
Citation: Mantana Chudtong, Andrea De Gaetano. A mathematical model of food intake[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1238-1279. doi: 10.3934/mbe.2021067
[1] | Fu Tan, Bing Wang, Daijun Wei . A new structural entropy measurement of networks based on the nonextensive statistical mechanics and hub repulsion. Mathematical Biosciences and Engineering, 2021, 18(6): 9253-9263. doi: 10.3934/mbe.2021455 |
[2] | Mohamed Kayid . Some new results on bathtub-shaped hazard rate models. Mathematical Biosciences and Engineering, 2022, 19(2): 1239-1250. doi: 10.3934/mbe.2022057 |
[3] | Erik M. Bollt, Joseph D. Skufca, Stephen J . McGregor . Control entropy: A complexity measure for nonstationary signals. Mathematical Biosciences and Engineering, 2009, 6(1): 1-25. doi: 10.3934/mbe.2009.6.1 |
[4] | Xiaoshan Qian, Lisha Xu, Xinmei Yuan . Dynamic correction of soft measurement model for evaporation process parameters based on ARMA. Mathematical Biosciences and Engineering, 2024, 21(1): 712-735. doi: 10.3934/mbe.2024030 |
[5] | Amal S. Hassan, Najwan Alsadat, Christophe Chesneau, Ahmed W. Shawki . A novel weighted family of probability distributions with applications to world natural gas, oil, and gold reserves. Mathematical Biosciences and Engineering, 2023, 20(11): 19871-19911. doi: 10.3934/mbe.2023880 |
[6] | Yefu Zheng, Jun Xu, Hongzhang Chen . TOPSIS-based entropy measure for intuitionistic trapezoidal fuzzy sets and application to multi-attribute decision making. Mathematical Biosciences and Engineering, 2020, 17(5): 5604-5617. doi: 10.3934/mbe.2020301 |
[7] | Ziqiang Cheng, Jin Wang . Modeling epidemic flow with fluid dynamics. Mathematical Biosciences and Engineering, 2022, 19(8): 8334-8360. doi: 10.3934/mbe.2022388 |
[8] | Fankang Bu, Jun He, Haorun Li, Qiang Fu . Interval-valued intuitionistic fuzzy MADM method based on TOPSIS and grey correlation analysis. Mathematical Biosciences and Engineering, 2020, 17(5): 5584-5603. doi: 10.3934/mbe.2020300 |
[9] | Qingqun Huang, Muhammad Labba, Muhammad Azeem, Muhammad Kamran Jamil, Ricai Luo . Tetrahedral sheets of clay minerals and their edge valency-based entropy measures. Mathematical Biosciences and Engineering, 2023, 20(5): 8068-8084. doi: 10.3934/mbe.2023350 |
[10] | Bing Wang, Fu Tan, Jia Zhu, Daijun Wei . A new structure entropy of complex networks based on nonextensive statistical mechanics and similarity of nodes. Mathematical Biosciences and Engineering, 2021, 18(4): 3718-3732. doi: 10.3934/mbe.2021187 |
The Farlie-Gumbel-Morgenstern (FGM) family of bivariate distributions has been widely utilized in practical applications. This family is defined by the given marginal distribution functions (DFs) FY(y) and FZ(z) for the random variables (RVs) Y and Z, respectively, along with a parameter α, resulting in the bivariate DF given by
FY,Z(y,z)=FY(y)FZ(z)[1+α(1−FY(y))(1−FZ(z))], | (1.1) |
with the corresponding probability density function (PDF)
fY,Z(y,z)=fY(y)fZ(z)[1+α(2FY(y)−1)(2FZ(z)−1)]. | (1.2) |
Here fY(y) and fZ(z) are the marginals of fY,Z(y,z), and α is referred to as the association parameter. The RVs Y and Z are treated as independent at α=0. The initial introduction of this model was done by [1] and further examined by [2] for exponential marginals. The overall structure described in Eq (1.1) is credited to [3,4]. The parameter α must lie in the range [−1,1] to ensure that the function FY,Z(y,z) remains a valid DF. The Pearson correlation coefficient ρ between Y and Z cannot exceed 13. An aspect of the behavior of the bivariate PDF with the associated parameter α for the FGM association (i.e., the FGM family with uniform margins) is depicted in Figure 1.
Reference [5] proposed the concept of the GOSs as a comprehensive framework for RVs arranged in ascending order. The subclass m−GOSs of GOSs encompasses the most prominent models of ordered RVs. These models include OSs, lower and upper record values, k−records, sequential OSs, and progressive type Ⅱ censoring with a constant scheme. We exclusively consider the m−GOSs model. Consider FY(y)=P(Y≤y) as an arbitrary continuous DF with the PDF fY(y). Then the RVs Y(1,n,m,k)≤Y(2,n,m,k)≤...≤Y(n,n,m,k) (k>0,m≥−1) are said to be m−GOSs if their joint PDF (JPDF) is given by
f(m,k)1,2,...,n:n(y1,y2,...,yn)=(n∏j=1γj)(n−1∏j=1¯FmY(yj)fY(yj))¯Fk−1Y(yn)fY(yn), |
where F−1Y(1)≥yn≥...≥y1≥F−1Y(0) and γj=k+(n−j)(m+1)>0,j=1,2,...,n (note that γn=k). The marginal PDF of rth m−GOS, 1≤r≤n, is given by (cf. [5])
fY(r,n,m,k)(y)=Cr−1(r−1)!(¯FY(y))γr−1fY(y)gr−1m(FY(y)), |
where Cr−1=r∏i=1γi,r=1,2,...,n,gm(y)=hm(y)−hm(0),y∈[0,1), and hm(y)=−1(m+1)(1−y)m+1, if m≠−1, while h−1(y)=−log(1−y).
The concomitant subject has recently gained traction again because of its applicability to prediction problems and selection processes. The concept of the concomitants of OSs may be traced back to [6], while [7] further developed the broad theory of concomitants of OSs. Reference [6] provided an exceptional examination of the concomitants of OSs. Compared to the concomitants of OSs, the concomitants of GOSs have not been as fully studied. Numerous researchers have studied this topic, including[8,9,10].
For the FGM family defined by (1.1) and (1.2), the PDF, DF, and survival function (SF) of the concomitant of the rth m-GOS are given by [9], respectively, as
f[r,n,m,k](z)=fZ(z)[1+αC∗(r,n,m,k)(1−2FZ(z))], |
F[r,n,m,k](z)=FZ(z)[1+αC∗(r,n,m,k)(1−FZ(z))], | (1.3) |
and
¯F[r,n,m,k](z)=¯FZ(z)[1−αC∗(r,n,m,k)FZ(z)], | (1.4) |
where C∗(r,n,m,k)=2r∏j=1γjr∏i=1(γi+1)−1 and ¯FZ(z)=1−FZ(z).
Reference [9] conducted a study on the concomitants of m-GOSs in the FGM family. Reference[11] derived certain characteristics of the concomitants of m-GOSs from the bivariate Rayleigh distribution of FGM type. References [12,13] examined various information measures in concomitants of m-GOSs under iterated FGM and Huang-Kotz FGM, respectively. References [14,15,16] examined certain characteristics of concomitants of m-GOSs from the bivariate Cambanis family.
Shannon entropy, established by [17], is one of the most extensively used measures of uncertainty. It is used to quantify the amount of uncertainty involved in an RV and has multiple uses in various fields. Let Y be a non-negative RV having PDF fY(y). [17] defined the entropy of Y by
H(Y)=−∫∞0fY(y)logfY(y)dy. |
An entropic expression with an index θ was first presented by [18] and results in non-extensive statistics. The so-called non-extensive statistical mechanics, which generalize Boltzmann-Gibbs theory, is based on Tsallis entropy. Applications of Tsallis statistics can be found in a wide range of fields, including physics, chemistry, biology, medicine, economics, and geophysics. According to [18], the non-additive generalization of Shannon's entropy of order θ is called Tsallis entropy. This measure is crucial in the uncertainty assessments of an RV Y, defined as
Tθ(Y)=1θ−1(1−∫∞0fθY(y)dy), |
where θ≠1,θ>0. Tsallis entropy approaches Shannon entropy as θ⟶1.
Tsallis statistics, rooted in the generalized entropy framework, are particularly valuable for systems with long-range interactions, non-equilibrium dynamics, and fractal-like structures. These properties make them highly applicable to fields dealing with complex and noisy data, such as seismic inversion and magnetic resonance imaging evaluations. For example, seismic inversion involves extracting subsurface geological properties (e.g., porosity, fluid content, rock type) from seismic reflection data. These data sets are typically noisy, incomplete, and exhibit long-range spatial correlations, making them ideal candidates for Tsallis statistical approaches. In seismic inversion and MRI evaluations, Tsallis entropy and statistics provide enhanced tools for dealing with noisy, complex, and non-linear data. They enable better noise filtering, improved stability in inversion algorithms, and deeper insights into fractal-like patterns and tissue textures, ultimately leading to more accurate geological modeling and medical diagnoses. For additional information regarding Tsallis entropy, we suggest reading [19,20]. Numerous generalizations of Shannon entropy have been formulated, rendering these entropies responsive to various types of probability distributions by the incorporation of several additional factors.
Reference [21] presented a novel measure of Shannon entropy known as cumulative residual entropy (CRE), which utilizes the SF rather than the PDF. The CRE is regarded as more stable and mathematically robust due to its more consistent SF compared to the PDF. Moreover, DFs exist even when PDFs do not exist (e.g., Govindarajulu, power-Pareto, and generalized lambda distributions). The CRE measure based on the SF ¯FY(y) is defined as
J(Y)=−∫∞0¯FY(y)log¯FY(y)dy. |
The cumulative residual Tsallis entropy (CRTE) of order θ is a helpful generalization of Shannon entropy that can be considered an alternate dispersion measure and has demonstrated promising results in several applications. Reference [22] devised the measure CRTE, which is defined by
Jθ(Y)=1θ−1(1−∫∞0¯FθY(y)dy),θ>0,θ≠1. |
When θ⟶1, CRTE approaches CRE.
Reference [23] unveiled an alternative measure for CRTE, which is defined by
Eθ(Y)=1θ−1∫∞0(¯FY(y)−¯FθY(y))dy,θ>0,θ≠1. | (1.5) |
Unlike CRTE, the measure defined by (1.5) has some additional features and has simple relationships with other important information and reliability measures. Reference [24] established a parallel notion of CRE, the cumulative entropy, which is useful for measuring information when uncertainty is associated with the past. Motivated from (1.5), reference [25] introduced cumulative past Tsallis entropy (CPTE) which is defined as
Pθ(Y)=1θ−1∫∞0(FY(y)−FθY(y))dy,θ>0,θ≠1. |
Assigning appropriate weights is crucial for accurately reflecting the relative relevance or importance of different observations or events in a data set. Weighting methodologies ensure that observations or events in a data set are appropriately prioritized based on their relevance or importance. Key approaches include:
1) Statistical weighting: based on variance (lower variance = higher weight) or frequency (higher frequency = higher weight).
2) Entropy-based weighting: higher entropy events get higher weights due to their greater uncertainty.
3) Expert knowledge-based weighting: relies on domain experts' insights.
4) Information gain-based weighting: events providing more information gain are assigned higher weights.
5) Distance-based weighting: observations closer to a reference point have higher weights (e.g., inverse distance weighting).
Each methodology suits different scenarios and data set characteristics, and the choice depends on the objective and data context. Reference [26] defined weighted CPTE (WCPTE) of order θ as
Pwθ(Y)=1θ−1∫∞0y(FY(y)−FθY(y))dy,θ>0,θ≠1. | (1.6) |
It was shown that the WCPTE can be used as a risk measure. Moreover, [27] proposed weighted CRTE (WCRTE) defined as
ζwθ(Y)=1θ−1(1−∫∞0y¯FθY(y)dy),θ>0,θ≠1. | (1.7) |
For a non-negative continuous RV Y, [26] defined a new measure called "alternative weighted cumulative residual Tsallis entropy" (denoted as AWCRTE) by
ξwθ(Y)=1θ−1∫∞0y(¯FY(y)−¯FθY(y))dy,θ>0,θ≠1. | (1.8) |
Despite the extensive use of Tsallis entropy in fields such as medical imaging (e.g., see [28,29]), there remains a need for further exploration of how Tsallis entropy can be applied to more complex, dynamic systems−especially when considering weighted measures that reflect cumulative effects over time.
This paper introduces the concepts of WCRTE and WCPTE, along with their dynamic versions, derived from m-GOSs in the context of the FGM family. The motivation for this work stems from the desire to enhance the versatility and applicability of Tsallis entropy in systems where dynamic and weighted measures are essential, such as in medical imaging, environmental studies, and artificial intelligence. The novel entropy measures introduced here offer new approaches for analyzing non-extensive and complex systems that cannot be adequately described by traditional entropy measures, such as Shannon entropy. The integration of these new tools with existing models opens up new possibilities for understanding and predicting behaviors in dynamic systems.
This is how the remainder of the paper is structured. Section 2 discusses some cases and provides the WCRTE for the concomitant Z[r,n,m,k] based on the FGM family of bivariate distributions. In the same section, we suggest a dynamic version of AWCRTE and its characteristics for Z[r,n,m,k] based on this family. In Section 3, the WCPTE and its dynamic form are examined. In Section 4, we offer the empirical AWCRTE and WCPTE. In Section 5, two real data sets are analyzed for illustration. In Section 6, the paper outlines the study's essential findings and their ramifications.
Theorem 2.1. The WCRTE of concomitant Z[r,n,m,k] of the rth m−GOS based on the FGM family is given by
ζwθ,α(Z[r,n,m,k])=1θ−1(1−N(θ)∑i=0(θi)(−1)i(αC∗(r,n,m,k))iE[Ui(1−U)θQ(U)q(U)]), |
where N(z)=∞, if z is a non-integer, N(z)=z, if z is an integer, U is the uniform RV on (0,1), Q(u) is the quantile function of the RV Z, and q(u) is the quantile density function, i.e., q(u)=dduQ(u).
Proof. Using (1.4) and (1.7), then WCRTE is provided by
ζwθ,α(Z[r,n,m,k])=1θ−1(1−∫∞0z¯Fθ[r,n,m,k](z)dz)=1θ−1(1−∫∞0z¯FθZ(z)(1−αC∗(r,n,m,k)FZ(z))θdz)=1θ−1(1−N(θ)∑i=0(θi)(−1)i(αC∗(r,n,m,k))iE[Z(1−FZ(Z))θ(FZ(Z))ifZ(Z)]). | (2.1) |
Let Q(u)=F−1Z(z) be the quantile function. By using the well-known relation q(u)fZ(Q(u))=1 in (2.1), we get
ζwθ,α(Z[r,n,m,k])=1θ−1(1−N(θ)∑i=0(θi)(−1)i(αC∗(r,n,m,k))iE[Q(U)(1−U)θUiq(U)]). | (2.2) |
Remark 2.1. If m=0 and k=1, the WCRTE of the concomitant of the rth OS, Z[r,n,0,1]:=Z[r:n], based on the FGM family is given by
ζwθ,α(Z[r:n])=1θ−1(1−N(θ)∑i=0(θi)(−1)i(αϕ(r:n))iE[Ui(1−U)θQ(U)q(U)]), |
where ϕ(r:n)=n−2r+1n+1 (cf. [30]).
Remark 2.2. The model of record values is a special case of the m-GOSs by putting m=−1 and k=1. Therefore, the WCRTE of the concomitant Z[n] of the nth upper record value based on the FGM family is given by
ζwθ,α(Z[n])=1θ−1(1−N(θ)∑i=0(θi)(−1)i(αδ(n))iE[Ui(1−U)θQ(U)q(U)]), |
where δ(n)=2−(n−1)−1.
