 18 | 12 | n=0 | n=0 | NA |
ZNF669 | Member 2 Zinc Finger Protein 669 |
1 | ||||
PRNP | Prion protein | 14 | 2 | n=0 | n=0 | n=1 |
15 | n=0 | n=0 | ||||
20 | n=0 | n=0 | ||||
24 | n=0 | n=6 | ||||
85 | n=6 | n=3 | ||||
TERF2 | Telomeric repeat-binding factor 2 | 55 | 1 | n=0 | n=6 | n=1 |
Disordered regions (IDRs; n=1445;0.00≤p-value < 0.05) | |||||||||||||||||
SL-PT- | SL-PT+ | SL+PT- | SL+PT+ | R1T | R2T | C1T | C2T | A (%) | P (%) | R (%) | |||||||
SLiMS1 | 1078 | 64 | 58 | 9 | 1142 | 67 | 1136 | 73 | 89.90 | 12.32 | 13.43 | ||||||
SLiMS2 | 749 | 18 | 121 | 29 | 767 | 150 | 870 | 47 | 84.84 | 61.70 | 19.33 | ||||||
SLiMS3 | 1212 | 108 | 34 | 9 | 1320 | 43 | 1246 | 117 | 89.58 | 7.69 | 20.93 | ||||||
Proteins with disordered segments (IDPs; n=800;0.00≤p-value < 0.05) | |||||||||||||||||
SL-PT- | SL-PT+ | SL+PT- | SL+PT+ | R1T | R2T | C1T | C2T | A (%) | P (%) | R (%) | |||||||
SLiMS1 | 86 | 12 | 28 | 18 | 98 | 46 | 114 | 30 | 72.22 | 60.00 | 39.10 | ||||||
SLiMS2 | 1 | 1 | 96 | 66 | 2 | 162 | 97 | 67 | 40.85 | 98.50 | 40.74 | ||||||
SLiMS3 | 250 | 57 | 26 | 25 | 307 | 51 | 276 | 82 | 76.81 | 30.48 | 49.01 |
Abbreviations
𝐼𝐷𝑅𝑠: Intrinsically disordered regions
𝐼𝐷𝑃s: Intrinsically disordered proteins
𝑧: Any amino acid
𝑆𝐿𝑖𝑀𝑆1: [𝑆𝑇]𝑃𝑧𝑅
𝑆𝐿𝑖𝑀𝑆2: [𝐸𝐷]𝑧𝑧[𝐷𝐸][𝐴𝐺𝑆]
𝑆𝐿𝑖𝑀𝑆3: [𝐾𝑅]𝑧𝑃𝑧𝑧𝑃
𝑆𝐿−𝑃𝑇−: |𝑺𝑵𝑬𝑮 ∩ 𝑷𝑵𝑬𝑮|
𝑆𝐿−𝑃𝑇+: |𝑺𝑵𝑬𝑮 ∩ 𝑷𝑷𝑶𝑺|
𝑆𝐿+𝑃𝑇−: |𝑺𝑷𝑶𝑺 ∩ 𝑷𝑵𝑬𝑮|
𝑆𝐿+𝑃𝑇+: |𝑺𝑷𝑶𝑺 ∩ 𝑷𝑷𝑶𝑺|
𝑅1𝑇: 𝑆𝐿−𝑃𝑇− + 𝑆𝐿−𝑃𝑇+
𝑅2𝑇: 𝑆𝐿+𝑃𝑇− + 𝑆𝐿+𝑃𝑇+
𝐶1𝑇: 𝑆𝐿−𝑃𝑇−+ 𝑆𝐿+𝑃𝑇−
𝐶2𝑇: 𝑆𝐿−𝑃𝑇+ + 𝑆𝐿+𝑃𝑇+
𝐴: Accuracy
𝑃: Precision
𝑅: Recall
The amino acids that comprise the peptide members of PTG4 and the short linear motifs (g1, g2 vs SLiMS) are well conserved. The co-occurrence of PTG4 with SLiMS in the IDRs (A~85-89%;0.00 < p-value≤0.05) suggests that this association is non-trivial and may favor all purported mechanisms of misfolding (hyperphosphorylation, proteolytic cleavage, complex formation) (Table 4; Tables 2 and 3). However, the higher precision of PTG4 with the proteolytic-SLiMS suggests that this may predominate (Table 4; Tables 2 and 3). The data with the IDPs suggests a similar predilection for proteolytic cleavage (A~40-77%;P~99%;0.00 < p-value < 0.05, although hyperphosphorylation (P~60%;0.00 < p-value < 0.05) and complex-promotion (P~30%;0.00 < p-value < 0.05) may constitute viable alternatives to the genesis of misfolding (Table 4; Tables 2 and 3). The presence of overlapping sequences of amino acids between PTG4 and the SLiMS when examined in protein sequences from taxonomically diverse organisms is degenerate for SLiMS1 (number of matches = 6251) and SLiMS3 (number of matches = 1480) (Table 5; Table 4). In contrast, the corresponding data for SLiMS2 (number ofmatches = 3759;0.00 < p-value < 0.05) is statistically significant (Table 5). The taxonomic spread includes archaea (n = 150), bacteria (n = 1735), viruses (n = 84), green land plants (n = 199), fungi (n = 182), eukaryotic invertebrates (n = 43) and vertebrates (n = 700) (Table 4).
SLiMS | Sample | (zn)n≥2∈pTG4ij∩SLiMSw (p-value) | |
SLiMS1=[ST]PzR | Pz | PG (n=1) | PG (Degenerate) |
SLiMS2=[ED]zzD[AGS] | z[DE] | G[DE] (n=2) | [WGRVAELMKQSTP][AG][DE]z2EG[VADE](p-value=0.00069) |
[DE]z | [DE]G (n=1) | ||
zz[DE] | [LMKQSTP]G[DE] (n=14) [VAE]G[DE] (n=6) [WGR][AG][DE] (n=6) |
||
[DE]zz[DE] | [VAE]G[DE]zzEG[VADE] (n=28) [WGR][AG][DE]zzEG[VADE] (n=24) [WGR][AG][DE]zzEG (n=6) GEzzEG[VADE] (n=4) GEzzEG (n=1) |
||
SLiMS3=[KR]zPzzP | Pzz | PG[VADE] (n=4) | PGV (Degenerate) PGA (Degenerate) PGD (Degenerate) PGE (Degenerate) |
Abbreviations
𝑝𝑇𝐺4𝑖𝑗: Members of putative peptidome (𝑝𝑇𝐺4𝑖𝑗 ∈ 𝑷𝑻𝑮𝟒)
𝑆𝐿𝑖𝑀𝑆𝑤: Short linear motifs (𝑆𝐿𝑖𝑀𝑆𝑤 ∈ 𝑺𝑳𝒊𝑴𝑺)
𝑧𝑛: Shared sequence(s) of amino acids between 𝑷𝑻𝑮𝟒 and 𝑺𝑳𝒊𝑴𝑺
𝑖, 𝑗, 𝑤, 𝑛: Indices to characterize members of 𝑷𝑻𝑮𝟒, 𝑺𝑳𝒊𝑴𝑺, 𝒁
The significant association and homology between PTG4 and the SLiMS along with the equivalence data (PTG4~TG4) suggest that TG4 may influence proteostasis in a multitude of ways (Tables 1–5; Tables 1–4, Supplementary Text 2–4).
The short TG4 modeled in this study has an average loop length (h~2 Mer) which may contribute to thermodynamic stability by restricting the mobility of the participating strands (1) [8,9,10,11]. The physical presence of TG4 will result in a stalled ribosome and translation which is prolonged, inefficient and incomplete [31,32,33]. Interestingly, this analysis also includes UAG (Amber; α > 0.0000), which when present in-frame will prematurely terminate translation and result in a truncated protein (Table 1) [39]. Whilst nonsense-mediated mRNA decay may be triggered if the stop codon is within ±50 Mer of the exon-junction complex (EJC), a read-through may occur nonetheless. The resulting protein sequences may be modified which in tandem with one or more occurrences of PTG4 and/or SLiMS would predispose the same to agammaegate and result in a proteopathy [39,40].
Whilst the preponderance of Glycine (Gly) might impart heightened flexibility and limit the formation of stabilizing secondary structural elements in the hypothetical protein, Proline (Pro) confers rigidity and may retard proper folding. There is also remarkable conservation between the amino acids that comprise PTG4 and the SLiMS. These include the complex-promoting hydrophobic (Ala, Val, Met, Trp) and ionic (Asp, Glu, Lys, Arg) residues, along with nucleophile-favoring Serine and Threonine (Figures 3 and 4, Tables 2–5). Whilst, the former may favor agammaegation by non-covalent interactions, the latter may promote phosphorylation-mediated charge imbalance and thence misfolding. Interestingly, the loops of G4 whence modeled by Adenine-containing codons (Axx) are translated to Lysine (K), Arginine (R), Serine (S), Threonine (T) and Isoleucine (I); all of which may also promote misfolding (Figures 3 and 4, Tables 2-5) [8,9,10,11,34,35]. The distribution of PTG4 amongst physiologically relevant proteins further suggests that the peptide-mediated misfolding may influence/regulate signal transduction, cytoskeleton organization, metabolism, synaptic transmission and transcription/translation (Table 6; Table 5).