Example 2.1. Consider the two variables, Y and Z, that possess exponential distribution (ED) from the FGM family (represented by FGM-ED) (i.e., FZ(z)=1−e−λz,z,λ>0). Then
∫∞0z(1−e−λz)i(e−λz)θdz=i∑p=0(ip)(−1)p1λ2(p+θ)2. |
Based on (2.2), we get the WCRTE in Z[r,n,m,k] as follows:
ζwθ,α(Z[r,n,m,k])=1(θ−1)(1−N(θ)∑i=0i∑p=0(θi)(ip)(−1)i+p(αC∗(r,n,m,k))iλ2(p+θ)2). |
Example 2.2. Consider Y and Z to be Weibull distributions (WD) derived from the FGM family (i.e., FZ(z)=1−e−(zβ)η,z>0,η,β>0). Then
∫∞0z(1−e−(zβ)η)i(e−(zβ)η)θdz=i∑p=0(ip)(−1)p(p+θ)−2ηΓ(2η)ηβη. |
Thus, ζwθ,α(Z[r,n,m,k]) is given by
ζwθ,α(Z[r,n,m,k])=1(θ−1)(1−N(θ)∑i=0i∑p=0(θi)(ip)(−1)i+p(αC∗(r,n,m,k))i(p+θ)−2ηΓ(2η)ηβη). |
Tables 1 and 2 show aspects of the behavior of the WCRTE for Z[r:n] and Z[n], respectively. In Tables 1 and 2, the following properties can be extracted:
θ=4,β=1.2,η=0.5 | θ=9,β=1.5,η=0.2 | ||||||||||||
n | r | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
4 | 1 | 0.31693 | 0.32098 | 0.30563 | 0.32664 | 0.28891 | 0.32991 | 0.12492 | 0.12496 | 0.12469 | 0.12499 | 0.12405 | 0.12501 |
4 | 2 | 0.31838 | 0.31973 | 0.31536 | 0.32213 | 0.31187 | 0.32417 | 0.12493 | 0.12495 | 0.12489 | 0.12497 | 0.12484 | 0.12498 |
4 | 3 | 0.31973 | 0.31838 | 0.32213 | 0.31536 | 0.32417 | 0.31187 | 0.12495 | 0.12493 | 0.12497 | 0.12489 | 0.12498 | 0.12484 |
4 | 4 | 0.32098 | 0.31693 | 0.32664 | 0.30563 | 0.32991 | 0.28891 | 0.12496 | 0.12492 | 0.12499 | 0.12469 | 0.12501 | 0.12405 |
6 | 1 | 0.31649 | 0.32132 | 0.3022 | 0.3276 | 0.27969 | 0.3308 | 0.12491 | 0.12496 | 0.12459 | 0.12499 | 0.12352 | 0.12503 |
6 | 2 | 0.31757 | 0.32046 | 0.31021 | 0.32494 | 0.30036 | 0.32803 | 0.12492 | 0.12495 | 0.1248 | 0.12498 | 0.12453 | 0.125 |
6 | 3 | 0.31858 | 0.31954 | 0.31649 | 0.32132 | 0.31417 | 0.3229 | 0.12493 | 0.12494 | 0.12491 | 0.12496 | 0.12488 | 0.12497 |
6 | 4 | 0.31954 | 0.31858 | 0.32132 | 0.31649 | 0.3229 | 0.31417 | 0.12494 | 0.12493 | 0.12496 | 0.12491 | 0.12497 | 0.12488 |
6 | 5 | 0.32046 | 0.31757 | 0.32494 | 0.31021 | 0.32803 | 0.30036 | 0.12495 | 0.12492 | 0.12498 | 0.1248 | 0.125 | 0.12453 |
6 | 6 | 0.32132 | 0.31649 | 0.3276 | 0.3022 | 0.3308 | 0.27969 | 0.12496 | 0.12491 | 0.12499 | 0.12459 | 0.12503 | 0.12352 |
8 | 1 | 0.31625 | 0.3215 | 0.30015 | 0.32808 | 0.27397 | 0.33119 | 0.12491 | 0.12496 | 0.12452 | 0.125 | 0.12313 | 0.12505 |
8 | 2 | 0.3171 | 0.32084 | 0.30688 | 0.32623 | 0.29214 | 0.32949 | 0.12492 | 0.12496 | 0.12473 | 0.12499 | 0.1242 | 0.12501 |
8 | 3 | 0.31791 | 0.32016 | 0.31249 | 0.32385 | 0.30563 | 0.32664 | 0.12493 | 0.12495 | 0.12485 | 0.12498 | 0.12469 | 0.12499 |
8 | 4 | 0.31869 | 0.31944 | 0.3171 | 0.32084 | 0.31536 | 0.32213 | 0.12494 | 0.12494 | 0.12492 | 0.12496 | 0.12489 | 0.12497 |
8 | 5 | 0.31944 | 0.31869 | 0.32084 | 0.3171 | 0.32213 | 0.31536 | 0.12494 | 0.12494 | 0.12496 | 0.12492 | 0.12497 | 0.12489 |
8 | 6 | 0.32016 | 0.31791 | 0.32385 | 0.31249 | 0.32664 | 0.30563 | 0.12495 | 0.12493 | 0.12498 | 0.12485 | 0.12499 | 0.12469 |
8 | 7 | 0.32084 | 0.3171 | 0.32623 | 0.30688 | 0.32949 | 0.29214 | 0.12496 | 0.12492 | 0.12499 | 0.12473 | 0.12501 | 0.1242 |
8 | 8 | 0.3215 | 0.31625 | 0.32808 | 0.30015 | 0.33119 | 0.27397 | 0.12496 | 0.12491 | 0.125 | 0.12452 | 0.12505 | 0.12313 |
10 | 1 | 0.31609 | 0.32162 | 0.29879 | 0.32836 | 0.27008 | 0.33141 | 0.1249 | 0.12496 | 0.12448 | 0.125 | 0.12284 | 0.12507 |
10 | 2 | 0.31679 | 0.32109 | 0.30457 | 0.32696 | 0.28612 | 0.33022 | 0.12491 | 0.12496 | 0.12466 | 0.12499 | 0.1239 | 0.12502 |
10 | 3 | 0.31747 | 0.32054 | 0.30956 | 0.32522 | 0.29879 | 0.32836 | 0.12492 | 0.12495 | 0.12479 | 0.12499 | 0.12448 | 0.125 |
10 | 4 | 0.31813 | 0.31996 | 0.31384 | 0.3231 | 0.30862 | 0.32559 | 0.12493 | 0.12495 | 0.12487 | 0.12497 | 0.12477 | 0.12499 |
10 | 5 | 0.31876 | 0.31937 | 0.31747 | 0.32054 | 0.31609 | 0.32162 | 0.12494 | 0.12494 | 0.12492 | 0.12495 | 0.1249 | 0.12496 |
10 | 6 | 0.31937 | 0.31876 | 0.32054 | 0.31747 | 0.32162 | 0.31609 | 0.12494 | 0.12494 | 0.12495 | 0.12492 | 0.12496 | 0.1249 |
10 | 7 | 0.31996 | 0.31813 | 0.3231 | 0.31384 | 0.32559 | 0.30862 | 0.12495 | 0.12493 | 0.12497 | 0.12487 | 0.12499 | 0.12477 |
10 | 8 | 0.32054 | 0.31747 | 0.32522 | 0.30956 | 0.32836 | 0.29879 | 0.12495 | 0.12492 | 0.12499 | 0.12479 | 0.125 | 0.12448 |
10 | 9 | 0.32109 | 0.31679 | 0.32696 | 0.30457 | 0.33022 | 0.28612 | 0.12496 | 0.12491 | 0.12499 | 0.12466 | 0.12502 | 0.1239 |
10 | 10 | 0.32162 | 0.31609 | 0.32836 | 0.29879 | 0.33141 | 0.27008 | 0.12496 | 0.1249 | 0.125 | 0.12448 | 0.12507 | 0.12284 |
θ=4,β=1.2,η=0.5 | θ=9,β=1.5,η=0.2 | ||||||||
n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
2 | 0.32569 | 0.30839 | 0.3289 | 0.29591 | 2 | 0.12499 | 0.12476 | 0.125 | 0.12437 |
3 | 0.32787 | 0.30106 | 0.33103 | 0.27653 | 3 | 0.125 | 0.12456 | 0.12504 | 0.12331 |
4 | 0.32874 | 0.29681 | 0.33168 | 0.26429 | 4 | 0.125 | 0.1244 | 0.1251 | 0.12237 |
5 | 0.32913 | 0.29453 | 0.33193 | 0.25746 | 5 | 0.125 | 0.12431 | 0.12516 | 0.12176 |
6 | 0.32931 | 0.29335 | 0.33204 | 0.25386 | 6 | 0.125 | 0.12426 | 0.12519 | 0.12141 |
7 | 0.3294 | 0.29274 | 0.3321 | 0.252 | 7 | 0.125 | 0.12423 | 0.12521 | 0.12122 |
8 | 0.32945 | 0.29244 | 0.33212 | 0.25107 | 8 | 0.125 | 0.12422 | 0.12522 | 0.12112 |
9 | 0.32947 | 0.29229 | 0.33213 | 0.25059 | 9 | 0.12501 | 0.12421 | 0.12522 | 0.12107 |
10 | 0.32948 | 0.29221 | 0.33214 | 0.25036 | 10 | 0.12501 | 0.12421 | 0.12522 | 0.12105 |
11 | 0.32948 | 0.29217 | 0.33214 | 0.25024 | 11 | 0.12501 | 0.1242 | 0.12522 | 0.12104 |
12 | 0.32949 | 0.29215 | 0.33214 | 0.25018 | 12 | 0.12501 | 0.1242 | 0.12523 | 0.12103 |
13 | 0.32949 | 0.29215 | 0.33214 | 0.25015 | 13 | 0.12501 | 0.1242 | 0.12523 | 0.12103 |
14 | 0.32949 | 0.29214 | 0.33215 | 0.25013 | 14 | 0.12501 | 0.1242 | 0.12523 | 0.12103 |
15 | 0.32949 | 0.29214 | 0.33215 | 0.25013 | 15 | 0.12501 | 0.1242 | 0.12523 | 0.12102 |
16 | 0.32949 | 0.29214 | 0.33215 | 0.25012 | 16 | 0.12501 | 0.1242 | 0.12523 | 0.12102 |
17 | 0.32949 | 0.29214 | 0.33215 | 0.25012 | 17 | 0.12501 | 0.1242 | 0.12523 | 0.12102 |
● Generally, ζwθ,α(Z[r:n])=ζwθ,−α(Z[n−r+1:n]). Also, the value of ζwθ,α(Z[r:n]) slowly increases as the value of n increases (cf. Table 1).
● We see that the value of ζwθ,−α(Z[n]) goes up as n goes up, the value of ζwθ,α(Z[n]) goes down as n goes up, and it almost stays the same when n=15 (cf. Table 2).
Remark 2.3. It is worth noting that the relation ζwθ,α(Z[r:n])=ζwθ,−α(Z[n−r+1:n]) may be theoretically proved for every θ>0, −1≤α≤1, and any non-negative continuous RV Z by applying Theorem 2.1 and remarking that C∗(n−r+1,n,0,1)=−C∗(r,n,0,1).
Theorem 2.2. The AWCRTE for the concomitant Z[r,n,m,k] of the m−GOS based on the FGM family is given by
ξwθ,α(Z[r,n,m,k])=1θ−1(12E(Z2[r,n,m,k])−N(θ)∑i=0(θi)(−1)i(αC∗(r,n,m,k))iE[Ui(1−U)θQ(U)q(U)]). |
Proof. Using (1.4) and (1.8), we get
ξwθ,α(Z[r,n,m,k])=1θ−1∫∞0z(¯F[r,n,m,k](z)−¯Fθ[r,n,m,k](z))dz=1θ−1(∫∞0z¯F[r,n,m,k](z)dz−N(θ)∑i=0(θi)(−1)i(αC∗(r,n,m,k))iE[Z¯FθZ(Z)FiZ(Z)fZ(Z)])=1θ−1(12E(Z2[r,n,m,k])−N(θ)∑i=0(θi)(−1)i(αC∗(r,n,m,k))iE[Ui(1−U)θQ(U)q(U)]). | (2.3) |
Remark 2.4. If m=0 and k=1, the AWCRTE of the concomitant Z[r:n] of the rth OS based on the FGM family is given by
ξwθ,α(Z[r:n])=1θ−1(12E(Z2[r:n])−N(θ)∑i=0(θi)(−1)i(αϕ(r:n))iE[Ui(1−U)θQ(U)q(U)]). |
Remark 2.5. If m=−1 and k=1, the AWCRTE of concomitant of the nth upper record value based on the FGM family is given by
ξwθ,α(Z[n])=1θ−1(12E(Z2[n])−N(θ)∑i=0(θi)(−1)i(αδ(n))iE[Ui(1−U)θQ(U)q(U)]). |
In survival analysis, if an RV T∗ given Θ=θ has a DF F(t|θ), the weighted mean residual lifetime (WMRL) of T∗ given Θ=θ is then obtained as
m∗F(t)=∫∞tz¯F(z|θ)¯F(t|θ)dz, |
which is valid for all θ that ¯F(t|θ)>0 and also plays a crucial role in survival analysis. Now, we provide a relationship between the WMRL, m∗F[r,n,m,k](t)=∫∞tz¯F[r,n,m,k](z)¯F[r,n,m,k](t)dz,¯F[r,n,m,k](t)>0, and the AWCRTE of an RV Z. This relationship illustrates AWCRTE's crucial role in survival analysis.
Lemma 2.1. For a non-negative continuous RV Z with SF ¯FZ(z),
ξwθ,α(Z[r,n,m,k])=E[m∗F[r,n,m,k](Z[r,n,m,k])¯Fθ−1[r,n,m,k](Z[r,n,m,k])]. |
Proof. First, we note ddz(m∗F[r,n,m,k](z)¯F[r,n,m,k](z))=−z¯F[r,n,m,k](z). Thus, by using the fact in (1.8), we get
ξwθ,α(Z[r,n,m,k])=1θ−1[−∫∞0ddz(m∗F[r,n,m,k](z)¯F[r,n,m,k](z))(1−¯Fθ−1[r,n,m,k](z))dz]. |
Now the result follows by using integration by parts.
Example 2.3. Consider the RVs, Y and Z, that follow FGM-ED. Based on (2.3), we get the AWCRTE in Z[r,n,m,k] as follows:
ξwθ,α(Z[r,n,m,k])=1λ2(θ−1)((1−34αC∗(r,n,m,k))−N(θ)∑i=0i∑p=0(θi)(ip)(−1)i+p(αC∗(r,n,m,k))i(p+θ)2). |
Moreover, it is easy to check that
m∗F[r,n,m,k](t)=e−tλ(1+tλ)λ2¯F[r,n,m,k](t)[1−αC∗(r,n,m,k)(1−e−2tλ(1+2tλ)4λ2)], |
which yields
E[m∗F[r,n,m,k](Z[r,n,m,k])¯Fθ−1[r,n,m,k](Z[r,n,m,k])]=((1−34αC∗(r,n,m,k))−N(θ)∑i=0i∑p=0(θi)(ip)(−1)i+p(αC∗(r,n,m,k))i(p+θ)2)λ2(θ−1)=ξwθ,α(Z[r,n,m,k]). |
Example 2.4. Consider Y and Z to be WD derived from the FGM family. Then ∫∞0z(e−(zβ)η)dz=Γ(2η)β2η,
∫∞0z(e−(zβ)η)(1−e−(zβ)η)dz=β2Γ(2η+1)(4−η−1)2−(2η+1), |
and
∫∞0z(1−e−(zβ)η)i(e−(zβ)η)θdz=i∑j=0(ij)(−1)j(j+θ)−2ηΓ(2η)ηβη. |
Therefore, the measure ξwθ,α(Z[r,n,m,k]) is given by
ξwθ,α(Z[r,n,m,k])=1θ−1(β2ηΓ(2η)(1−αC∗(r,n,m,k)(4−η−1)2−2η)−N(θ)∑i=0i∑j=0(θi)(ij)(−1)i+j×(αC∗(r,n,m,k))i((j+θ)−2ηΓ(2η)ηβη)). |
Example 2.5. Suppose Y and Z are continuous RVs with respective PDF fY(y)=1a,0<y<a, and gZ(z)=1a,h<z<a+h,h>0. From (1.5), we have
Eθ,α(Y[r,n,m,k])=Eθ,α(Z[r,n,m,k])=1θ−1(a2(1−αC∗(r,n,m,k)3)−N(θ)∑i=0(θi)(−1)i(αC∗(r,n,m,k))i(aβ(1+i,1+θ))). |
Now, from (1.8), we get
ξwθ,α(Y[r,n,m,k])=1θ−1(a212(2−αC∗(r,n,m,k))−N(θ)∑i=0(θi)(−1)i(αC∗(r,n,m,k))i(a2β(2+i,1+θ))) |
and
ξwθ,α(Z[r,n,m,k])=1θ−1((a26+ah2)(1−αC∗(r,n,m,k)a2+2ah2(a2+3ah))−N(θ)∑i=0(θi)(−1)i(αC∗(r,n,m,k))i |
(a(a(i+1)+h(2+i+θ))(i+θ+2)β(1+i,1+θ))). |
Therefore, although Eθ,α(Y[r,n,m,k])=Eθ,α(Z[r,n,m,k]), ξwθ,α(Y[r,n,m,k])≠ξwθ,α(Z[r,n,m,k]).
Example 2.6. Suppose Z has a Pareto distribution with DF FZ(z)=1−(bz)a,z≥b,b>0,a>0. Then
ξwθ,α(Z[r,n,m,k])=1θ−1(b2(a−2)(1−aαC∗(r,n,m,k)2(a−1))−N(θ)∑i=0i∑s=0(θi)(is)(−1)i+sb2(αC∗(r,n,m,k))i(a(s+θ)−2)). |
Also, we can show that
m∗F[r,n,m,k](t)=bat2−a(a−2)¯F[r,n,m,k](t)[1−αC∗(r,n,m,k)(1−bat−a(a−2)2(a−1))] |
and
E[m∗F[r,n,m,k](Z[r,n,m,k])¯Fθ−1[r,n,m,k](Z[r,n,m,k])]=b2a−2(1−aαC∗(r,n,m,k)2(a−1))−N(θ)∑i=0i∑s=0(θi)(is)(−1)i+sb2(αC∗(r,n,m,k))i(a(s+θ)−2)θ−1=ξwθ,α(Z[r,n,m,k]). |
The following lemma shows that ξwθ,α(Z[r,n,m,k]) is a shift-dependent measure.
Lemma 2.2. Let Z=aX+b with a>0 and b≥0. Then
ξwθ,α(Z[r,n,m,k])=a2ξwθ,α(X[r,n,m,k])+abEθ,α(X[r,n,m,k]). |
Proof. First, since the linear transformation, with b≥0, preserves the order relation, then for every 1≤r≤n, we get Zr,n,m,k=aXr,n,m,k+b and Z[r,n,m,k]=aX[r,n,m,k]+b. The proof follows using the fact that ¯FZ[r,n,m,k](u)=¯FX[r,n,m,k](u−ba).
As shown in Tables 3–6 of the FGM-ED and FGM-WD, respectively, the AWCRTE for Z[r:n] and Z[n] are presented. After running the numbers through MATHEMATICA version 12, we can deduce the following properties from Tables 3–6.
θ=4,λ=0.5 | θ=9,λ=0.9 | ||||||||||||
n | r | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
4 | 1 | 0.2425 | 0.2569 | 0.2058 | 0.2793 | 0.1563 | 0.295 | 0.1229 | 0.1233 | 0.1217 | 0.1238 | 0.1198 | 0.1242 |
4 | 2 | 0.2476 | 0.2524 | 0.2371 | 0.2612 | 0.2256 | 0.2691 | 0.123 | 0.1232 | 0.1227 | 0.1234 | 0.1224 | 0.1236 |
4 | 3 | 0.2524 | 0.2476 | 0.2612 | 0.2371 | 0.2691 | 0.2256 | 0.1232 | 0.123 | 0.1234 | 0.1227 | 0.1236 | 0.1224 |
4 | 4 | 0.2569 | 0.2425 | 0.2793 | 0.2058 | 0.295 | 0.1563 | 0.1233 | 0.1229 | 0.1238 | 0.1217 | 0.1242 | 0.1198 |
6 | 1 | 0.241 | 0.2582 | 0.1953 | 0.2836 | 0.1305 | 0.3001 | 0.1228 | 0.1233 | 0.1214 | 0.1239 | 0.1186 | 0.1243 |
6 | 2 | 0.2447 | 0.255 | 0.2202 | 0.2722 | 0.1897 | 0.2856 | 0.1229 | 0.1232 | 0.1222 | 0.1237 | 0.1212 | 0.124 |
6 | 3 | 0.2483 | 0.2517 | 0.241 | 0.2582 | 0.2331 | 0.2641 | 0.123 | 0.1231 | 0.1228 | 0.1233 | 0.1226 | 0.1235 |
6 | 4 | 0.2517 | 0.2483 | 0.2582 | 0.241 | 0.2641 | 0.2331 | 0.1231 | 0.123 | 0.1233 | 0.1228 | 0.1235 | 0.1226 |
6 | 5 | 0.255 | 0.2447 | 0.2722 | 0.2202 | 0.2856 | 0.1897 | 0.1232 | 0.1229 | 0.1237 | 0.1222 | 0.124 | 0.1212 |
6 | 6 | 0.2582 | 0.241 | 0.2836 | 0.1953 | 0.3001 | 0.1305 | 0.1233 | 0.1228 | 0.1239 | 0.1214 | 0.1243 | 0.1186 |
8 | 1 | 0.2402 | 0.2588 | 0.1891 | 0.2858 | 0.1148 | 0.3026 | 0.1228 | 0.1233 | 0.1211 | 0.124 | 0.1179 | 0.1243 |
8 | 2 | 0.2431 | 0.2564 | 0.2097 | 0.2776 | 0.1656 | 0.2928 | 0.1229 | 0.1233 | 0.1219 | 0.1238 | 0.1202 | 0.1241 |
8 | 3 | 0.2459 | 0.2539 | 0.2276 | 0.2678 | 0.2058 | 0.2793 | 0.123 | 0.1232 | 0.1224 | 0.1236 | 0.1217 | 0.1238 |
8 | 4 | 0.2487 | 0.2513 | 0.2431 | 0.2564 | 0.2371 | 0.2612 | 0.1231 | 0.1231 | 0.1229 | 0.1233 | 0.1227 | 0.1234 |
8 | 5 | 0.2513 | 0.2487 | 0.2564 | 0.2431 | 0.2612 | 0.2371 | 0.1231 | 0.1231 | 0.1233 | 0.1229 | 0.1234 | 0.1227 |
8 | 6 | 0.2539 | 0.2459 | 0.2678 | 0.2276 | 0.2793 | 0.2058 | 0.1232 | 0.123 | 0.1236 | 0.1224 | 0.1238 | 0.1217 |
8 | 7 | 0.2564 | 0.2431 | 0.2776 | 0.2097 | 0.2928 | 0.1656 | 0.1233 | 0.1229 | 0.1238 | 0.1219 | 0.1241 | 0.1202 |
8 | 8 | 0.2588 | 0.2402 | 0.2858 | 0.1891 | 0.3026 | 0.1148 | 0.1233 | 0.1228 | 0.124 | 0.1211 | 0.1243 | 0.1179 |
10 | 1 | 0.2396 | 0.2593 | 0.185 | 0.2872 | 0.1043 | 0.3041 | 0.1228 | 0.1233 | 0.121 | 0.124 | 0.1173 | 0.1244 |
10 | 2 | 0.242 | 0.2573 | 0.2025 | 0.2807 | 0.1484 | 0.2967 | 0.1229 | 0.1233 | 0.1216 | 0.1239 | 0.1195 | 0.1242 |
10 | 3 | 0.2444 | 0.2553 | 0.2181 | 0.2734 | 0.185 | 0.2872 | 0.1229 | 0.1232 | 0.1221 | 0.1237 | 0.121 | 0.124 |
10 | 4 | 0.2467 | 0.2532 | 0.232 | 0.2649 | 0.2151 | 0.2749 | 0.123 | 0.1232 | 0.1226 | 0.1235 | 0.122 | 0.1237 |
10 | 5 | 0.2489 | 0.2511 | 0.2444 | 0.2553 | 0.2396 | 0.2593 | 0.1231 | 0.1231 | 0.1229 | 0.1232 | 0.1228 | 0.1233 |
10 | 6 | 0.2511 | 0.2489 | 0.2553 | 0.2444 | 0.2593 | 0.2396 | 0.1231 | 0.1231 | 0.1232 | 0.1229 | 0.1233 | 0.1228 |
10 | 7 | 0.2532 | 0.2467 | 0.2649 | 0.232 | 0.2749 | 0.2151 | 0.1232 | 0.123 | 0.1235 | 0.1226 | 0.1237 | 0.122 |
10 | 8 | 0.2553 | 0.2444 | 0.2734 | 0.2181 | 0.2872 | 0.185 | 0.1232 | 0.1229 | 0.1237 | 0.1221 | 0.124 | 0.121 |
10 | 9 | 0.2573 | 0.242 | 0.2807 | 0.2025 | 0.2967 | 0.1484 | 0.1233 | 0.1229 | 0.1239 | 0.1216 | 0.1242 | 0.1195 |
10 | 10 | 0.2593 | 0.2396 | 0.2872 | 0.185 | 0.3041 | 0.1043 | 0.1233 | 0.1228 | 0.124 | 0.121 | 0.1244 | 0.1173 |
θ=4,λ=0.5 | θ=9,λ=0.9 | ||||||||
n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
2 | 0.2753 | 0.21439 | 0.28981 | 0.17654 | 2 | 0.12373 | 0.12202 | 0.12406 | 0.12064 |
3 | 0.28488 | 0.19183 | 0.30156 | 0.12176 | 3 | 0.12395 | 0.12123 | 0.12432 | 0.1182 |
4 | 0.28903 | 0.17918 | 0.30602 | 0.08876 | 4 | 0.12404 | 0.12075 | 0.12443 | 0.11648 |
5 | 0.29096 | 0.1725 | 0.30796 | 0.0707 | 5 | 0.12408 | 0.12048 | 0.12448 | 0.11546 |
6 | 0.29189 | 0.16906 | 0.30887 | 0.06126 | 6 | 0.1241 | 0.12034 | 0.12451 | 0.11491 |
7 | 0.29235 | 0.16732 | 0.3093 | 0.05644 | 7 | 0.12411 | 0.12027 | 0.12453 | 0.11462 |
8 | 0.29257 | 0.16645 | 0.30952 | 0.054 | 8 | 0.12412 | 0.12023 | 0.12454 | 0.11447 |
9 | 0.29269 | 0.16601 | 0.30962 | 0.05277 | 9 | 0.12412 | 0.12022 | 0.12454 | 0.1144 |
10 | 0.29274 | 0.16579 | 0.30968 | 0.05216 | 10 | 0.12412 | 0.12021 | 0.12454 | 0.11436 |
11 | 0.29277 | 0.16567 | 0.3097 | 0.05185 | 11 | 0.12412 | 0.1202 | 0.12454 | 0.11434 |
12 | 0.29278 | 0.16562 | 0.30972 | 0.0517 | 12 | 0.12412 | 0.1202 | 0.12454 | 0.11433 |
13 | 0.29279 | 0.16559 | 0.30972 | 0.05162 | 13 | 0.12412 | 0.1202 | 0.12454 | 0.11433 |
14 | 0.29279 | 0.16558 | 0.30973 | 0.05158 | 14 | 0.12412 | 0.1202 | 0.12454 | 0.11432 |
15 | 0.2928 | 0.16557 | 0.30973 | 0.05156 | 15 | 0.12412 | 0.1202 | 0.12454 | 0.11432 |
16 | 0.2928 | 0.16557 | 0.30973 | 0.05155 | 16 | 0.12412 | 0.1202 | 0.12454 | 0.11432 |
17 | 0.2928 | 0.16557 | 0.30973 | 0.05155 | 17 | 0.12412 | 0.1202 | 0.12454 | 0.11432 |
18 | 0.2928 | 0.16557 | 0.30973 | 0.05155 | 18 | 0.12412 | 0.1202 | 0.12454 | 0.11432 |
19 | 0.2928 | 0.16556 | 0.30973 | 0.05154 | 19 | 0.12412 | 0.1202 | 0.12454 | 0.11432 |
θ=4,β=0.2,η=0.5 | θ=9,β=2,η=1.5 | ||||||||||||
n | r | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
4 | 1 | 0.1195 | 0.13 | 0.0906 | 0.1451 | 0.0485 | 0.1543 | 0.2899 | 0.3026 | 0.2646 | 0.3277 | 0.239 | 0.3527 |
4 | 2 | 0.1233 | 0.1268 | 0.1155 | 0.1331 | 0.1065 | 0.1384 | 0.2942 | 0.2984 | 0.2857 | 0.3067 | 0.2773 | 0.3151 |
4 | 3 | 0.1268 | 0.1233 | 0.1331 | 0.1155 | 0.1384 | 0.1065 | 0.2984 | 0.2942 | 0.3067 | 0.2857 | 0.3151 | 0.2773 |
4 | 4 | 0.13 | 0.1195 | 0.1451 | 0.0906 | 0.1543 | 0.0485 | 0.3026 | 0.2899 | 0.3277 | 0.2646 | 0.3527 | 0.239 |
6 | 1 | 0.1184 | 0.1309 | 0.082 | 0.1477 | 0.0254 | 0.157 | 0.2887 | 0.3037 | 0.2585 | 0.3336 | 0.2278 | 0.3634 |
6 | 2 | 0.1212 | 0.1287 | 0.1023 | 0.1405 | 0.0773 | 0.1489 | 0.2918 | 0.3008 | 0.2737 | 0.3187 | 0.2555 | 0.3366 |
6 | 3 | 0.1238 | 0.1263 | 0.1184 | 0.1309 | 0.1124 | 0.1351 | 0.2948 | 0.2978 | 0.2887 | 0.3037 | 0.2827 | 0.3097 |
6 | 4 | 0.1263 | 0.1238 | 0.1309 | 0.1184 | 0.1351 | 0.1124 | 0.2978 | 0.2948 | 0.3037 | 0.2887 | 0.3097 | 0.2827 |