Cellular function | Disordered regions of proteins | |
1. | Signal transduction | DP00274, DP00224, DP00141, DP00332, DP01063, DP00506, DP00418, DP00341, DP00435, DP00613, DP00463, DP00954, DP00959, DP01104, DP00611, DP00519, DP00086, DP00707, DP00712 |
2. | Endocytosis | DP01073, DP01065, DP01066, DP00225 |
3. | Calcium-calmodulin | DP00092, DP00132, DP00561, DP00118, DP00253 |
4. | Myofibril assembly | DP01090 |
5. | Cytoskeleton | DP01056 DP00240, DP01022, DP00169, DP00716, DP00717, DP01100, DP00122 |
6. | Nuclear pore | DP01075, DP01077, DP01079 |
7. | Phototransduction | DP00768, DP00347 |
8. | Targeting | DP00893, DP00609, DP00610, DP01058 |
9. | Transcription | DP00062, DP00177, DP00633, DP00348, DP00786, DP00049, DP00231, DP00873, DP00720, DP00217, DP00081 |
10. | Translation | DP00082, DP00164, DP00229 DP00949, DP00134 |
11. | Synaptic transmission | DP00943 |
12. | Supercoiling | DP00076 |
13. | Binding | DP00539, DP00854, DP01052, DP00659, DP00656 |
14. | Peptide bond formation | DP00944 |
15. | Enzymes | DP00557, DP00032, DP00095, DP00337, DP00379, DP00787, DP00427, DP00429 |
16. | Bacterial/parasitic virulence | |
Secreted toxins | DP00345, DP00591 | |
Cytoadherence | DP00025, DP00065, DP01096 | |
17. | Viral infectivity | |
Cyclophilin interaction | DP00615, DP01031 | |
Chaperones | DP00699, DP00700, DP00674 | |
Capsid assembly | DP00133, DP00876 | |
Membrane fusion | DP01043 | |
Latency | DP01060 | |
18. | Unknown | DP00119 |
Note: DP≔DisProt ID
The distribution of overlapping/shared amino acids in protein sequences of non-vertebrates suggests that PTG4 is either completely degenerate with the SLiMS or present in proportions that is statistically significant (Tables 5 and 6; Tables 4 and 5). These data imply that motif-mimicry too, might constitute a probable cause (tropism, oncogenic potential, virulence) of infection/infestation-mediated acute/chronic proteopathies [34,35,41,42]. The contribution(s) of misfolding to the pathogenesis of secondary proteopathies is however, debatable. Whilst, there is evidence that mislocalization of proteins can precipitate misfolding, mimicry itself may result in exonuclease-mediated proteolytic cleavage and thence trigger an infective proteopathy [43,44]. Additionally, the presence of sequences of amino acids such as Proline and Threonine in viral or fungal proteins may be responsible for creating and/or maintaining a milieu conducive to the genesis of infective/transmissible proteopathies, viz., a high charge density and imbalance of electrostatic interactions [43,44].
The coexistence of potentially translatable G-quadruplexes (TG4) with unfolded ribonucleotides in the PCS of an mRNA transcript may have important consequences for protein homeostasis. Here, I have investigated the contribution of a short intra-strand translatable G-quadruplex and its associated peptidome (TG4~PTG4) to the genesis of misfolding-induced proteostasis. The co-occurrence, homology and distribution of overlapping/shared amino acids of PTG4 with the SLiMS suggests that this may occur by truncation, complex formation, increased charge density and/or accelerated degradation. An additional mechanism that is also supported is motif-mimicry by pathogens which may trigger the development of infective proteopathies. The putative peptidome (~7–20 aa) that corresponds to the short translatable G-quadruplex delineated by this investigation may be utilized as novel markers of both the primary and secondary proteopathies.
SK outlined and designed the study, designed and conceptualized the algorithm(s) and formulae for prediction, wrote mathematical proofs to establish rigor, collated the data, constructed the models, formulated the filters, carried out the computational analysis, wrote all necessary code and the manuscript.
The author declares no conflict of interest.
[1] | A. Latif, A. Rasheed, U. Sajid, J. Ahmed, N. Ali, N. I. Ratyal, et al., Content-based image retrieval and feature extraction: a comprehensive review, Math. Probl. Eng., 2019. |
[2] |
B. Gupta, M. Tiwari, S. S. Lamba, Visibility improvement and mass segmentation of mammogram images using quantile separated histogram equalisation with local contrast enhancement, CAAI Trans. Intell. Technol., 4 (2019), 73–79. doi: 10.1049/trit.2018.1006
![]() |
[3] |
S. Maheshwari, V. Kanhangad, R. B. Pachori, S. V. Bhandary, U. R. Acharya, Automated glaucoma diagnosis using bit-plane slicing and local binary pattern techniques, Comput. Biol. Med., 105 (2019), 72–80. doi: 10.1016/j.compbiomed.2018.11.028
![]() |
[4] |
S. Masood, M. Sharif, M. Raza, M. Yasmin, M. Iqbal, M. Younus Javed, Glaucoma disease: A survey, Curr. Med. Imaging, 11 (2015), 272–283. doi: 10.2174/157340561104150727171246
![]() |
[5] |
U. R. Acharya, S. Bhat, J. E. Koh, S. V. Bhandary, H. Adeli, A novel algorithm to detect glaucoma risk using texton and local configuration pattern features extracted from fundus images, Comput. Biol. Med., 88 (2017), 72–83. doi: 10.1016/j.compbiomed.2017.06.022
![]() |
[6] |
B. J. Shingleton, L. S. Gamell, M. W. O'Donoghue, S. L. Baylus, R. King, Long-term changes in intraocular pressure after clear corneal phacoemulsification: Normal patients versus glaucoma suspect and glaucoma patients, J. Cataract. Refract. Surg., 25 (1999), 885–890. doi: 10.1016/S0886-3350(99)00107-8
![]() |
[7] |
K. F. Jamous, M. Kalloniatis, M. P. Hennessy, A. Agar, A. Hayen, B. Zangerl, Clinical model assisting with the collaborative care of glaucoma patients and suspects, Clin. Exp. Ophthalmol., 43 (2015), 308–319. doi: 10.1111/ceo.12466
![]() |
[8] | T. Khalil, M. U. Akram, S. Khalid, S. H. Dar, N. Ali, A study to identify limitations of existing automated systems to detect glaucoma at initial and curable stage, Int. J. Imaging Syst. Technol., 8 (2021). |
[9] |
H. A. Quigley, A. T. Broman, The number of people with glaucoma worldwide in 2010 and 2020, Br. J. Ophthalmol., 90 (2006), 262–267. doi: 10.1136/bjo.2005.081224
![]() |
[10] |
C. Costagliola, R. Dell'Omo, M. R. Romano, M. Rinaldi, L. Zeppa, F. Parmeggiani, Pharmacotherapy of intraocular pressure: part i. parasympathomimetic, sympathomimetic and sympatholytics, Expert Opin. Pharmacother., 10 (2009), 2663–2677. doi: 10.1517/14656560903300103
![]() |
[11] | A. A. Salam, M. U. Akram, K. Wazir, S. M. Anwar, M. Majid, Autonomous glaucoma detection from fundus image using cup to disc ratio and hybrid features, in ISSPIT.), IEEE, 2015,370–374. |
[12] | R. JMJ, Leading causes of blindness worldwide, Bull. Soc. Belge. Ophtalmol., 283 (2002), 19–25. |
[13] | M. K. Dutta, A. K. Mourya, A. Singh, M. Parthasarathi, R. Burget, K. Riha, Glaucoma detection by segmenting the super pixels from fundus colour retinal images, in 2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems (MedCom.), IEEE, 2014, 86–90. |
[14] | C. E. Willoughby, D. Ponzin, S. Ferrari, A. Lobo, K. Landau, Y. Omidi, Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function–a review, Clin. Exp. Ophthalmol., 38 (2010), 2–11. |
[15] |
M. S. Haleem, L. Han, J. Van Hemert, B. Li, Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review, Comput. Med. Imaging Graph., 37 (2013), 581–596. doi: 10.1016/j.compmedimag.2013.09.005
![]() |
[16] |
A. Sarhan, J. Rokne, R. Alhajj, Glaucoma detection using image processing techniques: A literature review, Comput. Med. Imaging Graph., 78 (2019), 101657. doi: 10.1016/j.compmedimag.2019.101657
![]() |
[17] |
H. A. Quigley, Neuronal death in glaucoma, Prog. Retin. Eye Res., 18 (1999), 39–57. doi: 10.1016/S1350-9462(98)00014-7
![]() |
[18] |
N. Salamat, M. M. S. Missen, A. Rashid, Diabetic retinopathy techniques in retinal images: A review, Artif. Intell. Med., 97 (2019), 168–188. doi: 10.1016/j.artmed.2018.10.009
![]() |
[19] | F. Bokhari, T. Syedia, M. Sharif, M. Yasmin, S. L. Fernandes, Fundus image segmentation and feature extraction for the detection of glaucoma: A new approach, Curr. Med. Imaging Rev., 14 (2018), 77–87. |
[20] | A. Agarwal, S. Gulia, S. Chaudhary, M. K. Dutta, R. Burget, K. Riha, Automatic glaucoma detection using adaptive threshold based technique in fundus image, in (TSP.), IEEE, 2015,416–420. |
[21] | L. Xiong, H. Li, Y. Zheng, Automatic detection of glaucoma in retinal images, in 2014 9th IEEE Conference on Industrial Electronics and Applications, IEEE, 2014, 1016–1019. |
[22] |
A. Diaz-Pinto, S. Morales, V. Naranjo, T. Köhler, J. M. Mossi, A. Navea, Cnns for automatic glaucoma assessment using fundus images: An extensive validation, Biomed. Eng. Online, 18 (2019), 29. doi: 10.1186/s12938-019-0649-y
![]() |
[23] | T. Kersey, C. I. Clement, P. Bloom, M. F. Cordeiro, New trends in glaucoma risk, diagnosis & management, Indian J. Med. Res., 137 (2013), 659. |
[24] |
A. L. Coleman, S. Miglior, Risk factors for glaucoma onset and progression, Surv. Ophthalmol., 53 (2008), S3–S10. doi: 10.1016/j.survophthal.2008.08.006
![]() |
[25] |
T. Saba, S. T. F. Bokhari, M. Sharif, M. Yasmin, M. Raza, Fundus image classification methods for the detection of glaucoma: A review, Microsc. Res. Tech., 81 (2018), 1105–1121. doi: 10.1002/jemt.23094
![]() |
[26] |
T. Aung, L. Ocaka, N. D. Ebenezer, A. G. Morris, M. Krawczak, D. L. Thiselton, et al., A major marker for normal tension glaucoma: association with polymorphisms in the opa1 gene, Hum. Genet., 110 (2002), 52–56. doi: 10.1007/s00439-001-0645-7
![]() |
[27] | M. A. Khaimi, Canaloplasty: A minimally invasive and maximally effective glaucoma treatment, J. Ophthalmol., 2015. |
[28] |
M. Bechmann, M. J. Thiel, B. Roesen, S. Ullrich, M. W. Ulbig, K. Ludwig, Central corneal thickness determined with optical coherence tomography in various types of glaucoma, Br. J. Ophthalmol., 84 (2000), 1233–1237. doi: 10.1136/bjo.84.11.1233
![]() |
[29] |
D. Ahram, W. Alward, M. Kuehn, The genetic mechanisms of primary angle closure glaucoma, Eye., 29 (2015), 1251–1259. doi: 10.1038/eye.2015.124
![]() |
[30] |
R. Törnquist, Chamber depth in primary acute glaucoma, Br. J. Ophthalmol., 40 (1956), 421. doi: 10.1136/bjo.40.7.421
![]() |
[31] |
H. S. Sugar, F. A. Barbour, Pigmentary glaucoma*: A rare clinical entity, Am. J. Ophthalmol., 32 (1949), 90–92. doi: 10.1016/0002-9394(49)91112-5
![]() |
[32] |
H. S. Sugar, Pigmentary glaucoma: A 25-year review, Am. J. Ophthalmol., 62 (1966), 499–507. doi: 10.1016/0002-9394(66)91330-4
![]() |
[33] |
R. Ritch, U. Schlötzer-Schrehardt, A. G. Konstas, Why is glaucoma associated with exfoliation syndrome?, Prog. Retin. Eye Res., 22 (2003), 253–275. doi: 10.1016/S1350-9462(02)00014-9
![]() |
[34] |
J. L.-O. De, C. A. Girkin, Ocular trauma-related glaucoma., Ophthalmol. Clin. North. Am., 15 (2002), 215–223. doi: 10.1016/S0896-1549(02)00011-1
![]() |
[35] |
E. Milder, K. Davis, Ocular trauma and glaucoma, Int. Ophthalmol. Clin., 48 (2008), 47–64. doi: 10.1097/IIO.0b013e318187fcb8
![]() |
[36] |
T. G. Papadaki, I. P. Zacharopoulos, L. R. Pasquale, W. B. Christen, P. A. Netland, C. S. Foster, Long-term results of ahmed glaucoma valve implantation for uveitic glaucoma, Am. J. Ophthalmol., 144 (2007), 62–69. doi: 10.1016/j.ajo.2007.03.013
![]() |
[37] |
H. C. Laganowski, M. G. K. Muir, R. A. Hitchings, Glaucoma and the iridocorneal endothelial syndrome, Arch. Ophthalmol., 110 (1992), 346–350. doi: 10.1001/archopht.1992.01080150044025
![]() |
[38] |
C. L. Ho, D. S. Walton, Primary congenital glaucoma: 2004 update, J. Pediatr. Ophthalmol. Strabismus., 41 (2004), 271–288. doi: 10.3928/01913913-20040901-11
![]() |
[39] |
M. Erdurmuş, R. Yağcı, Ö. Atış, R. Karadağ, A. Akbaş, İ. F. Hepşen, Antioxidant status and oxidative stress in primary open angle glaucoma and pseudoexfoliative glaucoma, Curr. Eye Res., 36 (2011), 713–718. doi: 10.3109/02713683.2011.584370
![]() |
[40] |
S. S. Hayreh, Neovascular glaucoma, Prog. Retin. Eye Res., 26 (2007), 470–485. doi: 10.1016/j.preteyeres.2007.06.001
![]() |
[41] |
D. A. Lee, E. J. Higginbotham, Glaucoma and its treatment: a review, Am. J. Health. Syst. Pharm., 62 (2005), 691–699. doi: 10.1093/ajhp/62.7.691
![]() |
[42] | X. Wang, R. Khan, A. Coleman, Device-modified trabeculectomy for glaucoma, Cochrane. Database Syst. Rev.. |
[43] |
K. R. Sung, J. S. Kim, G. Wollstein, L. Folio, M. S. Kook, J. S. Schuman, Imaging of the retinal nerve fibre layer with spectral domain optical coherence tomography for glaucoma diagnosis, Br. J. Ophthalmol., 95 (2011), 909–914. doi: 10.1136/bjo.2010.186924
![]() |
[44] |
M. E. Karlen, E. Sanchez, C. C. Schnyder, M. Sickenberg, A. Mermoud, Deep sclerectomy with collagen implant: medium term results, Br. J. Ophthalmol., 83 (1999), 6–11. doi: 10.1136/bjo.83.1.6
![]() |
[45] | J. Carrillo, L. Bautista, J. Villamizar, J. Rueda, M. Sanchez, D. Rueda, Glaucoma detection using fundus images of the eye, 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), IEEE, 2019, 1–4. |
[46] | N. Sengar, M. K. Dutta, R. Burget, M. Ranjoha, Automated detection of suspected glaucoma in digital fundus images, 2017 40th International Conference on Telecommunications and Signal Processing (TSP), IEEE, 2017,749–752. |
[47] | A. Poshtyar, J. Shanbehzadeh, H. Ahmadieh, Automatic measurement of cup to disc ratio for diagnosis of glaucoma on retinal fundus images, in 2013 6th International Conference on Biomedical Engineering and Informatics, IEEE, 2013, 24–27. |
[48] | F. Khan, S. A. Khan, U. U. Yasin, I. ul Haq, U. Qamar, Detection of glaucoma using retinal fundus images, in The 6th 2013 Biomedical Engineering International Conference, IEEE, 2013, 1–5. |
[49] |
H. Yamada, T. Akagi, H. Nakanishi, H. O. Ikeda, Y. Kimura, K. Suda, et al., Microstructure of peripapillary atrophy and subsequent visual field progression in treated primary open-angle glaucoma, Ophthalmology, 123 (2016), 542–551. doi: 10.1016/j.ophtha.2015.10.061
![]() |
[50] |
J. B. Jonas, Clinical implications of peripapillary atrophy in glaucoma, Curr. Opin. Ophthalmol., 16 (2005), 84–88. doi: 10.1097/01.icu.0000156135.20570.30
![]() |
[51] |
K. H. Park, G. Tomita, S. Y. Liou, Y. Kitazawa, Correlation between peripapillary atrophy and optic nerve damage in normal-tension glaucoma, Ophthalmol., 103 (1996), 1899–1906. doi: 10.1016/S0161-6420(96)30409-0
![]() |
[52] |
F. A. Medeiros, L. M. Zangwill, C. Bowd, R. M. Vessani, R. Susanna Jr, R. N. Weinreb, Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography, Am. J. Ophthalmol., 139 (2005), 44–55. doi: 10.1016/j.ajo.2004.08.069
![]() |
[53] |
G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, et al., Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma, Arch. Ophthalmol., 123 (2005), 464–470. doi: 10.1001/archopht.123.4.464
![]() |
[54] |
M. Armaly, The optic cup in the normal eye: I. cup width, depth, vessel displacement, ocular tension and outflow facility, Am. J. Ophthalmol., 68 (1969), 401–407. doi: 10.1016/0002-9394(69)90702-8
![]() |
[55] | M. Galdos, A. Bayon, F. D. Rodriguez, C. Mico, S. C. Sharma, E. Vecino, Morphology of retinal vessels in the optic disk in a göttingen minipig experimental glaucoma model, Vet. Ophthalmol., 15 (2012), 36–46. |
[56] | W. Zhou, Y. Yi, Y. Gao, J. Dai, Optic disc and cup segmentation in retinal images for glaucoma diagnosis by locally statistical active contour model with structure prior, Comput. Math. Methods. Med., 2019. |
[57] |
P. Sharma, P. A. Sample, L. M. Zangwill, J. S. Schuman, Diagnostic tools for glaucoma detection and management, Surv. Ophthalmol., 53 (2008), S17–S32. doi: 10.1016/j.survophthal.2008.08.003
![]() |
[58] | M. J. Greaney, D. C. Hoffman, D. F. Garway-Heath, M. Nakla, A. L. Coleman, J. Caprioli, Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma, Invest. Ophthalmol. Vis. Sci., 43 (2002), 140–145. |
[59] |