6 | 5 | 0.1287 | 0.1212 | 0.1405 | 0.1023 | 0.1489 | 0.0773 | 0.3008 | 0.2918 | 0.3187 | 0.2737 | 0.3366 | 0.2555 |
6 | 6 | 0.1309 | 0.1184 | 0.1477 | 0.082 | 0.157 | 0.0254 | 0.3037 | 0.2887 | 0.3336 | 0.2585 | 0.3634 | 0.2278 |
8 | 1 | 0.1178 | 0.1314 | 0.0768 | 0.1491 | 0.0111 | 0.1583 | 0.2881 | 0.3044 | 0.2551 | 0.3369 | 0.2216 | 0.3693 |
8 | 2 | 0.1199 | 0.1297 | 0.0938 | 0.144 | 0.0566 | 0.1531 | 0.2904 | 0.3021 | 0.267 | 0.3253 | 0.2433 | 0.3485 |
8 | 3 | 0.1221 | 0.1279 | 0.1081 | 0.1376 | 0.0906 | 0.1451 | 0.2928 | 0.2998 | 0.2787 | 0.3137 | 0.2646 | 0.3277 |
8 | 4 | 0.1241 | 0.126 | 0.1199 | 0.1297 | 0.1155 | 0.1331 | 0.2951 | 0.2974 | 0.2904 | 0.3021 | 0.2857 | 0.3067 |
8 | 5 | 0.126 | 0.1241 | 0.1297 | 0.1199 | 0.1331 | 0.1155 | 0.2974 | 0.2951 | 0.3021 | 0.2904 | 0.3067 | 0.2857 |
8 | 6 | 0.1279 | 0.1221 | 0.1376 | 0.1081 | 0.1451 | 0.0906 | 0.2998 | 0.2928 | 0.3137 | 0.2787 | 0.3277 | 0.2646 |
8 | 7 | 0.1297 | 0.1199 | 0.144 | 0.0938 | 0.1531 | 0.0566 | 0.3021 | 0.2904 | 0.3253 | 0.267 | 0.3485 | 0.2433 |
8 | 8 | 0.1314 | 0.1178 | 0.1491 | 0.0768 | 0.1583 | 0.0111 | 0.3044 | 0.2881 | 0.3369 | 0.2551 | 0.3693 | 0.2216 |
10 | 1 | 0.1174 | 0.1317 | 0.0733 | 0.1499 | 0.0014 | 0.159 | 0.2877 | 0.3048 | 0.253 | 0.339 | 0.2177 | 0.3731 |
10 | 2 | 0.1192 | 0.1303 | 0.088 | 0.146 | 0.0415 | 0.1552 | 0.2896 | 0.3029 | 0.2627 | 0.3296 | 0.2354 | 0.3561 |
10 | 3 | 0.1209 | 0.1289 | 0.1006 | 0.1413 | 0.0733 | 0.1499 | 0.2915 | 0.301 | 0.2723 | 0.3201 | 0.253 | 0.339 |
10 | 4 | 0.1226 | 0.1274 | 0.1116 | 0.1356 | 0.0982 | 0.1423 | 0.2934 | 0.2991 | 0.2819 | 0.3106 | 0.2704 | 0.322 |
10 | 5 | 0.1243 | 0.1259 | 0.1209 | 0.1289 | 0.1174 | 0.1317 | 0.2953 | 0.2972 | 0.2915 | 0.301 | 0.2877 | 0.3048 |
10 | 6 | 0.1259 | 0.1243 | 0.1289 | 0.1209 | 0.1317 | 0.1174 | 0.2972 | 0.2953 | 0.301 | 0.2915 | 0.3048 | 0.2877 |
10 | 7 | 0.1274 | 0.1226 | 0.1356 | 0.1116 | 0.1423 | 0.0982 | 0.2991 | 0.2934 | 0.3106 | 0.2819 | 0.322 | 0.2704 |
10 | 8 | 0.1289 | 0.1209 | 0.1413 | 0.1006 | 0.1499 | 0.0733 | 0.301 | 0.2915 | 0.3201 | 0.2723 | 0.339 | 0.253 |
10 | 9 | 0.1303 | 0.1192 | 0.146 | 0.088 | 0.1552 | 0.0415 | 0.3029 | 0.2896 | 0.3296 | 0.2627 | 0.3561 | 0.2354 |
10 | 10 | 0.1317 | 0.1174 | 0.1499 | 0.0733 | 0.159 | 0.0014 | 0.3048 | 0.2877 | 0.339 | 0.253 | 0.3731 | 0.2177 |
θ=4,β=0.2,η=0.5 | θ=9,β=2,η=1.5 | ||||||||
n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
2 | 0.14252 | 0.09764 | 0.15139 | 0.06608 | 2 | 0.32243 | 0.2699 | 0.3433 | 0.24861 |
3 | 0.14849 | 0.07907 | 0.15772 | 0.01748 | 3 | 0.33548 | 0.25662 | 0.36672 | 0.22435 |
4 | 0.15094 | 0.06835 | 0.15989 | –0.01305 | 4 | 0.342 | 0.24995 | 0.37841 | 0.21204 |
5 | 0.15205 | 0.0626 | 0.16079 | –0.03006 | 5 | 0.34525 | 0.24661 | 0.38426 | 0.20584 |
6 | 0.15257 | 0.05963 | 0.1612 | –0.03904 | 6 | 0.34688 | 0.24493 | 0.38718 | 0.20272 |
7 | 0.15283 | 0.05812 | 0.1614 | –0.04364 | 7 | 0.34769 | 0.24409 | 0.38864 | 0.20116 |
8 | 0.15296 | 0.05735 | 0.1615 | –0.04598 | 8 | 0.3481 | 0.24368 | 0.38937 | 0.20037 |
9 | 0.15302 | 0.05697 | 0.16154 | –0.04715 | 9 | 0.3483 | 0.24347 | 0.38974 | 0.19998 |
10 | 0.15305 | 0.05678 | 0.16157 | –0.04774 | 10 | 0.3484 | 0.24336 | 0.38992 | 0.19979 |
11 | 0.15307 | 0.05668 | 0.16158 | –0.04804 | 11 | 0.34846 | 0.24331 | 0.39001 | 0.19969 |
12 | 0.15307 | 0.05663 | 0.16158 | –0.04818 | 12 | 0.34848 | 0.24328 | 0.39006 | 0.19964 |
13 | 0.15308 | 0.05661 | 0.16159 | –0.04826 | 13 | 0.34849 | 0.24327 | 0.39008 | 0.19961 |
14 | 0.15308 | 0.0566 | 0.16159 | –0.04829 | 14 | 0.3485 | 0.24326 | 0.39009 | 0.1996 |
15 | 0.15308 | 0.05659 | 0.16159 | –0.04831 | 15 | 0.3485 | 0.24326 | 0.3901 | 0.1996 |
16 | 0.15308 | 0.05659 | 0.16159 | –0.04832 | 16 | 0.3485 | 0.24326 | 0.3901 | 0.19959 |
17 | 0.15308 | 0.05659 | 0.16159 | –0.04833 | 17 | 0.34851 | 0.24326 | 0.3901 | 0.19959 |
● Generally, ξwθ,α(Z[r:n])=ξwθ,−α(Z[n−r+1:n]) (similar to Remark 2.3, this symmetry relation can easily be proved theoretically). Also, the value of ξwθ,α(Z[r:n]) slowly increases as the value of n increases (see Tables 3 and 5).
● We can see that the value of ξwθ,−α(Z[n]) increases as n increases, the value of ξwθ,α(Z[n]) decreases as n decreases, and it almost stays the same when n=15 (see Table 4).
● At most, the value of ξwθ,−α(Z[n]) increases as n increases, but the value of ξwθ,α(Z[n]) decreases as n increases, and it almost stays the same when n=17 (see Table 6).
When doing a reliability analysis, one crucial quantity to consider is the component or system's residual lifetime. Assuming a component Z has survived for a certain amount of time t, its residual lifetime is Zt=(Z−t)|Z>t. This is the AWCRTE with residual lifetime Zt, which is dynamic and has order θ. Then, the dynamic AWCRTE in the rth concomitant based on the FGM family is given by
ξwθ,α(Z[r,n,m,k];t)=1θ−1∫∞tz(¯FZt[r,n,m,k](z)−¯FθZt[r,n,m,k](z))dz=1θ−1∫∞tz(¯F[r,n,m,k](z)¯F[r,n,m,k](t)−(¯F[r,n,m,k](z)¯F[r,n,m,k](t))θ)dz=1θ−1(m∗F[r,n,m,k](t)−∫∞tz(¯F[r,n,m,k](z)¯F[r,n,m,k](t))θdz). | (2.4) |
In the following theorem, we establish the connection between the dynamic AWCRTE and WMRL.
Theorem 2.3. Let Z be an absolutely continuous non-negative RV with WMRL function m∗F[r,n,m,k](t), and then,
ξwθ,α(Z[r,n,m,k];t)=E[m∗F[r,n,m,k](Z[r,n,m,k])¯Fθ−1[r,n,m,k](Z[r,n,m,k])|Z>t]¯Fθ−1[r,n,m,k](t). |
Proof. From (2.4), we have
ξwθ,α(Z[r,n,m,k];t)=1θ−1[m∗F[r,n,m,k](t)+1¯Fθ[r,n,m,k](t)∫∞t[ddz(m∗F[r,n,m,k](z)¯F[r,n,m,k](z))¯Fθ−1[r,n,m,k](z)]dz]=1θ−1[m∗F[r,n,m,k](t)+1¯Fθ[r,n,m,k](t)(−m∗F[r,n,m,k](t)¯Fθ[r,n,m,k](t)+(θ−1)∫∞tm∗F[r,n,m,k](z) |
ׯFθ−1[r,n,m,k](z)f[r,n,m,k](z)dz)]=1¯Fθ−1[r,n,m,k](t)∫∞tm∗F[r,n,m,k](z)¯Fθ−1[r,n,m,k](z)f[r,n,m,k](z)¯F[r,n,m,k](t)dz. | (2.5) |
The proof is complete.
Here, we study the WCPTE and its dynamic version in concomitant Z[r,n,m,k], from the FGM family, with numerical illustrations according to the sub-model OSs and record values.
Theorem 3.1. The WCPTE for the rth concomitant of m−GOSs based on the FGM family is given by
Pwθ,α(Z[r,n,m,k])=1θ−1(∫∞0zF[r,n,m,k](z)dz−N(θ)∑j=0(θj)(αC∗(r,n,m,k))jE[Uθ(1−U)jQ(U)q(U)]). |
Proof. Using (1.3) and (1.6), then the WCPTE is provided by
Pwθ,α(Z[r,n,m,k])=1θ−1∫∞0z(F[r,n,m,k](z)−Fθ[r,n,m,k](z))dz=1θ−1(∫∞0zF[r,n,m,k](z)dz−N(θ)∑j=0(θj)(αC∗(r,n,m,k))j×E[Z(1−FZ(Z))j(FZ(Z))θfZ(Z)])=1θ−1(∫∞0zF[r,n,m,k](z)dz−N(θ)∑j=0(θj)(αC∗(r,n,m,k))j×E[Uθ(1−U)jQ(U)q(U)]). | (3.1) |
Remark 3.1. Let F[r:n](z) be the DF of the rth concomitant Z[r:n]. By putting m=0 and k=1, then the WCPTE in the rth concomitant of the OSs is given by
Pwθ,α(Z[r:n])=1θ−1(∫∞0zF[r:n](z)dz−N(θ)∑j=0(θj)(αϕ(r:n))jE[Uθ(1−U)jQ(U)q(U)]). |
Remark 3.2. Let F[n](z) be the DF of the nth upper record. By putting k=1 and m=−1, then the WCPTE in the concomitant of the nth upper record value is given by
Pwθ,α(Z[n])=1θ−1(∫∞0zF[n](z)dz−N(θ)∑j=0(θj)(αδ(n))jE[Uθ(1−U)jQ(U)q(U)]). |
The link between the weighted mean past lifetime (WMPL), μ∗F[r,n,m,k](t)=∫t0zF[r,n,m,k](z)F[r,n,m,k](t)dz, F[r,n,m,k](t)>0, and the WCPTE is then determined.
Lemma 3.1. Let Z be a non-negative continuous RV with DF FZ(z), and then
Pwθ,α(Z[r,n,m,k])=E[μ∗F[r,n,m,k](Z[r,n,m,k])Fθ−1[r,n,m,k](Z[r,n,m,k])]. |
Proof. We have ddz(μ∗F[r,n,m,k](z)F[r,n,m,k](z))=zF[r,n,m,k](z). Using (3.1), we get
Pwθ,α(Z[r,n,m,k])=1θ−1[∫∞0ddz(μ∗F[r,n,m,k](z)F[r,n,m,k](z))(1−Fθ−1[r,n,m,k](z))dz]. |
Example 3.1. Assume that the uniform distribution (UD) of Y and Z results from the FGM family (i.e., FZ(z)=z,0≤z≤1). After simple algebra, we get
∫10zF[r,n,m,k](z)dz=13[1+(αC∗(r,n,m,k))4], |
and
E[Uθ(1−U)jQ(U)q(U)]=∫10z1+θ(1−z)jdz=β(1+j,2+θ). |
Then, based on (3.1), this leads to the following WCPTE in Z[r,n,m,k]:
Pwθ,α(Z[r,n,m,k])=1θ−1(13[1+(αC∗(r,n,m,k))4]−N(θ)∑j=0(θj)(αC∗(r,n,m,k))jβ(1+j,2+θ)), |
and
μ∗F[r,n,m,k](t)=1F[r,n,m,k](t)∫t0zF[r,n,m,k](z)dz=t33F[r,n,m,k](t)[1+αC∗(r,n,m,k)(4−3t4)]. |
We can easily show that
E[μ∗F[r,n,m,k](Z[r,n,m,k])Fθ−1[r,n,m,k](Z[r,n,m,k])] |
=1θ−1(13[1+αC∗(r,n,m,k)4]−N(θ)∑j=0(θj)(αC∗(r,n,m,k))jβ(1+j,2+θ)). |
Example 3.2. Let Y and Z be two variables that represent power distributions obtained from the FGM family (i.e., FZ(z)=zc,0≤z≤1,c>0). Then
∫10zF[r,n,m,k](z)dz=12+c[1+c(αC∗(r,n,m,k))2(c+1)], |
and
E[Uθ(1−U)jQ(U)q(U)]=∫10z1+cθ(1−zc)jdz=β(1+j,2c+θ)c. |
Thus, based on (3.1), this leads to the following WCPTE in Z[r,n,m,k]:
Pwθ,α(Z[r,n,m,k])=1θ−1(12+c[1+c(αC∗(r,n,m,k))2(c+1)]−N(θ)∑j=0(θj)(αC∗(r,n,m,k))jβ(1+j,2c+θ)c). |
Lemma 3.2. If Z=aX+b with a>0 and b≥0, then
Pwθ,α(Z[r,n,m,k])=a2Pwθ,α(X[r,n,m,k])+abPwθ,α(X[r,n,m,k]). |
Proof. The proof follows using the fact that FZ[r,n,m,k](u)=FX[r,n,m,k](u−ba).