R. Bock, J. Meier, L. G. Nyúl, J. Hornegger, G. Michelson, Glaucoma risk index: automated glaucoma detection from color fundus images, Med. Image. Anal., 14 (2010), 471–481. doi: 10.1016/j.media.2009.12.006
![]() |
[60] |
K. Chan, T.-W. Lee, P. A. Sample, M. H. Goldbaum, R. N. Weinreb, T. J. Sejnowski, Comparison of machine learning and traditional classifiers in glaucoma diagnosis, IEEE Trans. Biomed. Eng., 49 (2002), 963–974. doi: 10.1109/TBME.2002.802012
![]() |
[61] | N. Varachiu, C. Karanicolas, M. Ulieru, Computational intelligence for medical knowledge acquisition with application to glaucoma, in Proceedings First IEEE International Conference on Cognitive Informatics, IEEE, 2002,233–238. |
[62] | J. Yu, S. S. R. Abidi, P. H. Artes, A. McIntyre, M. Heywood, Automated optic nerve analysis for diagnostic support inglaucoma, in CBMS'05., IEEE, 2005, 97–102. |
[63] | R. Bock, J. Meier, G. Michelson, L. G. Nyúl and J. Hornegger, Classifying glaucoma with image-based features from fundus photographs, in Joint Pattern Recognition Symposium., Springer, 2007,355–364. |
[64] | Y. Hatanaka, A. Noudo, C. Muramatsu, A. Sawada, T. Hara, T. Yamamoto, et al., Vertical cup-to-disc ratio measurement for diagnosis of glaucoma on fundus images, in Medical Imaging 2010: Computer-Aided Diagnosis, vol. 7624, International Society for Optics and Photonics, 2010, 76243C. |
[65] | S. S. Abirami, S. G. Shoba, Glaucoma images classification using fuzzy min-max neural network based on data-core, IJISME., 1 (2013), 9–15. |
[66] |
J. Liu, Z. Zhang, D. W. K. Wong, Y. Xu, F. Yin, J. Cheng, et al., Automatic glaucoma diagnosis through medical imaging informatics, Journal of the American Medical Informatics Association, 20 (2013), 1021–1027. doi: 10.1136/amiajnl-2012-001336
![]() |
[67] | A. Almazroa, R. Burman, K. Raahemifar, V. Lakshminarayanan, Optic disc and optic cup segmentation methodologies for glaucoma image detection: A survey, J. Ophthalmol., 2015. |
[68] | A. Dey, S. K. Bandyopadhyay, Automated glaucoma detection using support vector machine classification method, J. Adv. Med. Med. Res., 1–12. |
[69] |
F. R. Silva, V. G. Vidotti, F. Cremasco, M. Dias, E. S. Gomi, V. P. Costa, Sensitivity and specificity of machine learning classifiers for glaucoma diagnosis using spectral domain oct and standard automated perimetry, Arq. Bras. Oftalmol., 76 (2013), 170–174. doi: 10.1590/S0004-27492013000300008
![]() |
[70] |
M. U. Akram, A. Tariq, S. Khalid, M. Y. Javed, S. Abbas, U. U. Yasin, Glaucoma detection using novel optic disc localization, hybrid feature set and classification techniques, Australas. Phys. Eng. Sci. Med., 38 (2015), 643–655. doi: 10.1007/s13246-015-0377-y
![]() |
[71] | A. T. A. Al-Sammarraie, R. R. Jassem, T. K. Ibrahim, Mixed convection heat transfer in inclined tubes with constant heat flux, Eur. J. Sci. Res., 97 (2013), 144–158. |
[72] |
M. R. K. Mookiah, U. R. Acharya, C. M. Lim, A. Petznick, J. S. Suri, Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features, Knowl. Based. Syst., 33 (2012), 73–82. doi: 10.1016/j.knosys.2012.02.010
![]() |
[73] | C. Raja, N. Gangatharan, Glaucoma detection in fundal retinal images using trispectrum and complex wavelet-based features, Eur. J. Sci. Res., 97 (2013), 159–171. |
[74] | G. Lim, Y. Cheng, W. Hsu, M. L. Lee, Integrated optic disc and cup segmentation with deep learning, in ICTAI., IEEE, 2015,162–169. |
[75] | K.-K. Maninis, J. Pont-Tuset, P. Arbeláez, L. Van Gool, Deep retinal image understanding, in International conference on medical image computing and computer-assisted intervention, Springer, 2016,140–148. |
[76] |
B. Al-Bander, W. Al-Nuaimy, B. M. Williams, Y. Zheng, Multiscale sequential convolutional neural networks for simultaneous detection of fovea and optic disc, Biomed. Signal Process Control., 40 (2018), 91–101. doi: 10.1016/j.bspc.2017.09.008
![]() |
[77] |
A. Mitra, P. S. Banerjee, S. Roy, S. Roy, S. K. Setua, The region of interest localization for glaucoma analysis from retinal fundus image using deep learning, Comput. Methods Programs Biomed., 165 (2018), 25–35. doi: 10.1016/j.cmpb.2018.08.003
![]() |
[78] |
S. S. Kruthiventi, K. Ayush, R. V. Babu, Deepfix: A fully convolutional neural network for predicting human eye fixations, IEEE Trans. Image. Process., 26 (2017), 4446–4456. doi: 10.1109/TIP.2017.2710620
![]() |
[79] | M. Norouzifard, A. Nemati, A. Abdul-Rahman, H. GholamHosseini, R. Klette, A comparison of transfer learning techniques, deep convolutional neural network and multilayer neural network methods for the diagnosis of glaucomatous optic neuropathy, in International Computer Symposium, Springer, 2018,627–635. |
[80] | X. Sun, Y. Xu, W. Zhao, T. You, J. Liu, Optic disc segmentation from retinal fundus images via deep object detection networks, in EMBC., IEEE, 2018, 5954–5957. |
[81] | Z. Ghassabi, J. Shanbehzadeh, K. Nouri-Mahdavi, A unified optic nerve head and optic cup segmentation using unsupervised neural networks for glaucoma screening, in EMBC., IEEE, 2018, 5942–5945. |
[82] |
J. H. Tan, S. V. Bhandary, S. Sivaprasad, Y. Hagiwara, A. Bagchi, U. Raghavendra, et al., Age-related macular degeneration detection using deep convolutional neural network, Future Gener. Comput. Syst., 87 (2018), 127–135. doi: 10.1016/j.future.2018.05.001
![]() |
[83] |
J. Zilly, J. M. Buhmann, D. Mahapatra, Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation, Comput. Med. Imaging Graph., 55 (2017), 28–41. doi: 10.1016/j.compmedimag.2016.07.012
![]() |
[84] |
J. Cheng, J. Liu, Y. Xu, F. Yin, D. W. K. Wong, N.-M. Tan, et al., Superpixel classification based optic disc and optic cup segmentation for glaucoma screening, IEEE Trans. Med. Imaging, 32 (2013), 1019–1032. doi: 10.1109/TMI.2013.2247770
![]() |
[85] | H. Ahmad, A. Yamin, A. Shakeel, S. O. Gillani, U. Ansari, Detection of glaucoma using retinal fundus images, in iCREATE., IEEE, 2014,321–324. |
[86] | S. Kavitha, S. Karthikeyan, K. Duraiswamy, Neuroretinal rim quantification in fundus images to detect glaucoma, IJCSNS., 10 (2010), 134–140. |
[87] | Z. Zhang, B. H. Lee, J. Liu, D. W. K. Wong, N. M. Tan, J. H. Lim, et al., Optic disc region of interest localization in fundus image for glaucoma detection in argali, in 2010 5th IEEE Conference on Industrial Electronics and Applications, IEEE, 2010, 1686–1689. |
[88] |
D. Welfer, J. Scharcanski, C. M. Kitamura, M. M. Dal Pizzol, L. W. Ludwig, D. R. Marinho, Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach, Computers Biol. Med., 40 (2010), 124–137. doi: 10.1016/j.compbiomed.2009.11.009
![]() |
[89] |
H. Tjandrasa, A. Wijayanti, N. Suciati, Optic nerve head segmentation using hough transform and active contours, Telkomnika, 10 (2012), 531. doi: 10.12928/telkomnika.v10i3.833
![]() |
[90] | M. Tavakoli, M. Nazar, A. Golestaneh, F. Kalantari, Automated optic nerve head detection based on different retinal vasculature segmentation methods and mathematical morphology, in NSS/MIC., IEEE, 2017, 1–7. |
[91] |
P. Bibiloni, M. González-Hidalgo, S. Massanet, A real-time fuzzy morphological algorithm for retinal vessel segmentation, J. Real Time Image Process., 16 (2019), 2337–2350. doi: 10.1007/s11554-018-0748-1
![]() |
[92] | A. Agarwal, A. Issac, A. Singh, M. K. Dutta, Automatic imaging method for optic disc segmentation using morphological techniques and active contour fitting, in 2016 Ninth International Conference on Contemporary Computing (IC3), IEEE, 2016, 1–5. |
[93] | S. Pal, S. Chatterjee, Mathematical morphology aided optic disk segmentation from retinal images, in 2017 3rd International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), IEEE, 2017,380–385. |
[94] | L. Wang, A. Bhalerao, Model based segmentation for retinal fundus images, in Scandinavian Conference on Image Analysis, Springer, 2003,422–429. |
[95] | G. Deng, L. Cahill, An adaptive gaussian filter for noise reduction and edge detection, in 1993 IEEE conference record nuclear science symposium and medical imaging conference, IEEE, 1993, 1615–1619. |