Tables 7 and 8 show some aspects of the behavior of the WCPTE for Z[n] and Z[r:n] based on the FGM-UD. From Tables 7 and 8, the ensuing characteristics are extractable:
θ=4 | θ=9 | ||||||||
n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
2 | 0.0538 | 0.0558 | 0.0511 | 0.0552 | 2 | 0.0304 | 0.0295 | 0.0298 | 0.0286 |
3 | 0.0522 | 0.0555 | 0.0466 | 0.0536 | 3 | 0.0301 | 0.029 | 0.0281 | 0.0273 |
4 | 0.0513 | 0.0552 | 0.0437 | 0.0525 | 4 | 0.0299 | 0.0287 | 0.0268 | 0.0265 |
5 | 0.0508 | 0.0551 | 0.042 | 0.0519 | 5 | 0.0297 | 0.0285 | 0.0259 | 0.0262 |
6 | 0.0505 | 0.055 | 0.0411 | 0.0516 | 6 | 0.0296 | 0.0284 | 0.0255 | 0.026 |
7 | 0.0504 | 0.0549 | 0.0407 | 0.0514 | 7 | 0.0296 | 0.0284 | 0.0252 | 0.0259 |
8 | 0.0503 | 0.0549 | 0.0405 | 0.0513 | 8 | 0.0296 | 0.0283 | 0.0251 | 0.0258 |
9 | 0.0503 | 0.0549 | 0.0404 | 0.0513 | 9 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
10 | 0.0503 | 0.0549 | 0.0403 | 0.0513 | 10 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
11 | 0.0503 | 0.0549 | 0.0403 | 0.0512 | 11 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
12 | 0.0503 | 0.0549 | 0.0403 | 0.0512 | 12 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
13 | 0.0503 | 0.0549 | 0.0402 | 0.0512 | 13 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
14 | 0.0502 | 0.0549 | 0.0402 | 0.0512 | 14 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
15 | 0.0502 | 0.0549 | 0.0402 | 0.0512 | 15 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
16 | 0.0502 | 0.0549 | 0.0402 | 0.0512 | 16 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
θ=4 | θ=9 | ||||||||||||
n | r | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
4 | 1 | 0.0558 | 0.0553 | 0.0557 | 0.0532 | 0.0546 | 0.0495 | 0.0302 | 0.0304 | 0.0293 | 0.0303 | 0.0281 | 0.0293 |
4 | 2 | 0.0556 | 0.0555 | 0.0558 | 0.055 | 0.0559 | 0.0544 | 0.0303 | 0.0303 | 0.0301 | 0.0304 | 0.0298 | 0.0305 |
4 | 3 | 0.0555 | 0.0556 | 0.055 | 0.0558 | 0.0544 | 0.0559 | 0.0303 | 0.0303 | 0.0304 | 0.0301 | 0.0305 | 0.0298 |
4 | 4 | 0.0553 | 0.0558 | 0.0532 | 0.0557 | 0.0495 | 0.0546 | 0.0304 | 0.0302 | 0.0303 | 0.0293 | 0.0293 | 0.0281 |
6 | 1 | 0.0558 | 0.0552 | 0.0556 | 0.0525 | 0.0538 | 0.0473 | 0.0301 | 0.0304 | 0.0291 | 0.0302 | 0.0275 | 0.0284 |
6 | 2 | 0.0557 | 0.0554 | 0.0559 | 0.0541 | 0.0555 | 0.0521 | 0.0302 | 0.0304 | 0.0297 | 0.0304 | 0.0289 | 0.0301 |
6 | 3 | 0.0556 | 0.0555 | 0.0558 | 0.0552 | 0.0559 | 0.0548 | 0.0303 | 0.0303 | 0.0301 | 0.0304 | 0.03 | 0.0305 |
6 | 4 | 0.0555 | 0.0556 | 0.0552 | 0.0558 | 0.0548 | 0.0559 | 0.0303 | 0.0303 | 0.0304 | 0.0301 | 0.0305 | 0.03 |
6 | 5 | 0.0554 | 0.0557 | 0.0541 | 0.0559 | 0.0521 | 0.0555 | 0.0304 | 0.0302 | 0.0304 | 0.0297 | 0.0301 | 0.0289 |
6 | 6 | 0.0552 | 0.0558 | 0.0525 | 0.0556 | 0.0473 | 0.0538 | 0.0304 | 0.0301 | 0.0302 | 0.0291 | 0.0284 | 0.0275 |
8 | 1 | 0.0558 | 0.0552 | 0.0554 | 0.0521 | 0.0533 | 0.046 | 0.0301 | 0.0304 | 0.0289 | 0.0301 | 0.0271 | 0.0279 |
8 | 2 | 0.0557 | 0.0553 | 0.0558 | 0.0535 | 0.0549 | 0.0502 | 0.0302 | 0.0304 | 0.0294 | 0.0304 | 0.0283 | 0.0295 |
8 | 3 | 0.0557 | 0.0554 | 0.0559 | 0.0546 | 0.0557 | 0.0532 | 0.0302 | 0.0304 | 0.0299 | 0.0305 | 0.0293 | 0.0303 |
8 | 4 | 0.0556 | 0.0555 | 0.0557 | 0.0553 | 0.0558 | 0.055 | 0.0303 | 0.0303 | 0.0302 | 0.0304 | 0.0301 | 0.0304 |
8 | 5 | 0.0555 | 0.0556 | 0.0553 | 0.0557 | 0.055 | 0.0558 | 0.0303 | 0.0303 | 0.0304 | 0.0302 | 0.0304 | 0.0301 |
8 | 6 | 0.0554 | 0.0557 | 0.0546 | 0.0559 | 0.0532 | 0.0557 | 0.0304 | 0.0302 | 0.0305 | 0.0299 | 0.0303 | 0.0293 |
8 | 7 | 0.0553 | 0.0557 | 0.0535 | 0.0558 | 0.0502 | 0.0549 | 0.0304 | 0.0302 | 0.0304 | 0.0294 | 0.0295 | 0.0283 |
8 | 8 | 0.0552 | 0.0558 | 0.0521 | 0.0554 | 0.046 | 0.0533 | 0.0304 | 0.0301 | 0.0301 | 0.0289 | 0.0279 | 0.0271 |
10 | 1 | 0.0558 | 0.0551 | 0.0554 | 0.0518 | 0.053 | 0.045 | 0.0301 | 0.0304 | 0.0288 | 0.03 | 0.0269 | 0.0274 |
10 | 2 | 0.0558 | 0.0553 | 0.0557 | 0.053 | 0.0544 | 0.0489 | 0.0302 | 0.0304 | 0.0292 | 0.0303 | 0.0279 | 0.029 |
10 | 3 | 0.0557 | 0.0554 | 0.0559 | 0.054 | 0.0554 | 0.0518 | 0.0302 | 0.0304 | 0.0296 | 0.0304 | 0.0288 | 0.03 |
10 | 4 | 0.0557 | 0.0554 | 0.0559 | 0.0548 | 0.0559 | 0.0538 | 0.0302 | 0.0304 | 0.03 | 0.0305 | 0.0296 | 0.0304 |
10 | 5 | 0.0556 | 0.0555 | 0.0557 | 0.0554 | 0.0558 | 0.0551 | 0.0303 | 0.0303 | 0.0302 | 0.0304 | 0.0301 | 0.0304 |
10 | 6 | 0.0555 | 0.0556 | 0.0554 | 0.0557 | 0.0551 | 0.0558 | 0.0303 | 0.0303 | 0.0304 | 0.0302 | 0.0304 | 0.0301 |
10 | 7 | 0.0554 | 0.0557 | 0.0548 | 0.0559 | 0.0538 | 0.0559 | 0.0304 | 0.0302 | 0.0305 | 0.03 | 0.0304 | 0.0296 |
10 | 8 | 0.0554 | 0.0557 | 0.054 | 0.0559 | 0.0518 | 0.0554 | 0.0304 | 0.0302 | 0.0304 | 0.0296 | 0.03 | 0.0288 |
10 | 9 | 0.0553 | 0.0558 | 0.053 | 0.0557 | 0.0489 | 0.0544 | 0.0304 | 0.0302 | 0.0303 | 0.0292 | 0.029 | 0.0279 |
10 | 10 | 0.0551 | 0.0558 | 0.0518 | 0.0554 | 0.045 | 0.053 | 0.0304 | 0.0301 | 0.03 | 0.0288 | 0.0274 | 0.0269 |
● We see that the value of Pwθ,α(Z[n]) increases as n increases, the value of Pwθ,−α(Z[n]) decreases as n increases, and it almost stays the same when n=15 (see Table 7).
● Generally, Pwθ,α(Z[r:n])=Pwθ,−α(Z[n−r+1:n]). Also, the value of Pwθ,α(Z[r:n]) slowly increases at r≤(n2+1), and decreases at r≥(n2+1) (see Table 8).
Dynamic WCPTE measure
Dynamic WCPTE (DWCPTE) of an RV Z is the WCPTE of the RV [t−Z|Z<t],t>0. The DWCPTE variant from the FGM family in Z[r,n,m,k] is provided as
Pwθ,α(Z[r,n,m,k];t)=1θ−1∫t0z(FZt[r,n,m,k](z)−FθZt[r,n,m,k](z))dz=1θ−1∫t0z(F[r,n,m,k](z)F[r,n,m,k](t)−(F[r,n,m,k](z)F[r,n,m,k](t))θ)dz=1θ−1(μ∗F[r,n,m,k](t)−∫t0z(F[r,n,m,k](z)F[r,n,m,k](t))θdz). |
Theorem 3.2. Let Z be an absolutely continuous non-negative RV with WMPL function μ∗F[r,n,m,k](t), and then,
Pwθ,α(Z[r,n,m,k],t)=E[μ∗F[r,n,m,k](Z[r,n,m,k])Fθ−1[r,n,m,k](Z[r,n,m,k])|Z<t]Fθ−1[r,n,m,k](t). |
Proof. The Proof is similar to (2.5).
The issue of estimating the AWCRTE and WCPTE for concomitant Z[r,n,m,k] utilizing the empirical AWCRTE will be examined next. For every i=1,2,...,n, consider the FGM sequence (Yi,Zi). In accordance with (2.3), the empirical AWCRTE of the set Z[r,n,m,k] can be computed as follows:
ˆξwθ,α(Z[r,n,m,k])=1θ−1∫∞0z(ˆ¯F[r,n,m,k](z)−ˆ¯Fθ[r,n,m,k](z))dz=1θ−1n−1∑j=1∫z(j+1)z(j)z((1−ˆFZ(z))(1−αC∗(r,n,m,k)ˆFZ(z))−(1−ˆFZ(z))θ×(1−αC∗(r,n,m,k)ˆFZ(z))θ)dz=1θ−1n−1∑j=1Δj((1−jn)(1−αC∗(r,n,m,k)jn)−(1−jn)θ(1−αC∗(r,n,m,k)jn)θ), |
where for any DF F(.), the symbol ˆF(.) stands for the empirical DF of F(.) and Δj=Z2(j+1)−Z2(j)2, j=1,2...,n−1, are the sample spacings based on ordered random samples of Zj. Similarly, based on (3.1), the empirical WCPTE of the set Z[r,n,m,k] can be expressed as
ˆPwθ,α(Z[r,n,m,k])=1θ−1n−1∑j=1Δj(jn(1+αC∗(r,n,m,k)(1−jn))−(jn)θ(1+αC∗(r,n,m,k)(1−jn))θ). |
Example 4.1. Suppose that Z has a Rayleigh distribution with PDF fZ(z)=2λze−λz2,z>0,λ>0. Then, Z2 has ED with mean 1λ and Δj=Z2(j+1)−Z2(j)2 has ED with mean 12λ(n−j),j=1,2...,n−1. The expected value and variance of the empirical AWCRTE in ˆξwθ,α(Z[r,n,m,k]) are given by
E[ˆξwθ,α(Z[r,n,m,k])]=12λ(θ−1)n−1∑j=11(n−j)((1−jn)(1−αC∗(r,n,m,k)jn)−(1−jn)θ(1−αC∗(r,n,m,k)jn)θ), |
and
Var[ˆξwθ,α(Z[r,n,m,k])]=14λ2(θ−1)2n−1∑j=11(n−j)2((1−jn)(1−αC∗(r,n,m,k)jn)−(1−jn)θ(1−αC∗(r,n,m,k)jn)θ)2. |
Example 4.2. Let (Yi,Zi),i=1,2,...,n, be a random sample from the FGM family with PDF fZ(z)=2z,0<z<1. Then, Z2 has a standard uniform distribution. Furthermore, Δj=Z2(j+1)−Z2(j)2 follows the beta distribution with mean 12(n+1) and variance n4(n+1)2(n+2). The mean and variance of the empirical WCPTE in ˆPwθ,α(Z[r,n,m,k]) are given by
E[ˆPwθ,α(Z[r,n,m,k])]=12(n+1)(θ−1)n−1∑j=1(jn(1+αC∗(r,n,m,k)(1−jn))−(jn)θ(1+αC∗(r,n,m,k)(1−jn))θ), |
and
Var[ˆPwθ,α(Z[r,n,m,k])]=n4(n+1)2(n+2)(θ−1)2n−1∑j=1(jn(1+αC∗(r,n,m,k)(1−jn))−(jn)θ×(1+αC∗(r,n,m,k)(1−jn))θ)2. |
Both the AWCRTE and empirical AWCRTE in Z[r:n] from FGM-ED at n=50, as well as the WCPTE and empirical WCPTE in Z[r:n] from FGM-UD, are shown in Figures 2 and 3. Figures 2 and 3 can be utilized to ascertain the subsequent properties:
1) Mostly, the AWCRTE and the empirical AWCRTE are close together.
2) Generally, the WCPTE and the empirical WCPTE are very close.
As we have previously highlighted, Tsallis entropy is a generalization of Shannon entropy that works better with non-extensive systems. This makes it possible to analyze complex data, like those found in medical settings, such as electroencephalogram (EEG) signals used to diagnose epilepsy, in a more flexible and reliable manner. Tsallis entropy offers a more nuanced view of the system's non-linear and non-extensive dynamics, providing insights that may not be captured by Shannon entropy. EEG signals are an example of a complicated medical data set used in epilepsy diagnosis.
Using Tsallis entropy and a few of its associated measures that are covered in this article, we examine two medical data sets below. Tsallis entropy provides information that Shannon entropy might miss, despite the fact that it is challenging to practically verify the level of complexity and non-linearity of the handled systems.
Example 5.1. We use the data for 30 patients from [31]. Let Y refer to the first recurrence time and Z to the second recurrence time, as follows: Y is (8, 23, 22,447, 30, 24, 7,511, 53, 15, 7,141, 96,149,536, 17,185,292, 22, 15,152,402, 13, 39, 12,113,132, 34, 2,130) and Z is (16, 13, 28,318, 12,245, 9, 30,196,154,333, 8, 38, 70, 25, 4,117,114,159,108,362, 24, 66, 46, 40,201,156, 30, 25, 26). Reference [32] introduced FGM bivariate WD, and they discussed the estimation of the parameters of this model and found the maximum likelihood estimates (MLEs) of the shape and scale parameters (ηi,βi),i=1,2, as (0.75106,100.11993) and (0.92435,98.24665), respectively, and α=0.34801. To find a trust region or confidence intervals for the parameters of the FGM bivariate WD, we can further use, among many other methods, the fisher information matrix to derive asymptotic confidence intervals (which provides the standard method). However, the primary objective is to determine whether the FGM-WD model, after estimating its unknown parameters, adequately fits the given data and then examines the AWCRTE and WCRTE.
Table 9 examines the AWCRTE and WCRTE for FGM-WD (0.75106,100.11993, 0.92435, 98.24665). For the concomitants Z[r:30],r=1,2,14,15,29,30, i.e., the lower and upper extremes concomitants, and the central values concomitants. We observe that the ξwθ,α(Z[r:30]) and ζwθ,α(Z[r:30]) have maximum values at extremes. Figures 4 and 5 provide a fundamental statistical analysis illustrating the data.
θ | r | 1 | 2 | 14 | 15 | 29 | 30 |
4 | ξwθ,α=0.348(Z[r:30]) | 3958.94 | 3945.32 | 3781.93 | 3768.32 | 3577.69 | 3564.08 |
ζwθ,α=0.348(Z[r:30]) | 0.333164 | 0.333158 | 0.333068 | 0.333059 | 0.332893 | 0.332878 | |
9 | ξwθ,α=0.348(Z[r:30]) | 1484.6 | 1479.49 | 1418.22 | 1413.12 | 1341.64 | 1336.53 |
ζwθ,α=0.348(Z[r:30]) | 0.12499 | 0.124989 | 0.124983 | 0.124982 | 0.124968 | 0.124966 |
Example 5.2 (Cholesterol data set). This data set includes cholesterol levels measured at 5 and 25 weeks after treatment in 30 patients (see [33]). We fit the data based on FGM-WD (η1,β1; η2,β2). The MLEs of parameters are ˆη1=2.93893,ˆβ1=1.21085,ˆη2=2.589, ˆβ2=1.10099, and ˆα=1. Table 10 examines the AWCRTE and WCRTE for FGM-WD (2.93893, 1.21085, 2.589, 1.10099). For the concomitants Z[r:30],r=1,2,14,15,29,30, i.e., the lower and upper extremes concomitants, and the central values concomitants. We observe that the ξwθ[r:30](Z) and ζwθ[r:30](Z) have maximum values at extremes.
θ | r | 1 | 2 | 14 | 15 | 29 | 30 |
4 | ξwθ[r:30](Z) | 0.26141 | 0.253816 | 0.158299 | 0.149854 | 0.0190433 | 0.00855513 |
ζwθ[r:30](Z) | 0.308546 | 0.30781 | 0.294593 | 0.293007 | 0.258213 | 0.254584 | |
15 | ξwθ[r:30](Z) | 0.0594999 | 0.0579511 | 0.0392552 | 0.0376493 | 0.0123585 | 0.0101515 |
ζwθ[r:30](Z) | 0.0696003 | 0.0695212 | 0.0684611 | 0.0683249 | 0.0636092 | 0.0628719 | |
30 | ξwθ[r:30](Z) | 0.0291314 | 0.0283863 | 0.019546 | 0.0187973 | 0.00726299 | 0.00626894 |
ζwθ[r:30](Z) | 0.0340075 | 0.0339718 | 0.0336455 | 0.0336062 | 0.0320047 | 0.0317202 |
Among bivariate distributions, the FGM model is one of the most well-known and useful in recent years. The FGM bivariate distribution family has been widely accepted for many practical applications. Furthermore, the recently introduced redundant concomitants of OSs have regained popularity due to their usefulness in prediction and selection contexts. Another important concept that has gained attention is Tsallis entropy, which has been applied in various fields, including physics and chemistry. Every year, new applications of these measures are discovered. Some of the most significant related measures recently introduced are WCRTE and WCPTE. AWCRTE, WCPTE, and their dynamic counterparts for the concomitants of m-GOSs were derived from the FGM bivariate family. The characteristics of the proposed entropy measures were analyzed. These entropy measures were used to characterize the exponential and Pareto distributions. Applications of these findings were presented for OS and record values with uniform, Weibull, and exponential marginal distributions. Additionally, non-parametric estimators of AWCRTE and WCPTE were proposed for calculating the new information measures.
Two real-world data sets were evaluated for illustration, yielding satisfactory results. The parameter θ in Tsallis entropy controls the sensitivity of the entropy to rare events and affects the system's "distributional" properties. Specifically, when θ=1, it corresponds to the standard Shannon entropy, while θ>1 and θ<1 modify the sensitivity to the tail and central parts of the distribution, respectively.
To estimate θ empirically, the Tsallis model is typically fitted to data using methods such as maximum likelihood estimation, least squares fitting, or numerical optimization. For more details, see [34]. However, in this study, we did not address the estimation of θ. Instead, we selected different values of θ to demonstrate how the results change as the value of θ varies.
Validating the quality of estimates for unknown parameters in real data cases can be quite challenging and often requires specialized techniques like bootstrapping. However, this aspect is beyond the scope of our current study. It is important to note that parameter estimation is just one part of our statistical analysis. The primary objective is to determine whether the FGM-WD model, after estimating its unknown parameters, adequately fits the given data, which was confirmed in the examples we explored. In future work, where we will conduct an in-depth study of a specific practical situation, we plan to address this issue more thoroughly.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors are grateful to the editor and anonymous referees for their insightful comments and suggestions, which helped to improve the paper's presentation. This research was conducted under a project titled "Ongoing Research Funding Program", funded by King Saudi University, Riyadh, Saudi Arabia, under grant number (ORF-2025-969).
The authors declare no conflict of interest.
[1] | C. C. Chow, K. D. Hall, The dynamics of human body weight change, PLOS Comput. Biol., 4 (2008). |
[2] | WHO obesity and overweight, 2018. Available from: http://www.who.int/mediacentre/factsheets/fs311/en/. |
[3] | H. Gu, Sh. Shao, J. Liu, Zh. Fan, Y. Chen, J. Ni, et.al., Age- and sex-associated impacts of body mass index on stroke type risk: a 27-year prospective cohort study in a low-income population in china, Front. Neurol., 10 (2019). |
[4] | K. Cheng, Health oriented lifelong nutrition controls: preventing cardiovascular diseases caused by obesity, SM J. Nutr. Metab., 6 (2020), 1–5. |
[5] | K. Mc Namara, H. Alzubaidi, J. K. Jackson, Cardiovascular disease as a leading cause of death: how are pharmacists getting involved?, Integr. Pharm. Res. Pract., 8 (2019), 1–11. |
[6] | E. J. Benjamin, P. Muntner, A. Alonso, M. S. Bittencourt, C. W. Callaway, A. P. Carson, et. al., Heart disease and stroke statistics—2019 update: a report from the american heart association, Circulation, 139 (2019), 56–528 |
[7] | N. Taghizadeh,, H. M. Boezen, J. P. Schouten, C. P. Schröder, E. G. E. de Vries, J. M. Vonk, BMI and lifetime changes in BMI and cancer mortality risk, PLoS ONE, 10 (2015). |
[8] | K. Bhaskaran, I. Douglas, H. Forbes, I. dos Santos-Silva, D. A. Leon, and L. Smeeth, Bodymass index and risk of 22 specific cancers: a population-based cohort study of 5.24 million UK adults, Lancet, 384 (2014), 755–765. |
[9] | A. S. Barnes, The epidemic of obesity and diabetes, Tex. Heart I. J., 38 (2011), 142–144. |
[10] | A. Golay and J. Ybarra, Link between obesity and type 2 diabetes, Best Pract. Res. Cl. En., 19 (2005), 649–663. |
[11] | A. S. Al-Goblan, M. A. Al-Alfi, and M. Z. Khan, Mechanism linking diabetes mellitus and obesity, Diabetes Metab. Syndr. Obes., 7 (2014), 587–591. |
[12] | N. A. Roper, R. W. Bilous, W. F. Kelly, N. C. Unwin, and V. M. Connolly, Cause-specific mortality in a population with diabetes: south tees diabetes mortality study, Diabetes Care, 25 (2002), 43–48. |
[13] | M. Tancredi, A. Rosengren, A.-M. Svensson, M. Kosiborod, A. Pivodic, S. Gudbjörnsdottir, et. al., Excess mortality among persons with type 2 diabetes, New Engl. J. Med., 373 (2015), 1720–1732. |
[14] | M. Kalligeros, F. Shehadeh, E. K. Mylona, G. Benitez, C. G. Beckwith, P. A. Chan, et.al., Association of obesity with disease severity among patients with coronavirus disease 2019, Obesity, 28 (2020), 1200–1204. |
[15] | R. A. DeFronzo, R. C. Bonadonna, E. Ferrannini, Pathogenesis of NIDDM: a balanced overview, Diabetes Care, 15 (1992), 318–368. |
[16] | E. Archer, C. J. Lavie, and J. O. Hill, The contributions of 'diet', 'genes', and physical activity to the etiology of obesity: contrary evidence and consilience, Prog. Cardiovasc. Dis., 61 (2018), 89–102. |
[17] | A. D. Baron, G. Brechtel, P. Wallace, S. V. Edelman, Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans, Am. J. Physiol. Endoc. M., 255 (1988), 769–774. |
[18] | R. A. DeFronzo, D. Tripathy, Skeletal muscle insulin resistance is the primary defect in type 2 diabetes, Diabetes Care, 32 (2009), S157–S163. |
[19] | E. Archer, G. Pavela, S. McDonald, C. J. Lavie, and J. O. Hill, Cell-specific "competition for calories" drives asymmetric nutrient-energy partitioning, obesity, and metabolic diseases in human and non-human animals, Front. Physiol., 9 (2018), 1053. |
[20] | R. A. DeFronzo, The triumvirate: β−cell, muscle, liver: a collusion responsible for NIDDM, Diabetes, 37 (1988), 667–687. |
[21] | A. V. Greco, G. Mingrone, A. Giancaterini, M. Manco, M. Morroni, S. Cinti, et. al., Insulin resistance in morbid obesity: reversal with intramyocellular fat depletion, Diabetes, 51 (2002), 144–151. |
[22] | O. T. Hardy, M. P. Czech, S. Corvera, What causes the insulin resistance underlying obesity?, Curr. Opin. Endocrinol., 19 (2012), 81–87. |
[23] | C. Roberts-Toler, B. T. O'Neill, A. M. Cypess, Diet-induced obesity causes insulin resistance in mouse brown adipose tissue: dio causes bat insulin resistance, Obesity, 23 (2015), 1765–1770. |
[24] | R. Firth, P. Bell, H. Marsh, I. Hansen, R. Rizza, Postprandial hyperglycemia in patients with noninsulin-dependent diabetes mellitus, J. Clin. Invest., 77 (1986), 1525–1532. |
[25] | Understanding satiety: feeling full after a meal - British nutrition foundation, 2018. Available from: https://www.nutrition.org.uk/healthyliving/fuller/understanding-satiety-feeling-full-after-a-meal.html. |
[26] | E. Bilman, E. van Kleef, H. van Trijp, External cues challenging the internal appetite control system—overview and practical implications, Cr. Rev. Food Sci., 57 (2017), 2825–2834. |
[27] | EO. G. Edholm, J. G. Fletcher, E. M. Widdowson, R. A. McCance, The energy expenditure and food intake of individual men, Brit. J. Nutr., 9 (1955), 286–300. |
[28] | C. B. Saper, T. C. Chou, J. K. Elmquist, The need to feed: homeostatic and hedonic control of eating, Neuron, 36 (2002), 199–211. |
[29] | E. Mamontov, Modelling homeorhesis by ordinary differential equations, Math. Comput. Model., 45 (2007), 694–707. |
[30] | D. F. Marks, Homeostatic theory of obesity, Health Psychology Open, 2 (2015), 1–30. |
[31] | R. D. Palmiter, Is dopamine a physiologically relevant mediator of feeding behavior?, Trends Neurosci., 30 (2007), 375–381. |
[32] | D. E. Cummings, Ghrelin and the short- and long-term regulation of appetite and body weight, Physiol. Behav., 89 (2006), 71–84. |
[33] | J. Vartiainen, Ghrelin, obesity and type 2 diabetes: genetic, metabolic and epidemiological studies, Ph.D thesis, University of Oulu, 2009. |
[34] | I. Nilsson, C. Lindfors, S. O. Fetissov, T. Hökfelt, J. E. Johansen, Aberrant agouti-related protein system in the hypothalamus of the anx/anx mouse is associated with activation of microglia, J. Comp. Neurol., 507 (2008), 1128–1140. |
[35] | A. M. Chao, A. M. Jastrebo, M. A. White, C. M. Grilo, R. Sinha, Stress, cortisol, and other appetite-related hormones: prospective prediction of 6-month changes in food cravings and weight, Obesity (Silver Spring, Md.), 25 (2017), 713–720. |
[36] | A. Uchida, J. M. Zigman, and M. Perello, Ghrelin and eating behavior: evidence and insights from genetically-modified mouse models, Front. Neurosci., 7 (2013), 121. |
[37] | Y. Sun, S. Ahmed, R. G. Smith, Deletion of ghrelin impairs neither growth nor appetite, Mol. Cell. Biol., 23 (2003), 7973–7981. |
[38] | K. E. Wortley, K. D. Anderson, K. Garcia, J. D. Murray, L. Malinova, R. Liu, M. Moncrieffe, et.al., Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference, P. Natl. Acad. Sci. USA., 101 (2004), 8227–8232. |
[39] | K. E. Wortley, J.-P. del Rincon, J. D. Murray, K. Garcia, K. Iida, M. O. Thorner, et. al., Absence of ghrelin protects against early-onset obesity, J. Clin. Invest., 115 (2005), 3573–3578. |
[40] | B. De Smet, I. Depoortere, D. Moechars, Q. Swennen, B. Moreaux, K. Cryns, et. al., Energy homeostasis and gastric emptying in ghrelin knockout mice, J. Pharmacol. Exp. Ther., 316 (2006), 431–439. |
[41] | K. Dezaki, H. Sone, M. Koizumi, M. Nakata, M. Kakei, H. Nagai, et. al., Blockade of pancreatic islet-derived ghrelin enhances insulin secretion to prevent high-fat diet-induced glucose intolerance, Diabetes, 55 (2006), 3486–3493. |
[42] | P. T. Pfluger, H. Kirchner, S. Günnel, B. Schrott, D. Perez-Tilve, S. Fu, et. al., Simultaneous deletion of ghrelin and its receptor increases motor activity and energy expenditure, Am. J. Physiol. Gastrointest. Liver Physiol., 294 (2008), 610–618. |
[43] | T. Sato, M. Kurokawa, Y. Nakashima, T. Ida, T. Takahashi, Y. Fukue, et. al., Ghrelin deficiency does not influence feeding performance., Regul. Peptides, 145 (2008), 7–11. |
[44] | Y. Sun, P. Wang, H. Zheng, R. G. Smith, Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor, P. Natl. Acad. Sci. USA., 101 (2004), 4679–4684. |
[45] | A. Abizaid, Z.-W. Liu, Z. B. Andrews, M. Shanabrough, E. Borok, J. D. Elsworth, et. al., Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite, J. Clin. Invest., 116 (2006), 3229–3239. |
[46] | I. D. Blum, Z. Patterson, R. Khazall, E. W. Lamont, M. W. Sleeman, T. L. Horvath, et. al., Reduced anticipatory locomotor responses to scheduled meals in ghrelin receptor deficient mice, Neuroscience, 164 (2009), 351–359. |
[47] | L. Lin, P. K. Saha, X. Ma, I. O. Henshaw, L. Shao, B. H. J. Chang, E. D. Buras, et. al., Ablation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues, Aging Cell, 10 (2011), 996–1010. |
[48] | X. Ma, L. Lin, G. Qin, X. Lu, M. Fiorotto, V. D. Dixit, et. al., Ablations of ghrelin and ghrelin receptor exhibit differential metabolic phenotypes and thermogenic capacity during aging, PLOS ONE, 6 (2011), 1–10. |
[49] | M. D. Klok, S. Jakobsdottir, M. L. Drent, The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review, Obes. Rev., 8 (2007), 21–34. |
[50] | D. P. Figlewicz, S. B. Evans, J. Murphy, M. Hoen, D. G. Baskin, Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (vta/sn) of the rat, Brain Res., 964 (2003), 107–115. |
[51] | D. P. Figlewicz, P. Szot, M. Chavez, S. C. Woods, R. C. Veith, Intraventricular insulin increases dopamine transporter mrna in rat vta/substantia nigra, Brain Res., 644 (1994), 331–334. |
[52] | What is non-diabetic hypoglycemia?, 2019. Available from: https://www.webmd.com/diabetes/non-diabetic-hypoglycemia. |
[53] | Hypoglycemia: signs, risks, causes, and how to raise low blood sugar |everyday health, 2019. Available from: https://www.everydayhealth.com/hypoglycemia/guide/. |
[54] | Low blood sugar? 8 warning signs if you have diabetes, 2019. Available from: https://health.clevelandclinic.org/low-blood-sugar-8-warning-signs-diabetes/. |
[55] | Understanding hypoglycemia, 2019. Available from: https://www.diabetesselfmanagement.com/managing-diabetes/blood-glucose-management/understanding-hypoglycemia/. |