[96] |
K. A. Vermeer, F. M. Vos, H. G. Lemij, A. M. Vossepoel, A model based method for retinal blood vessel detection, Comput. Biol. Med., 34 (2004), 209–219. doi: 10.1016/S0010-4825(03)00055-6
![]() |
[97] | J. I. Orlando, E. Prokofyeva, M. B. Blaschko, A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images, IEEE Trans. Biomed. Eng., 64 (2016), 16–27. |
[98] | R. Ingle, P. Mishra, Cup segmentation by gradient method for the assessment of glaucoma from retinal image, Int. J. Latest Trends. Eng. Technol., 4 (2013), 2540–2543. |
[99] | G. D. Joshi, J. Sivaswamy, S. Krishnadas, Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment, IEEE Trans. Biomed. Eng., 30 (2011), 1192–1205. |
[100] | W. W. K. Damon, J. Liu, T. N. Meng, Y. Fengshou, W. T. Yin, Automatic detection of the optic cup using vessel kinking in digital retinal fundus images, in 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), IEEE, 2012, 1647–1650. |
[101] | D. Finkelstein, Kinks, J. Math. Phys., 7 (1966), 1218–1225. |
[102] | Y. Xu, L. Duan, S. Lin, X. Chen, D. W. K. Wong, T. Y. Wong, et al., Optic cup segmentation for glaucoma detection using low-rank superpixel representation, in International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2014,788–795. |
[103] | Y. Xu, J. Liu, S. Lin, D. Xu, C. Y. Cheung, T. Aung, et al., Efficient optic cup detection from intra-image learning with retinal structure priors, in International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2012, 58–65. |
[104] | M. A. Aslam, M. N. Salik, F. Chughtai, N. Ali, S. H. Dar, T. Khalil, Image classification based on mid-level feature fusion, in 2019 15th International Conference on Emerging Technologies (ICET), IEEE, 2019, 1–6. |
[105] |
N. Ali, K. B. Bajwa, R. Sablatnig, S. A. Chatzichristofis, Z. Iqbal, M. Rashid, et al., A novel image retrieval based on visual words integration of sift and surf, PloS. one., 11 (2016), e0157428. doi: 10.1371/journal.pone.0157428
![]() |
[106] | C.-Y. Ho, T.-W. Pai, H.-T. Chang, H.-Y. Chen, An atomatic fundus image analysis system for clinical diagnosis of glaucoma, in 2011 International Conference on Complex, Intelligent, and Software Intensive Systems, IEEE, 2011,559–564. |
[107] |
H.-T. Chang, C.-H. Liu, T.-W. Pai, Estimation and extraction of b-cell linear epitopes predicted by mathematical morphology approaches, J. Mol. Recognit., 21 (2008), 431–441. doi: 10.1002/jmr.910
![]() |
[108] | D. Wong, J. Liu, J. Lim, N. Tan, Z. Zhang, S. Lu, et al., Intelligent fusion of cup-to-disc ratio determination methods for glaucoma detection in argali, in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, 2009, 5777–5780. |
[109] | F. Yin, J. Liu, D. W. K. Wong, N. M. Tan, C. Cheung, M. Baskaran, et al., Automated segmentation of optic disc and optic cup in fundus images for glaucoma diagnosis, in 2012 25th IEEE international symposium on computer-based medical systems (CBMS), IEEE, 2012, 1–6. |
[110] | S. Chandrika, K. Nirmala, Analysis of cdr detection for glaucoma diagnosis, IJERA., 2 (2013), 23–27. |
[111] | N. Annu, J. Justin, Automated classification of glaucoma images by wavelet energy features, IJERA., 5 (2013), 1716–1721. |
[112] |
H. Fu, J. Cheng, Y. Xu, D. W. K. Wong, J. Liu, X. Cao, Joint optic disc and cup segmentation based on multi-label deep network and polar transformation, IEEE Trans. Med. Imaging., 37 (2018), 1597–1605. doi: 10.1109/TMI.2018.2791488
![]() |
[113] | P. K. Dhar, T. Shimamura, Blind svd-based audio watermarking using entropy and log-polar transformation, JISA., 20 (2015), 74–83. |
[114] | D. Wong, J. Liu, J. Lim, H. Li, T. Wong, Automated detection of kinks from blood vessels for optic cup segmentation in retinal images, in Medical Imaging 2009: Computer-Aided Diagnosis, vol. 7260, International Society for Optics and Photonics, 2009, 72601J. |
[115] | A. Murthi, M. Madheswaran, Enhancement of optic cup to disc ratio detection in glaucoma diagnosis, in 2012 International Conference on Computer Communication and Informatics, IEEE, 2012, 1–5. |
[116] |
N. E. A. Khalid, N. M. Noor, N. M. Ariff, Fuzzy c-means (fcm) for optic cup and disc segmentation with morphological operation, Procedia. Comput. Sci., 42 (2014), 255–262. doi: 10.1016/j.procs.2014.11.060
![]() |
[117] | H. A. Nugroho, W. K. Oktoeberza, A. Erasari, A. Utami, C. Cahyono, Segmentation of optic disc and optic cup in colour fundus images based on morphological reconstruction, in 2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE), IEEE, 2017, 1–5. |
[118] |
L. Zhang, M. Fisher, W. Wang, Retinal vessel segmentation using multi-scale textons derived from keypoints, Comput. Med. Imaging Graph., 45 (2015), 47–56. doi: 10.1016/j.compmedimag.2015.07.006
![]() |
[119] | X. Li, B. Aldridge, R. Fisher, J. Rees, Estimating the ground truth from multiple individual segmentations incorporating prior pattern analysis with application to skin lesion segmentation, in 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, IEEE, 2011, 1438–1441. |
[120] | M. M. Fraz, P. Remagnino, A. Hoppe, S. Velastin, B. Uyyanonvara, S. Barman, A supervised method for retinal blood vessel segmentation using line strength, multiscale gabor and morphological features, in 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), IEEE, 2011,410–415. |
[121] | M. Niemeijer, J. Staal, B. van Ginneken, M. Loog, M. D. Abramoff, Comparative study of retinal vessel segmentation methods on a new publicly available database, in Medical imaging 2004: Image processing, vol. 5370, International Society for Optics and Photonics, 2004,648–656. |
[122] | J. Y. Choi, T. K. Yoo, J. G. Seo, J. Kwak, T. T. Um, T. H. Rim, Multi-categorical deep learning neural network to classify retinal images: a pilot study employing small database, PloS one, 12. |
[123] | L. Zhang, M. Fisher, W. Wang, Comparative performance of texton based vascular tree segmentation in retinal images, in 2014 IEEE International Conference on Image Processing (ICIP), IEEE, 2014,952–956. |
[124] |
A. Septiarini, A. Harjoko, R. Pulungan, R. Ekantini, Automated detection of retinal nerve fiber layer by texture-based analysis for glaucoma evaluation, Healthc. Inform. Res., 24 (2018), 335–345. doi: 10.4258/hir.2018.24.4.335
![]() |
[125] | B. S. Kirar, D. K. Agrawal, Computer aided diagnosis of glaucoma using discrete and empirical wavelet transform from fundus images, IET Image Process., 13 (2018), 73–82. |
[126] | K. Nirmala, N. Venkateswaran, C. V. Kumar, J. S. Christobel, Glaucoma detection using wavelet based contourlet transform, in 2017 International Conference on Intelligent Computing and Control (I2C2), IEEE, 2017, 1–5. |
[127] |
A. A. G. Elseid, A. O. Hamza, Glaucoma detection using retinal nerve fiber layer texture features, J. Clin. Eng., 44 (2019), 180–185. doi: 10.1097/JCE.0000000000000361
![]() |
[128] | M. Claro, L. Santos, W. Silva, F. Araújo, N. Moura, A. Macedo, Automatic glaucoma detection based on optic disc segmentation and texture feature extraction, CLEI Electron. J., 19 (2016), 5. |
[129] | L. Abdel-Hamid, Glaucoma detection from retinal images using statistical and textural wavelet features, J. Digit Imaging., 1–8. |
[130] |
S. Maetschke, B. Antony, H. Ishikawa, G. Wollstein, J. Schuman, R. Garnavi, A feature agnostic approach for glaucoma detection in oct volumes, PloS. one., 14 (2019), e0219126. doi: 10.1371/journal.pone.0219915
![]() |
[131] |
D. C. Hood, A. S. Raza, On improving the use of oct imaging for detecting glaucomatous damage, Br. J. Ophthalmol., 98 (2014), ii1–ii9. doi: 10.1136/bjophthalmol-2014-305156
![]() |
[132] |
D. C. Hood, Improving our understanding, and detection, of glaucomatous damage: an approach based upon optical coherence tomography (oct), Prog.Retin. Eye Res., 57 (2017), 46–75. doi: 10.1016/j.preteyeres.2016.12.002