[56] | The effects of low blood sugar on your body, 2019. Available from: https://www.healthline.com/health/low-blood-sugar-effects-on-body. |
[57] | Hypoglycemia (low blood sugar): causes and treatment, 2019. Available from: https://www.medicalnewstoday.com/articles/166815.php. |
[58] | Non-diabetic hypoglycemia: symptoms, causes, diagnosis, treatment, 2019. Available from: https://www.webmd.com/diabetes/non-diabetic-hypoglycemia#1. |
[59] | Polyphagia: the relationship between hunger and diabetes, 2019. Available from: https://www.thediabetescouncil.com/. |
[60] | J. L. Jameson, L. J. D. Groot, Endocrinology: adult and pediatric, 7th edition, Elsevier Health Sciences, 2015. |
[61] | J. R. Hupp, M. R. Tucker, E. Ellis, Contemporary oral and maxillofacial surgery, 1st edition, Elsevier Health Sciences, 2013. |
[62] | D. A. Schatz, M. Haller, M. Atkinson, Type 1 diabetes, an issue of endocrinology and metabolism clinics of north america, 1st edition, Elsevier Health Sciences, 2010. |
[63] | L. A. Fleisher, M. F. Roizen, J. Roizen, Essence of anesthesia practice, 4th edition, Elsevier Health Sciences, 2017. |
[64] | G. Cheney, Medical management of gastrointestinal disorders, 1st edition, Year Book, 1950. |
[65] | M, Manthappa, How to manage your diabetes and lead a normal life, 1st edition, Peacock Books, 2009. |
[66] | R. K. Bernstein, Hunger–a common symptom of hypoglycemia, Diabetes Care, 16 (1993), 1049. |
[67] | C. Kenny, When hypoglycemia is not obvious: diagnosing and treating under-recognized and undisclosed hypoglycemia, Prim. Care Diabetes, 8 (2014), 3–11. |
[68] | J. Morales, D. Schneider, Hypoglycemia, Am. J. Med., 127 (2014), 17–24. |
[69] | L. C. Perlmuter, B. P. Flanagan, P. H. Shah, S. P. Singh, Glycemic control and hypoglycemia, Diabetes Care, 31 (2008), 2072–2076. |
[70] | B. Schultes, K. M. Oltmanns, W. Kern, H. L. Fehm, J. Born, A. Peters, Modulation of hunger by plasma glucose and metformin, J. Clin. Endocrinol. Metab., 88 (2003), 1133–1141. |
[71] | B. Schultes, A. Peters, M. Hallschmid, C. Benedict, V. Merl, K. M. Oltmanns, et. al., Modulation of food intake by glucose in patients with type 2 diabetes, Diabetes Care, 28 (2005), 2884–2889. |
[72] | H. A. J. Gielkens, M. Verkijk, W. F. Lam, C. B. H. W. Lamers, A. A. M. Masclee, Effects of hyperglycemia and hyperinsulinemia on satiety in humans, Metabolism, 47 (1998), 321–324. |
[73] | B. Schultes, A. K. Panknin, M. Hallschmid, K. Jauch-Chara, B.Wilms, F. de Courbière, et. al., Glycemic increase induced by intravenous glucose infusion fails to affect hunger, appetite, or satiety following breakfast in healthy men, Appetite, 105 (2016), 562–566. |
[74] | J. M. McMillin, Blood glucose, 3rd edition, Butterworths, Boston, 1990. |
[75] | J. Yokrattanasak, A. De Gaetano, S. Panunzi, P. Satiracoo, W. M. Lawton, Y. Lenbury, A simple, realistic stochastic model of gastric emptying, PLoS ONE, 11 (2016). |
[76] | L. K. Phillips, C. K. Rayner, K. L. Jones, M. Horowitz, Measurement of gastric emptying in diabetes, J. Diabetes Complicat., 28 (2014), 894–903. |
[77] | S. G. Cao, H. Wu, Z. Z. Cai, Dose-dependent effect of ghrelin on gastric emptying in rats and the related mechanism of action, The Kaohsiung J. Med. Sci., 32 (2016), 113–117. |
[78] | L. X. Yu, G. L. Amidon, A compartmental absorption and transit model for estimating oral drug absorption, Int. J. Pharm., 186 (1999), 119–125. |
[79] | K. Ogungbenro, L. Aarons, A semi-mechanistic gastric emptying pharmacokinetic model for (13)C-octanoic acid: an evaluation using simulation, Eur. J. Pharm. Sci., 45 (2012), 302–310. |
[80] | J. D. Berke, S. E. Hyman, Addiction, dopamine, and the molecular mechanisms of memory, Neuron, 25 (2000), 515–532. |
[81] | R. A. Wise, Addictive drugs and brain stimulation reward, Annu. Rev. Neurosci., 19 (1996), 319–340. |
[82] | P. M. Milner, Brain-stimulation reward: a review, Can. J. Psychol., 45 (1991), 1–36. |
[83] | J. M. Liebman, Discriminating between reward and performance: a critical review of intracranial self-stimulation methodology, Neurosci. Biobehav. R., 7 (1983), 45–72. |
[84] | R. A. Wise, Brain reward circuitry: insights from unsensed incentives, Neuron, 36 (2002), 229–240. |
[85] | A. E. Kelley, V. P. Bakshi, S. N. Haber, T. L. Steininger, M. J.Will, M. Zhang, Opioid modulation of taste hedonics within the ventral striatum, Physiol. Behav., 76 (2002), 365–377. |
[86] | R. Coccurello, M. Maccarrone, Hedonic eating and the "delicious circle": from lipid-derived mediators to brain dopamine and back, Front. Neurosci-Switz., 12 (2018). |
[87] | S. L. Teegarden, T. L. Bale, Decreases in dietary preference produce increased emotionality and risk for dietary relapse, Biol. Psychiat., 61 (2007), 1021–1029. |
[88] | B. G. Hoebel, N. M. Avena, M. E. Bocarsly, P. Rada, Natural addiction: a behavioral and circuit model based on sugar addiction in rats, J. Addict. Med., 3 (2009), 33–41. |
[89] | J.W. Dalley, B. J. Everitt, T.W. Robbins, Impulsivity, compulsivity, and top-down cognitive control, Neuron, 69 (2011), 680–694. |
[90] | E. N. Pothos, V. Davila, D. Sulzer, Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size, J. Neurosci., 18 (1998), 4106–4118. |
[91] | S. Fulton, P. Pissios, R. P. Manchon, L. Stiles, L. Frank, E. N. Pothos, et. al., Leptin regulation of the mesoaccumbens dopamine pathway, Neuron, 51 (2006), 811–822. |
[92] | K. Toshinai, Y. Date, N. Murakami, M. Shimada, M. S. Mondal, T. Shimbara, J. L. Guan, et. al., Ghrelin-induced food intake is mediated via the orexin pathway, Endocrinology, 144 (2003), 1506–1512. |
[93] | H. Y. Chen, M. E. Trumbauer, A. S. Chen, D. T. Weingarth, J. R. Adams, E. G. Frazier, et. al., Orexigenic action of peripheral ghrelin is mediated by neuropeptide y and agouti-related protein, Endocrinology, 145 (2004), 2607–2612. |
[94] | S. Luquet, C. T. Phillips, R. D. Palmiter, NPY/AgRP neurons are not essential for feeding responses to glucoprivation, Peptides, 28 (2007), 214–225. |
[95] | K. Bugarith, T. T. Dinh, A. J. Li, R. C. Speth, S. Ritter, Basomedial hypothalamic injections of neuropeptide Y conjugated to saporin selectively disrupt hypothalamic controls of food intake, Endocrinology, 146 (2005), 1179–1191. |
[96] | Y. Date, T. Shimbara, S. Koda, K. Toshinai, T. Ida, N. Murakami, et. al., Peripheral ghrelin transmits orexigenic signals through the noradrenergic pathway from the hindbrain to the hypothalamus, Cell Metab., 4 (2006), 323–331. |
[97] | M. L. Westwater, P. C. Fletcher, H. Ziauddeen, Sugar addiction: the state of the science, Eur. J. Nutr., 55 (2016), 55–69. |
[98] | P. C. Fletcher, P. J. Kenny, Food addiction: a valid concept?, Neuropsychopharmacol., 43 (2018), 2506–2513. |
[99] | T. L. Davidson, S. Jones, M. Roy, R. J. Stevenson, The cognitive control of eating and body weight: it's more than what you "think", Front. Psychol., 10 (2019). |
[100] | A. De Gaetano, T. A. Hardy, A novel fast-slow model of diabetes progression: insights into mechanisms of response to the interventions in the diabetes prevention program, PLOS ONE, 14 (2019), 1–39. |
[101] | J. Ha, L. S. Satin, A. S. Sherman, A mathematical model of the pathogenesis, prevention, and reversal of type 2 diabetes, Endocrinology, 157 (2016), 624–635. |
[102] | A. Borri, S. Panunzi, A. De Gaetano, A glycemia-structured population model, J. Math. Biol., 73 (2016), 39–62. |
[103] | P. Palumbo, S. Ditlevsen, A. Bertuzzi, A. De Gaetano, Mathematical modeling of the glucose-insulin system: a review, Math. Biosci., 244 (2013), 69–81. |
[104] | I. Ajmera, M. Swat, C. Laibe, N. L. Nov'ere, V. Chelliah, The impact of mathematical modeling on the understanding of diabetes and related complications, CPT: Pharmacometrics Syst. Pharmacol., 2 (2013). |
[105] | T. Hardy, E. Abu-Raddad, N. Porksen, A. De Gaetano, Evaluation of a mathematical model of diabetes progression against observations in the diabetes prevention program, Am. J. Physiol. Endoc. M., 303 (2012), 200–212. |
[106] | J. Ribbing, B. Hamrén, M. K. Svensson, M. O. Karlsson, A model for glucose, insulin, and beta-cell dynamics in subjects with insulin resistance and patients with type 2 diabetes, J. Clin. Pharmacol., 50 (2010), 861–872. |
[107] | A. De Gaetano, T. Hardy, B. Beck, E. Abu-Raddad, P. Palumbo, J. Bue-Valleskey, et. al., Mathematical models of diabetes progression, Am. J. Physiol. Endoc. M., 295 (2008), 1462–1479. |
[108] | C. C. Mason, R. L. Hanson, W. C. Knowler, Progression to type 2 diabetes characterized by moderate then rapid glucose increases, Diabetes, 56 (2007), 2054–2061. |
[109] | W. de Winter, J. DeJongh, T. Post, B. Ploeger, R. Urquhart, I. Moules, et. al., A mechanism-based disease progression model for comparison of long-term effects of pioglitazone, metformin and gliclazide on disease processes underlying type 2 diabetes mellitus, J. Pharmacokinet. Phar., 33 (2006), 313–343. |
[110] | A. Bagust, M. Evans, S. Beale, P. D. Home, A. S. Perry, M. Stewart, A model of long-term metabolic progression of type 2 diabetes mellitus for evaluating treatment strategies, PharmacoEconomics, 24 Suppl 1 (2006), 5–19. |
[111] | B. Topp, K. Promislow, G. deVries, R. M. Miura, D. T. Finegood, A model of beta-cell mass, insulin, and glucose kinetics: pathways to diabetes, J. Theor. Biol., 206 (2000), 605–619. |
[112] | T. Okura, R. Nakamura, Y. Fujioka, S. Kawamoto-Kitao, Y. Ito, K. Matsumoto, et. al., Body mass index ≥23 is a risk factor for insulin resistance and diabetes in japanese people: a brief report, PLOS ONE, 13 (2018). |
[113] | Y. H. Cheng, Y. C. Tsao, I. S. Tzeng, H. H. Chuang, W. C. Li, T. H. Tung, et. al., Body mass index and waist circumference are better predictors of insulin resistance than total body fat percentage in middle-aged and elderly Taiwanese, Medicine, 96 (2017). |
[114] | J. A. Hawley, Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance, Diabetes Metab. Res. Rev., 20 (2004), 383–393. |
[115] | R. N. Bergman, Y. Z. Ider, C. R. Bowden, C. Cobelli, Quantitative estimation of insulin sensitivity., Am. J. Physiol. Endoc. M., 236 (1979). |
[116] | G. Toffolo, R. N. Bergman, D. T. Finegood, C. R. Bowden, C. Cobelli, Quantitative estimation of beta cell sensitivity to glucose in the intact organism: a minimal model of insulin kinetics in the dog, Diabetes, 29 (1980), 979–990. |
[117] | C. Dalla Man, R. A. Rizza, C. Cobelli, Meal simulation model of the glucose-insulin system, IEEE trans. Biomed. Eng., 54 (2007), 1740–1749. |
[118] | W. Liu, F. Tang, Modeling a simplified regulatory system of blood glucose at molecular levels, J. Theor. Biol., 252 (2008), 608–620. |
[119] | W. Liu, C. Hsin, F. Tang, A molecular mathematical model of glucose mobilization and uptake, Math. Biosci., 221 (2009), 121–129. |
[120] | Z. Wu, C. K. Chui, G. S. Hong, S. Chang, Physiological analysis on oscillatory behavior of glucose–insulin regulation by model with delays, J. Theor. Biol., 280 (2011), 1–9. |
[121] | M. Lombarte, M. Lupo, G. Campetelli, M. Basualdo, A. Rigalli, Mathematical model of glucose–insulin homeostasis in healthy rats, Math. Biosci., 245 (2013), 269–277. |
[122] | A. C. Pratt, J. A. D. Wattis, A. M. Salter, Mathematical modelling of hepatic lipid metabolism, Math. Biosci., 262 (2015), 167–181. |
[123] | J. Girard, The incretins: from the concept to their use in the treatment of type 2 diabetes. part a: incretins: concept and physiological functions, Diabetes Metab., 34 (2008), 550–559. |
[124] | J. J. Holst, C. F. Deacon, T. Vilsbøll, T. Krarup, S. Madsbad, Glucagon-like peptide-1, glucose homeostasis and diabetes, Trends Mol. Med., 14 (2008), 161–168. |
[125] | J. J. Holst, T. Vilsbøll, C. F. Deacon, The incretin system and its role in type 2 diabetes mellitus, Mol. Cell. Endocrinol., 297 (2009), 127–136. |
[126] | K. Kazakos, Incretin effect: GLP-1, GIP, DPP4, Diabetes Res. Clin. Pr., 93 (2011), 32–36. |
[127] | J. J. Holst, C. F. Deacon, Is there a place for incretin therapies in obesity and prediabetes?, Trends Endocrin. Met., 24 (2013), 145–152. |
[128] | S. Masroor, M. G. J. van Dongen, R. Alvarez-Jimenez, K. Burggraaf, L. A. Peletier, M. A. Peletier, Mathematical modeling of the glucagon challenge test, J. Pharmacokinet. Phar., 46 (2019), 553–564. |
[129] | S. J. Russell, F. H. El-Khatib, M. Sinha, K. L. Magyar, K. McKeon, L. G. Goergen, et. al., Outpatient glycemic control with a bionic pancreas in type 1 diabetes, New Engl. J. Med., 371 (2014), 313–325. |
[130] | G. Zhao, D. Wirth, I. Schmitz, M. Meyer-Hermann, A mathematical model of the impact of insulin secretion dynamics on selective hepatic insulin resistance, Nat. Commun., 8 (2017), 1–10. |
[131] | A. De Gaetano, O. Arino, Mathematical modelling of the intravenous glucose tolerance test, J. Math. Biol., 40 (2000), 136–168. |
[132] | Y. Lenbury, S. Ruktamatakul, S. Amornsamarnkul, Modeling insulin kinetics: responses to a single oral glucose administration or ambulatory-fed conditions, Biosystems., 59 (2001), 15–25. |
[133] | A. Mukhopadhyay, A. De Gaetano, O. Arino, Modeling the intra-venous glucose tolerance test: a global study for a single-distributed-delay model, Discrete Contin. Dyn. S., 4 (2004), 407. |
[134] | U. Picchini, A. De Gaetano, S. Panunzi, S. Ditlevsen, G. Mingrone, A mathematical model of the euglycemic hyperinsulinemic clamp, Theor. Biol. Med. Model., 2 (2005), 44. |