![]() |
[133] |
H. S. Basavegowda, G. Dagnew, Deep learning approach for microarray cancer data classification, CAAI Trans. Intell. Technol., 5 (2020), 22–33. doi: 10.1049/trit.2019.0028
![]() |
[134] | X. Chen, Y. Xu, D. W. K. Wong, T. Y. Wong, J. Liu, Glaucoma detection based on deep convolutional neural network, in 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), IEEE, 2015,715–718. |
[135] |
U. T. Nguyen, A. Bhuiyan, L. A. Park, K. Ramamohanarao, An effective retinal blood vessel segmentation method using multi-scale line detection, Pattern Recognit., 46 (2013), 703–715. doi: 10.1016/j.patcog.2012.08.009
![]() |
[136] |
J. H. Tan, U. R. Acharya, S. V. Bhandary, K. C. Chua, S. Sivaprasad, Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network, J. Comput. Sci., 20 (2017), 70–79. doi: 10.1016/j.jocs.2017.02.006
![]() |
[137] |
Y. Chai, H. Liu, J. Xu, Glaucoma diagnosis based on both hidden features and domain knowledge through deep learning models, Knowl. Based Syst., 161 (2018), 147–156. doi: 10.1016/j.knosys.2018.07.043
![]() |
[138] | A. Pal, M. R. Moorthy, A. Shahina, G-eyenet: A convolutional autoencoding classifier framework for the detection of glaucoma from retinal fundus images, in 2018 25th IEEE International Conference on Image Processing (ICIP), IEEE, 2018, 2775–2779. |
[139] |
R. Asaoka, M. Tanito, N. Shibata, K. Mitsuhashi, K. Nakahara, Y. Fujino, et al., Validation of a deep learning model to screen for glaucoma using images from different fundus cameras and data augmentation, Ophthalmol. Glaucoma., 2 (2019), 224–231. doi: 10.1016/j.ogla.2019.03.008
![]() |
[140] | X. Chen, Y. Xu, S. Yan, D. W. K. Wong, T. Y. Wong, J. Liu, Automatic feature learning for glaucoma detection based on deep learning, in International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2015,669–677. |
[141] | A. Singh, S. Sengupta, V. Lakshminarayanan, Glaucoma diagnosis using transfer learning methods, in Applications of Machine Learning, vol. 11139, International Society for Optics and Photonics, 2019, 111390U. |
[142] | S. Maheshwari, V. Kanhangad, R. B. Pachori, Cnn-based approach for glaucoma diagnosis using transfer learning and lbp-based data augmentation, arXiv. preprint. |
[143] |
S. Sengupta, A. Singh, H. A. Leopold, T. Gulati, V. Lakshminarayanan, Ophthalmic diagnosis using deep learning with fundus images–a critical review, Artif. Intell. Med., 102 (2020), 101758. doi: 10.1016/j.artmed.2019.101758
![]() |
[144] |
U. Raghavendra, H. Fujita, S. V. Bhandary, A. Gudigar, J. H. Tan, U. R. Acharya, Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images, Inf. Sci., 441 (2018), 41–49. doi: 10.1016/j.ins.2018.01.051
![]() |
[145] |
R. Asaoka, H. Murata, A. Iwase, M. Araie, Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier, Ophthalmol., 123 (2016), 1974–1980. doi: 10.1016/j.ophtha.2016.05.029
![]() |
[146] |
Z. Li, Y. He, S. Keel, W. Meng, R. T. Chang, M. He, Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs, Ophthalmol., 125 (2018), 1199–1206. doi: 10.1016/j.ophtha.2018.01.023
![]() |
[147] | V. V. Raghavan, V. N. Gudivada, V. Govindaraju, C. R. Rao, Cognitive computing: Theory and applications, Elsevier., 2016. |
[148] | J. Sivaswamy, S. Krishnadas, G. D. Joshi, M. Jain, A. U. S. Tabish, Drishti-gs: Retinal image dataset for optic nerve head (onh) segmentation, in 2014 IEEE 11th international symposium on biomedical imaging (ISBI), IEEE, 2014, 53–56. |
[149] | A. Chakravarty, J. Sivaswamy, Glaucoma classification with a fusion of segmentation and image-based features, in 2016 IEEE 13th international symposium on biomedical imaging (ISBI), IEEE, 2016,689–692. |
[150] |
E. Decencière, X. Zhang, G. Cazuguel, B. Lay, B. Cochener, C. Trone, et al., Feedback on a publicly distributed image database: The messidor database, Image Analys. Stereol., 33 (2014), 231–234. doi: 10.5566/ias.1155
![]() |
[151] |
A. Allam, A. Youssif, A. Ghalwash, Automatic segmentation of optic disc in eye fundus images: a survey, ELCVIA, 14 (2015), 1–20. doi: 10.5565/rev/elcvia.762
![]() |
[152] |
P. Porwal, S. Pachade, R. Kamble, M. Kokare, G. Deshmukh, V. Sahasrabuddhe, et al., Indian diabetic retinopathy image dataset (idrid): A database for diabetic retinopathy screening research, Data, 3 (2018), 25. doi: 10.3390/data3030025
![]() |
[153] | F. Calimeri, A. Marzullo, C. Stamile, G. Terracina, Optic disc detection using fine tuned convolutional neural networks, in 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), IEEE, 2016, 69–75. |
[154] |
M. N. Reza, Automatic detection of optic disc in color fundus retinal images using circle operator, Biomed. Signal. Process. Control., 45 (2018), 274–283. doi: 10.1016/j.bspc.2018.05.027
![]() |
[155] | Z. Zhang, F. S. Yin, J. Liu, W. K. Wong, N. M. Tan, B. H. Lee, et al., Origa-light: An online retinal fundus image database for glaucoma analysis and research, in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, IEEE, 2010, 3065–3068. |
[156] | Z. Zhang, J. Liu, F. Yin, B.-H. Lee, D. W. K. Wong, K. R. Sung, Achiko-k: Database of fundus images from glaucoma patients, in 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), IEEE, 2013,228–231. |
[157] | F. Yin, J. Liu, D. W. K. Wong, N. M. Tan, B. H. Lee, J. Cheng, et al., Achiko-i retinal fundus image database and its evaluation on cup-to-disc ratio measurement, in 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), IEEE, 2013,224–227. |
[158] | F. Fumero, S. Alayón, J. L. Sanchez, J. Sigut, M. Gonzalez-Hernandez, Rim-one: An open retinal image database for optic nerve evaluation, in 2011 24th international symposium on computer-based medical systems (CBMS), IEEE, 2011, 1–6. |
[159] |
J. Lowell, A. Hunter, D. Steel, A. Basu, R. Ryder, E. Fletcher, et al., Optic nerve head segmentation, IEEE Trans. Med. Imaging., 23 (2004), 256–264. doi: 10.1109/TMI.2003.823261
![]() |
[160] |
C. C. Sng, L.-L. Foo, C.-Y. Cheng, J. C. Allen Jr, M. He, G. Krishnaswamy, et al., Determinants of anterior chamber depth: the singapore chinese eye study, Ophthalmol., 119 (2012), 1143–1150. doi: 10.1016/j.ophtha.2012.01.011
![]() |
[161] | Z. Zhang, J. Liu, C. K. Kwoh, X. Sim, W. T. Tay, Y. Tan, et al., Learning in glaucoma genetic risk assessment, in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, IEEE, 2010, 6182–6185. |
[162] | D. Wong, J. Liu, J. Lim, X. Jia, F. Yin, H. Li, et al., Level-set based automatic cup-to-disc ratio determination using retinal fundus images in argali, in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, 2008, 2266–2269. |
[163] | T. Ge, L. Cui, B. Chang, Z. Sui, F. Wei, M. Zhou, Seri: A dataset for sub-event relation inference from an encyclopedia, in CCF International Conference on Natural Language Processing and Chinese Computing, Springer, 2018,268–277. |
[164] | M. Haloi, Improved microaneurysm detection using deep neural networks, arXiv. preprint.. |
[165] |
B. Antal, A. Hajdu, An ensemble-based system for automatic screening of diabetic retinopathy, Knowl. Based Syst., 60 (2014), 20–27. doi: 10.1016/j.knosys.2013.12.023
![]() |
[166] |
J. Nayak, R. Acharya, P. S. Bhat, N. Shetty, T.-C. Lim, Automated diagnosis of glaucoma using digital fundus images, J. Med. Syst., 33 (2009), 337. doi: 10.1007/s10916-008-9195-z
![]() |
[167] |
J. V. Soares, J. J. Leandro, R. M. Cesar, H. F. Jelinek, M. J. Cree, Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification, IEEE Trans. Med. Imaging., 25 (2006), 1214–1222. doi: 10.1109/TMI.2006.879967
![]() |
[168] |
S. Kankanahalli, P. M. Burlina, Y. Wolfson, D. E. Freund, N. M. Bressler, Automated classification of severity of age-related macular degeneration from fundus photographs, Invest. Ophthalmol. Vis. Sci., 54 (2013), 1789–1796. doi: 10.1167/iovs.12-10928
![]() |
[169] | K. Prasad, P. Sajith, M. Neema, L. Madhu, P. Priya, Multiple eye disease detection using deep neural network, in TENCON 2019-2019 IEEE Region 10 Conference (TENCON), IEEE, 2019, 2148–2153. |
1. | Siddhartha Kundu, Modeling ligand-macromolecular interactions as eigenvalue-based transition-state dissociation constants may offer insights into biochemical function of the resulting complexes, 2022, 19, 1551-0018, 13252, 10.3934/mbe.2022620 | |
2. | Siddhartha Kundu, ProTG4: A Web Server to Approximate the Sequence of a Generic Protein From an in Silico Library of Translatable G-Quadruplex (TG4)-Mapped Peptides, 2021, 15, 1177-9322, 117793222110458, 10.1177/11779322211045878 |
Rank | Codon set, Cardinality | Codon | γ | θ | δ | Ω | α=γ.θ.δ+Ω | aa |
1 | GGG, 1 | GGG | 0.02 | 1.00 | 6 | 2 | 2.1200 | Gly |
2 | GxG, 3 | GUG | 0.02 | 0.33 | 1 | 2 | 2.0066 | Val |
GCG | 0.02 | 0.33 | 1 | 2 | 2.0066 | Ala | ||
GAG | 0.02 | 0.33 | 1 | 2 | 2.0066 | Glu | ||
3 | xGG, 3 | UGG | 0.02 | 0.33 | 2 | 1 | 1.0132 | Trp |
CGG | 0.02 | 0.33 | 2 | 1 | 1.0132 | Arg | ||
AGG | 0.02 | 0.33 | 2 | 1 | 1.0132 | Arg | ||
3 | GGx, 3 | GGU | 0.02 | 0.33 | 2 | 1 | 1.0132 | Gly |
GGC | 0.02 | 0.33 | 2 | 1 | 1.0132 | Gly | ||
GGA | 0.02 | 0.33 | 2 | 1 | 1.0132 | Gly | ||
4 | xxG, 9 | UUG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Leu |
UCG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Ser | ||
UAG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Ter | ||
CUG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Leu | ||
CCG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Pro | ||
CAG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Gln | ||
AUG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Met | ||
ACG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Thr | ||
AAG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Lys | ||
4 | Gxx, 9 | GUU | 0.02 | 0.11 | 1 | 1 | 1.0022 | Val |
GCU | 0.02 | 0.11 | 1 | 1 | 1.0022 | Ala | ||
GAU | 0.02 | 0.11 | 1 | 1 | 1.0022 | Asp | ||
GUC | 0.02 | 0.11 | 1 | 1 | 1.0022 | Val | ||
GCC | 0.02 | 0.11 | 1 | 1 | 1.0022 | Ala | ||
GAC | 0.02 | 0.11 | 1 | 1 | 1.0022 | Asp | ||
GUA | 0.02 | 0.11 | 1 | 1 | 1.0022 | Val | ||
GCA | 0.02 | 0.11 | 1 | 1 | 1.0022 | Ala | ||
GAA | 0.02 | 0.11 | 1 | 1 | 1.0022 | Glu | ||
5 | xGx, 9 | UGU | 0.02 | 0.11 | 0 | 0 | 0.0000 | Cys |
UGC | 0.02 | 0.11 | 0 | 0 | 0.0000 | Cys | ||
UGA | 0.02 | 0.11 | 0 | 0 | 0.0000 | Ter | ||
CGU | 0.02 | 0.11 | 0 | 0 | 0.0000 | Arg | ||
CGC | 0.02 | 0.11 | 0 | 0 | 0.0000 | Arg | ||
CGA | 0.02 | 0.11 | 0 | 0 | 0.0000 | Arg | ||
AGU | 0.02 | 0.11 | 0 | 0 | 0.0000 | Ser | ||
AGC | 0.02 | 0.11 | 0 | 0 | 0.0000 | Ser | ||
AGA | 0.02 | 0.11 | 0 | 0 | 0.0000 | Arg | ||
5 | xxx, 27 | UUU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Phe |
UCU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Ser | ||
UAU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Tyr | ||
UUC | 0.02 | 0.04 | 0 | 0 | 0.0000 | Phe | ||
UCC | 0.02 | 0.04 | 0 | 0 | 0.0000 | Ser | ||
UUA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Leu | ||
UCA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Ser | ||
UAA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Ter | ||
CUU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Leu | ||
CCU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Pro | ||
CAU | 0.02 | 0.04 | 0 | 0 | 0.0000 | His | ||
CUC | 0.02 | 0.04 | 0 | 0 | 0.0000 | Leu | ||
CCC | 0.02 | 0.04 | 0 | 0 | 0.0000 | Pro | ||
CAC | 0.02 | 0.04 | 0 | 0 | 0.0000 | His | ||
CUA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Leu | ||
CCA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Pro | ||
CAA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Gln | ||
AUU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Ile | ||
ACU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Thr | ||
AAU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Asn | ||
AUC | 0.02 | 0.04 | 0 | 0 | 0.0000 | Ile | ||
ACC | 0.02 | 0.04 | 0 | 0 | 0.0000 | Thr | ||
AAC | 0.02 | 0.04 | 0 | 0 | 0.0000 | Asn | ||
AUA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Ile | ||
ACA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Thr | ||
AAA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Lys |
aa | CODamino | gCOD+amino | β | |
Group 1 (n=7) | Ala | 4 | 4 | 1.00 |
Val | 4 | 4 | 1.00 | |
Asp | 2 | 2 | 1.00 | |
Glu | 2 | 2 | 1.00 | |
Trp | 1 | 1 | 1.00 | |
Met | 1 | 1 | 1.00 | |
Gly | 4 | 4 | 1.00 | |
Group 2 (n=7) | Leu | 6 | 2 | 0.3333 |
Gln | 2 | 1 | 0.5 | |
Arg | 6 | 2 | 0.3333 | |
Lys | 2 | 1 | 0.5 | |
Ser | 6 | 1 | 0.1667 | |
Thr | 4 | 1 | 0.25 | |
Pro | 4 | 1 | 0.25 | |
Group 3 (n=6) | Cys | 2 | 0 | 0.00 |
Asn | 2 | 0 | 0.00 | |
Ile | 3 | 0 | 0.00 | |
His | 2 | 0 | 0.00 | |
Phe | 2 | 0 | 0.00 | |
Tyr | 2 | 0 | 0.00 |
GENE | NAME | G4 (nt) | Ex | STOP(n=11) | VALID(n=59) | |PTG4| |
BACE1 | Beta-secretase 1 | 33 | 3 | n=0 | n=6 | n=2 |
BCL2 | B-cell lymphoma 2 | 33 | 2 | n=1 | n=6 | n=1 |
23 | n=0 | n=6 | ||||
28 | n=0 | n=6 | ||||
29 | n=1 | n=5 | ||||
34 | n=1 | n=5 | ||||
33 | 3 | n=2 | n=5 | |||
ESR1 | Estrogen receptor alpha (ERα) | 36 | 4 | n=1 | n=5 | n=2 |
KCNH2 | Potassium Voltage-Gated Channel sub family H | 18 | 12 | n=0 | n=0 | NA |
ZNF669 | Member 2 Zinc Finger Protein 669 |
1 | ||||
PRNP | Prion protein | 14 | 2 | n=0 | n=0 | n=1 |
15 | n=0 | n=0 | ||||
20 | n=0 | n=0 | ||||
24 | n=0 | n=6 | ||||
85 | n=6 | n=3 | ||||
TERF2 | Telomeric repeat-binding factor 2 | 55 | 1 | n=0 | n=6 | n=1 |
Disordered regions (IDRs; n=1445;0.00≤p-value < 0.05) | |||||||||||||||||
SL-PT- | SL-PT+ | SL+PT- | SL+PT+ | R1T | R2T | C1T | C2T | A (%) | P (%) | R (%) | |||||||
SLiMS1 | 1078 | 64 | 58 | 9 | 1142 | 67 | 1136 | 73 | 89.90 | 12.32 | 13.43 | ||||||
SLiMS2 | 749 | 18 | 121 | 29 | 767 | 150 | 870 | 47 | 84.84 | 61.70 | 19.33 | ||||||
SLiMS3 | 1212 | 108 | 34 | 9 | 1320 | 43 | 1246 | 117 | 89.58 | 7.69 | 20.93 | ||||||
Proteins with disordered segments (IDPs; n=800;0.00≤p-value < 0.05) | |||||||||||||||||
SL-PT- | SL-PT+ | SL+PT- | SL+PT+ | R1T | R2T | C1T | C2T | A (%) | P (%) | R (%) | |||||||
SLiMS1 | 86 | 12 | 28 | 18 | 98 | 46 | 114 | 30 | 72.22 | 60.00 | 39.10 | ||||||
SLiMS2 | 1 | 1 | 96 | 66 | 2 | 162 | 97 | 67 | 40.85 | 98.50 | 40.74 | ||||||
SLiMS3 | 250 | 57 | 26 | 25 | 307 | 51 | 276 | 82 | 76.81 | 30.48 | 49.01 |
SLiMS | Sample | (zn)n≥2∈pTG4ij∩SLiMSw (p-value) | |
SLiMS1=[ST]PzR | Pz | PG (n=1) | PG (Degenerate) |
SLiMS2=[ED]zzD[AGS] | z[DE] | G[DE] (n=2) | [WGRVAELMKQSTP][AG][DE]z2EG[VADE](p-value=0.00069) |
[DE]z | [DE]G (n=1) | ||
zz[DE] | [LMKQSTP]G[DE] (n=14) [VAE]G[DE] (n=6) [WGR][AG][DE] (n=6) |
||
[DE]zz[DE] | [VAE]G[DE]zzEG[VADE] (n=28) [WGR][AG][DE]zzEG[VADE] (n=24) [WGR][AG][DE]zzEG (n=6) GEzzEG[VADE] (n=4) GEzzEG (n=1) |
||
SLiMS3=[KR]zPzzP | Pzz | PG[VADE] (n=4) | PGV (Degenerate) PGA (Degenerate) PGD (Degenerate) PGE (Degenerate) |
Cellular function | Disordered regions of proteins | |
1. | Signal transduction | DP00274, DP00224, DP00141, DP00332, DP01063, DP00506, DP00418, DP00341, DP00435, DP00613, DP00463, DP00954, DP00959, DP01104, DP00611, DP00519, DP00086, DP00707, DP00712 |
2. | Endocytosis | DP01073, DP01065, DP01066, DP00225 |
3. | Calcium-calmodulin | DP00092, DP00132, DP00561, DP00118, DP00253 |
4. | Myofibril assembly | DP01090 |
5. | Cytoskeleton | DP01056 DP00240, DP01022, DP00169, DP00716, DP00717, DP01100, DP00122 |
6. | Nuclear pore | DP01075, DP01077, DP01079 |
7. | Phototransduction | DP00768, DP00347 |
8. | Targeting | DP00893, DP00609, DP00610, DP01058 |
9. | Transcription | DP00062, DP00177, DP00633, DP00348, DP00786, DP00049, DP00231, DP00873, DP00720, DP00217, DP00081 |
10. | Translation | DP00082, DP00164, DP00229 DP00949, DP00134 |
11. | Synaptic transmission | DP00943 |
12. | Supercoiling | DP00076 |
13. | Binding | DP00539, DP00854, DP01052, DP00659, DP00656 |
14. | Peptide bond formation | DP00944 |
15. | Enzymes | DP00557, DP00032, DP00095, DP00337, DP00379, DP00787, DP00427, DP00429 |
16. | Bacterial/parasitic virulence | |
Secreted toxins | DP00345, DP00591 | |
Cytoadherence | DP00025, DP00065, DP01096 | |
17. | Viral infectivity | |
Cyclophilin interaction | DP00615, DP01031 | |
Chaperones | DP00699, DP00700, DP00674 | |
Capsid assembly | DP00133, DP00876 | |
Membrane fusion | DP01043 | |
Latency | DP01060 | |
18. | Unknown | DP00119 |
Rank | Codon set, Cardinality | Codon | γ | θ | δ | Ω | α=γ.θ.δ+Ω | aa |
1 | GGG, 1 | GGG | 0.02 | 1.00 | 6 | 2 | 2.1200 | Gly |
2 | GxG, 3 | GUG | 0.02 | 0.33 | 1 | 2 | 2.0066 | Val |
GCG | 0.02 | 0.33 | 1 | 2 | 2.0066 | Ala | ||
GAG | 0.02 | 0.33 | 1 | 2 | 2.0066 | Glu | ||
3 | xGG, 3 | UGG | 0.02 | 0.33 | 2 | 1 | 1.0132 | Trp |
CGG | 0.02 | 0.33 | 2 | 1 | 1.0132 | Arg | ||
AGG | 0.02 | 0.33 | 2 | 1 | 1.0132 | Arg | ||
3 | GGx, 3 | GGU | 0.02 | 0.33 | 2 | 1 | 1.0132 | Gly |
GGC | 0.02 | 0.33 | 2 | 1 | 1.0132 | Gly | ||
GGA | 0.02 | 0.33 | 2 | 1 | 1.0132 | Gly | ||
4 | xxG, 9 | UUG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Leu |
UCG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Ser | ||
UAG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Ter | ||
CUG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Leu | ||
CCG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Pro | ||
CAG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Gln | ||
AUG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Met | ||
ACG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Thr | ||
AAG | 0.02 | 0.11 | 1 | 1 | 1.0022 | Lys | ||
4 | Gxx, 9 | GUU | 0.02 | 0.11 | 1 | 1 | 1.0022 | Val |
GCU | 0.02 | 0.11 | 1 | 1 | 1.0022 | Ala | ||
GAU | 0.02 | 0.11 | 1 | 1 | 1.0022 | Asp | ||
GUC | 0.02 | 0.11 | 1 | 1 | 1.0022 | Val | ||
GCC | 0.02 | 0.11 | 1 | 1 | 1.0022 | Ala | ||
GAC | 0.02 | 0.11 | 1 | 1 | 1.0022 | Asp | ||
GUA | 0.02 | 0.11 | 1 | 1 | 1.0022 | Val | ||
GCA | 0.02 | 0.11 | 1 | 1 | 1.0022 | Ala | ||
GAA | 0.02 | 0.11 | 1 | 1 | 1.0022 | Glu | ||
5 | xGx, 9 | UGU | 0.02 | 0.11 | 0 | 0 | 0.0000 | Cys |
UGC | 0.02 | 0.11 | 0 | 0 | 0.0000 | Cys | ||
UGA | 0.02 | 0.11 | 0 | 0 | 0.0000 | Ter | ||
CGU | 0.02 | 0.11 | 0 | 0 | 0.0000 | Arg | ||
CGC | 0.02 | 0.11 | 0 | 0 | 0.0000 | Arg | ||
CGA | 0.02 | 0.11 | 0 | 0 | 0.0000 | Arg | ||
AGU | 0.02 | 0.11 | 0 | 0 | 0.0000 | Ser | ||
AGC | 0.02 | 0.11 | 0 | 0 | 0.0000 | Ser | ||
AGA | 0.02 | 0.11 | 0 | 0 | 0.0000 | Arg | ||
5 | xxx, 27 | UUU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Phe |
UCU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Ser | ||
UAU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Tyr | ||
UUC | 0.02 | 0.04 | 0 | 0 | 0.0000 | Phe | ||
UCC | 0.02 | 0.04 | 0 | 0 | 0.0000 | Ser | ||
UUA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Leu | ||
UCA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Ser | ||
UAA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Ter | ||
CUU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Leu | ||
CCU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Pro | ||
CAU | 0.02 | 0.04 | 0 | 0 | 0.0000 | His | ||
CUC | 0.02 | 0.04 | 0 | 0 | 0.0000 | Leu | ||
CCC | 0.02 | 0.04 | 0 | 0 | 0.0000 | Pro | ||
CAC | 0.02 | 0.04 | 0 | 0 | 0.0000 | His | ||
CUA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Leu | ||
CCA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Pro | ||
CAA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Gln | ||
AUU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Ile | ||
ACU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Thr | ||
AAU | 0.02 | 0.04 | 0 | 0 | 0.0000 | Asn | ||
AUC | 0.02 | 0.04 | 0 | 0 | 0.0000 | Ile | ||
ACC | 0.02 | 0.04 | 0 | 0 | 0.0000 | Thr | ||
AAC | 0.02 | 0.04 | 0 | 0 | 0.0000 | Asn | ||
AUA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Ile | ||
ACA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Thr | ||
AAA | 0.02 | 0.04 | 0 | 0 | 0.0000 | Lys |
aa | CODamino | gCOD+amino | β | |
Group 1 (n=7) | Ala | 4 | 4 | 1.00 |
Val | 4 | 4 | 1.00 | |
Asp | 2 | 2 | 1.00 | |
Glu | 2 | 2 | 1.00 | |
Trp | 1 | 1 | 1.00 | |
Met | 1 | 1 | 1.00 | |
Gly | 4 | 4 | 1.00 | |
Group 2 (n=7) | Leu | 6 | 2 | 0.3333 |
Gln | 2 | 1 | 0.5 | |
Arg | 6 | 2 | 0.3333 | |
Lys | 2 | 1 | 0.5 | |
Ser | 6 | 1 | 0.1667 | |
Thr | 4 | 1 | 0.25 | |
Pro | 4 | 1 | 0.25 | |
Group 3 (n=6) | Cys | 2 | 0 | 0.00 |
Asn | 2 | 0 | 0.00 | |
Ile | 3 | 0 | 0.00 | |
His | 2 | 0 | 0.00 | |
Phe | 2 | 0 | 0.00 | |
Tyr | 2 | 0 | 0.00 |
GENE | NAME | G4 (nt) | Ex | STOP(n=11) | VALID(n=59) | |PTG4| |
BACE1 | Beta-secretase 1 | 33 | 3 | n=0 | n=6 | n=2 |
BCL2 | B-cell lymphoma 2 | 33 | 2 | n=1 | n=6 | n=1 |
23 | n=0 | n=6 | ||||
28 | n=0 | n=6 | ||||
29 | n=1 | n=5 | ||||
34 | n=1 | n=5 | ||||
33 | 3 | n=2 | n=5 | |||
ESR1 | Estrogen receptor alpha (ERα) | 36 | 4 | n=1 | n=5 | n=2 |
KCNH2 | Potassium Voltage-Gated Channel sub family H | 18 | 12 | n=0 | n=0 | NA |
ZNF669 | Member 2 Zinc Finger Protein 669 |
1 | ||||
PRNP | Prion protein | 14 | 2 | n=0 | n=0 | n=1 |
15 | n=0 | n=0 | ||||
20 | n=0 | n=0 | ||||
24 | n=0 | n=6 | ||||
85 | n=6 | n=3 | ||||
TERF2 | Telomeric repeat-binding factor 2 | 55 | 1 | n=0 | n=6 | n=1 |
Disordered regions (IDRs; n=1445;0.00≤p-value < 0.05) | |||||||||||||||||
SL-PT- | SL-PT+ | SL+PT- | SL+PT+ | R1T | R2T | C1T | C2T | A (%) | P (%) | R (%) | |||||||
SLiMS1 | 1078 | 64 | 58 | 9 | 1142 | 67 | 1136 | 73 | 89.90 | 12.32 | 13.43 | ||||||
SLiMS2 | 749 | 18 | 121 | 29 | 767 | 150 | 870 | 47 | 84.84 | 61.70 | 19.33 | ||||||
SLiMS3 | 1212 | 108 | 34 | 9 | 1320 | 43 | 1246 | 117 | 89.58 | 7.69 | 20.93 | ||||||
Proteins with disordered segments (IDPs; n=800;0.00≤p-value < 0.05) | |||||||||||||||||
SL-PT- | SL-PT+ | SL+PT- | SL+PT+ | R1T | R2T | C1T | C2T | A (%) | P (%) | R (%) | |||||||
SLiMS1 | 86 | 12 | 28 | 18 | 98 | 46 | 114 | 30 | 72.22 | 60.00 | 39.10 | ||||||
SLiMS2 | 1 | 1 | 96 | 66 | 2 | 162 | 97 | 67 | 40.85 | 98.50 | 40.74 | ||||||
SLiMS3 | 250 | 57 | 26 | 25 | 307 | 51 | 276 | 82 | 76.81 | 30.48 | 49.01 |
SLiMS | Sample | (zn)n≥2∈pTG4ij∩SLiMSw (p-value) | |
SLiMS1=[ST]PzR | Pz | PG (n=1) | PG (Degenerate) |
SLiMS2=[ED]zzD[AGS] | z[DE] | G[DE] (n=2) | [WGRVAELMKQSTP][AG][DE]z2EG[VADE](p-value=0.00069) |
[DE]z | [DE]G (n=1) | ||
zz[DE] | [LMKQSTP]G[DE] (n=14) [VAE]G[DE] (n=6) [WGR][AG][DE] (n=6) |
||
[DE]zz[DE] | [VAE]G[DE]zzEG[VADE] (n=28) [WGR][AG][DE]zzEG[VADE] (n=24) [WGR][AG][DE]zzEG (n=6) GEzzEG[VADE] (n=4) GEzzEG (n=1) |
||
SLiMS3=[KR]zPzzP | Pzz | PG[VADE] (n=4) | PGV (Degenerate) PGA (Degenerate) PGD (Degenerate) PGE (Degenerate) |
Cellular function | Disordered regions of proteins | |
1. | Signal transduction | DP00274, DP00224, DP00141, DP00332, DP01063, DP00506, DP00418, DP00341, DP00435, DP00613, DP00463, DP00954, DP00959, DP01104, DP00611, DP00519, DP00086, DP00707, DP00712 |
2. | Endocytosis | DP01073, DP01065, DP01066, DP00225 |
3. | Calcium-calmodulin | DP00092, DP00132, DP00561, DP00118, DP00253 |
4. | Myofibril assembly | DP01090 |
5. | Cytoskeleton | DP01056 DP00240, DP01022, DP00169, DP00716, DP00717, DP01100, DP00122 |
6. | Nuclear pore | DP01075, DP01077, DP01079 |
7. | Phototransduction | DP00768, DP00347 |
8. | Targeting | DP00893, DP00609, DP00610, DP01058 |
9. | Transcription | DP00062, DP00177, DP00633, DP00348, DP00786, DP00049, DP00231, DP00873, DP00720, DP00217, DP00081 |
10. | Translation | DP00082, DP00164, DP00229 DP00949, DP00134 |
11. | Synaptic transmission | DP00943 |
12. | Supercoiling | DP00076 |
13. | Binding | DP00539, DP00854, DP01052, DP00659, DP00656 |
14. | Peptide bond formation | DP00944 |
15. | Enzymes | DP00557, DP00032, DP00095, DP00337, DP00379, DP00787, DP00427, DP00429 |
16. | Bacterial/parasitic virulence | |
Secreted toxins | DP00345, DP00591 | |
Cytoadherence | DP00025, DP00065, DP01096 | |
17. | Viral infectivity | |
Cyclophilin interaction | DP00615, DP01031 | |
Chaperones | DP00699, DP00700, DP00674 | |
Capsid assembly | DP00133, DP00876 | |
Membrane fusion | DP01043 | |
Latency | DP01060 | |
18. | Unknown | DP00119 |