[135] | U. Picchini, S. Ditlevsen, A. De Gaetano, Modeling the euglycemic hyperinsulinemic clamp by stochastic differential equations, J. Math. Biol., 53 (2006), 771–796. |
[136] | S. Panunzi, P. Palumbo, A. De Gaetano, A discrete single delay model for the intra-venous glucose tolerance test, Theor. Biol. Med. Model., 4 (2007), 35. |
[137] | D. V. Giang, Y. Lenbury, A. De Gaetano, P. Palumbo, Delay model of glucose–insulin systems: global stability and oscillated solutions conditional on delays, J. Math. Anal. Appl., 343 (2008), 996–1006. |
[138] | J. Li, M. Wang, A. De Gaetano, P. Palumbo, S. Panunzi, The range of time delay and the global stability of the equilibrium for an IVGTT model, Math. Biosci., 235 (2012), 128–137. |
[139] | P. Palumbo, P. Pepe, S. Panunzi, A. De Gaetano, Time-delay model-based control of the glucose-insulin system, by means of a state observer., Eur. J. Control, 6 (2012), 591–606. |
[140] | P. Toghaw, A. Matone, Y. Lenbury, A. De Gaetano, Bariatric surgery and T2DM improvement mechanisms: a mathematical model, Theor Biol Med Model, 9 (2012). |
[141] | A. De Gaetano, S. Panunzi, A. Matone, A. Samson, J. Vrbikova, B. Bendlova, et. al., Routine OGTT: a robust model including incretin effect for precise identification of insulin sensitivity and secretion in a single individual, PLOS ONE, 8 (2013). |
[142] | P. Palumbo, G. Pizzichelli, S. Panunzi, P. Pepe, A. De Gaetano, Model-based control of plasma glycemia: tests on populations of virtual patients, Math Biosci, 257 (2014), 2–10. |
[143] | K. Juagwon, Y. Lenbury, A. De Gaetano, P. Palumbo, Application of modified watanabe's approach for reconstruction of insulin secretion rate during OGTT under non-constant fraction of hepatic insulin extraction, Int. J. Math. Comp. Simul., 7 (2013), 304–313. |
[144] | A. De Gaetano, S. Panunzi, D. Eliopoulos, T. Hardy, G. Mingrone, Mathematical modeling of renal tubular glucose absorption after glucose load, PLOS ONE, 9 (2014). |
[145] | S. Sakulrang, E. J. Moore, S. Sungnul, A. De Gaetano, A fractional differential equation model for continuous glucose monitoring data, Adv. Differ. Equ-NY., (2017). |
[146] | P. Palumbo, A. De Gaetano, An islet population model of the endocrine pancreas, J. Math. Biol., 61 (2010), 171–205. |
[147] | A. De Gaetano, C. Gaz, P. Palumbo, S. Panunzi, A unifying organ model of pancreatic insulin secretion, PLOS ONE, 10 (2015). |
[148] | A. De Gaetano, C. Gaz, S. Panunzi, Consistency of compact and extended models of glucose-insulin homeostasis: the role of variable pancreatic reserve, PLOS ONE, 14 (2019). |
[149] | T. Hardy, E. Abu-Raddad, N. Porksen, A. De Gaetano, Evaluation of a mathematical model of diabetes progression against observations in the diabetes prevention program, Am. J. Physiol. Endocrinol. Metab., 303 (2012), 200–212. |
[150] | A. Hinsberger, B. K. Sandhu, Digestion and absorption, Current Paediatrics, 14 (2004), 605–611. |
[151] | A. D. Jackson, J. McLaughlin, Digestion and absorption, Surgery, 27 (2009), 231–236. |
[152] | I. Campbell, Digestion and absorption, Anaesth. Intens. Care Med., 13 (2012), 62–63. |
[153] | P. R. Kiela, F. K. Ghishan, Physiology of intestinal absorption and secretion, Best Practice & Research Clinical Gastroenterology, 30 (2016), 145–159. |
[154] | A. B. Strathe, A. Danfær, A. Chwalibog, A dynamic model of digestion and absorption in pigs, Anim. Feed Sci. Tech., 143 (2008), 328–371. |
[155] | S. Salinari, A. Bertuzzi, G. Mingrone, Intestinal transit of a glucose bolus and incretin kinetics: a mathematical model with application to the oral glucose tolerance test, Am. J. Physiol. Endoc. M., 300 (2011), 955–965. |
[156] | M. Taghipoor, G. Barles, C. Georgelin, J. R. Licois, P. Lescoat, Digestion modeling in the small intestine: impact of dietary fiber, Math. Biosci., 258 (2014), 101–112. |
[157] | E. D. Lehmann, T. Deutsch, , A physiological model of glucose-insulin interaction in type 1 diabetes mellitus, J. Biomed. Eng., 14 (1992), 235–242. |
[158] | A. Roy, R. S. Parker, Dynamic modeling of exercise effects on plasma glucose and insulin levels, J. Diabetes Sci. Tech., 1 (2007), 338–347. |
[159] | R. Hovorka, V. Canonico, L. J. Chassin, U. Haueter, M. Massi-Benedetti, M. O. Federici, et. al., Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes, Physiol. Meas., 25 (2004), 905–920. |
[160] | G. M. Barnwell, F. S. Stafford, Mathematical model for decision-making neural circuits controlling food intake, B. Psychonomic Soc., 5 (1975), 473–476. |
[161] | R. C. Boston, P. J. Moate, K. C. Allison, J. D. Lundgren, A. J. Stunkard, Modeling circadian rhythms of food intake by means of parametric deconvolution: results from studies of the night eating syndrome, Am. J. Clin. Nutr., 87 (2008), 1672–1677. |
[162] | F. Cameron, G. Niemeyer, B. A. Buckingham, Probabilistic evolving meal detection and estimation of meal total glucose appearance, J. Diabetes Sci. Tech., 3 (2009), 1022–1030. |
[163] | N. P. Balakrishnan, L. Samavedham, G. P. Rangaiah, Personalized mechanistic models for exercise, meal and insulin interventions in children and adolescents with type 1 diabetes, J. Theor. Biol., 357 (2014), 62–73. |
[164] | M. Jacquier, F. Crauste, C. O. Soulage, H. A. Soula, A predictive model of the dynamics of body weight and food intake in rats submitted to caloric restrictions, PLOS ONE, 9 (2014). |
[165] | A. L. Murillo, M. Safan, C. Castillo-Chavez, E. D. C. Phillips, D. Wadhera, Modeling eating behaviors: the role of environment and positive food association learning via a ratatouille effect, Math. Biosci. Eng., 13 (2016), 841–855. |
[166] | NHANES 2015-2016 dietary data, 2019. Available from: https://wwwn.cdc.gov/Nchs/Nhanes/Search/DataPage.aspx?Component=Dietary&CycleBeginYear=201. |
[167] | D. E. Cummings, J. Q. Purnell, R. S. Frayo, K. Schmidova, B. E. Wisse, D. S. Weigle, A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans, Diabetes, 50 (2001), 1714–1719. |
[168] | P. Toghaw, A. Matone, Y. Lenbury, A. De Gaetano, Bariatric surgery and T2DM improvement mechanisms: a mathematical model, Theor. Biol. Med. Model., 9 (2012). |
[169] | L. Beaugerie, B. Flourié, P. Marteau, P. Pellier, C. Franchisseur, J. C. Rambaud, Digestion and absorption in the human intestine of three sugar alcohols, Gastroenterology, 99 (1990), 717–723. |
[170] | Y. Tsuchida, S. Hata, Y. Sone, Effects of a late supper on digestion and the absorption of dietary carbohydrates in the following morning, J. Physiol. Anthropol., 32 (2013). |
[171] | R. M. Atkinson, B. J. Parsons, D. H. Smyth, The intestinal absorption of glucose, J. Physiol., 135 (1957), 581–589. |
[172] | Big mac®: calories and nutrition |mcdonald's, 2019. Available from: https://www.mcdonalds.com/us/en-us/product/big-mac.htm. |
[173] | The nutritional content of beer, 2018. Available from: http://www.dummies.com/food-drink/drinks/beer/ the-nutritional-content-of-beer/. |
[174] | T. M. S. Wolever, Carbohydrate and the regulation of blood glucose and metabolism, Nutr. Rev., 61 (2003), 40–48. |
[175] | P. J. Randle, P. B. Garland, C. N. Hales, E. A. Newsholme, The glucose fatty-acid cycle. its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus, Lancet, 1 (1963), 785–789. |
[176] | S. C.Walpole, D. Prieto-Merino, P. Edwards, J. Cleland, G. Stevens, I. Roberts, The weight of nations: an estimation of adult human biomass, BMC Public Health, 12 (2012), 439. |
[177] | M. E. Clegg, M. Pratt, O. Markey, A. Shafat, C. J. K. Henry, Addition of different fats to a carbohydrate food: impact on gastric emptying, glycaemic and satiety responses and comparison with in vitro digestion, Food Res. Int., 48 (2012), 91–97. |
[178] | J. G. Moore, P. E. Christian, J. A. Brown, C. Brophy, F. Datz, A. Taylor, et. al., Influence of meal weight and caloric content on gastric emptying of meals in man, Digest. Dis. Sci., 29 (1984), 513–519. |
[179] | L. Achour, S. Méance, A. Briend, Comparison of gastric emptying of a solid and a liquid nutritional rehabilitation food, Eur. J. Clin. Nutr., 55 (2001), 769–772. |
[180] | I. Locatelli, A. Mrhar, M. Bogataj, Gastric emptying of pellets under fasting conditions: a mathematical model, Pharm. Res., 26 (2009), 1607–1617. |
[181] | Fasting blood sugar levels, 2017. Available from: https://www.diabetes.co.uk. |
[182] | R Core Team, R: a language and environment for statistical computing, 1st edition, Vienna, Austria, 2019. |
[183] | M. Macht, G. Simon, Emotions and eating in everyday life, Appetite, 35 (2000), 65–71. |
[184] | L. Canetti, E. Bachar, E. M. Berry, Food and emotion, Behav. Process., 60 (2002), 157–164. |
[185] | S. Peciña, K. S. Smith, Hedonic and motivational roles of opioids in food reward: implications for overeating disorders, Pharmacol. Biochem. Behav., 97 (2010), 34–46. |
[186] | S. Fulton, Appetite and reward, Front. Neuroendocrin., 31 (2010), 85–103. |
[187] | A. H. Sam, R. C. Troke, T. M. Tan, G. A. Bewick, The role of the gut/brain axis in modulating food intake, Neuropharmacology, 63 (2012), 46–56. |
[188] | E. L. Gibson, Emotional influences on food choice: sensory, physiological and psychological pathways, Physiol. Behav., 89 (2006), 53–61. |
[189] | D. A. Zellner, S. Loaiza, Z. Gonzalez, J. Pita, J. Morales, D. Pecora, et. al., Food selection changes under stress, Physiol. Behav., 87 (2006), 789–793. |
[190] | P. M. A. Desmet, H. N. J. Schifferstein, Sources of positive and negative emotions in food experience, Appetite, 50 (2008), 290–301. |
[191] | M. Macht, How emotions affect eating: a five-way model, Appetite, 50 (2008), 1–11. |
[192] | L. E. Stoeckel, R. E. Weller, E. W. Cook, D. B. Twieg, R. C. Knowlton, J. E. Cox, Widespread reward-system activation in obese women in response to pictures of high-calorie foods, NeuroImage, 41 (2008), 636–647. |
[193] | E. Näslund, P. M. Hellström, Appetite signaling: from gut peptides and enteric nerves to brain, Physiol. Behav., 92 (2007), 256–262. |
[194] | L. Brondel, M. Romer, V. Van Wymelbeke, N. Pineau, T. Jiang, C. Hanus, et. al., Variety enhances food intake in humans: role of sensory-specific satiety, Physiol. Behav., 97 (2009), 44–51. |
[195] | R. C. Havermans, N. Siep, A. Jansen, Sensory-specific satiety is impervious to the tasting of other foods with its assessment, Appetite, 55 (2010), 196–200. |
[196] | G. Finlayson, A. Arlotti, M. Dalton, N. King, J. E. Blundell, Implicit wanting and explicit liking are markers for trait binge eating. a susceptible phenotype for overeating, Appetite, 57 (2011), 722–728. |
[197] | R. J. Stevenson, M. Mahmut, K. Rooney, Individual differences in the interoceptive states of hunger, fullness and thirst, Appetite, 95 (2015), 44–57. |
[198] | H. Wang, J. Li, Y. kuang, Mathematical modeling and qualitative analysis of insulin therapies, Math. Biosci., 210 (2007), 17–33. |
[199] | D. M. Thomas, A. Ciesla, J. A. Levine, J. G. Stevens, C. K. Martin, A mathematical model of weight change with adaptation, Math. Biosci. Eng., 6 (2009), 873–887. |
[200] | C. L. Chen, H. W. Tsai, Modeling the physiological glucose–insulin system on normal and diabetic subjects, Comput. Meth. Prog. Bio., 97 (2010), 130–140. |
[201] | C. C. Y. Noguchi, E. Furutani, S. Sumi, Enhanced mathematical model of postprandial glycemic excursion in diabetics using rapid-acting insulin, 2012 Proceedings of SICE Annual Conference (SICE), Akita, (2012), 566–571. |
[202] | H. Zheng, H. R. Berthoud, Eating for pleasure or calories, Curr. Opin. Pharmacol., 7 (2007), 607–612. |
[203] | O. B. Chaudhri, C. J. Small, S. R. Bloom, The gastrointestinal tract and the regulation of appetite, Drug Discov. Today, 2 (2005), 289–294. |
[204] | B. M. McGowan, S. R. Bloom, Gut hormones regulating appetite and metabolism, Drug Discov. Today, 4 (2007), 147–151. |
[205] | B. Meister, Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight, Physiol. Behav., 92 (2007), 263–271. |
[206] | S. Higgs, J. Thomas, Social influences on eating, Curr. Opin. Behav. Sci., 9 (2016), 1–6. |
[207] | S. Griffioen-Roose, G. Finlayson, M. Mars, J. E. Blundell, C. de Graaf, Measuring food reward and the transfer effect of sensory specific satiety, Appetite, 55 (2010), 648–655. |
[208] | K. C. Berridge, T. E. Robinson, J. W. Aldridge, Dissecting components of reward: 'liking', 'wanting', and learning, Curr. Opin. Pharmacol., 9 (2009), 65–73. |
[209] | K. C. Berridge, 'liking' and 'wanting' food rewards: brain substrates and roles in eating disorders, Physiol. Behav., 97 (2009), 537–550. |
[210] | K. C. Berridge, C. Y. Ho, J. M. Richard, A. G. DiFeliceantonio, The tempted brain eats: pleasure and desire circuits in obesity and eating disorders, Brain Res., 1350 (2010), 43–64. |
[211] | R. C. Havermans, "You say it's liking, i say it's wanting …". on the difficulty of disentangling food reward in man, Appetite, 57 (2011), 286–294. |
[212] | R. C. Havermans, How to tell where 'liking' ends and 'wanting' begins, Appetite, 58 (2012), 252–255. |
[213] | G. Finlayson, M. Dalton, Current progress in the assessment of 'liking' vs. 'wanting' food in human appetite. comment on "you say it's liking, i say it's wanting...". on the difficulty of disentangling food reward in man, Appetite, 58 (2012), 373–378; 252–255. |
[214] | P. W. J. Maljaars, H. P. F. Peters, D. J. Mela, A. a. M. Masclee, Ileal brake: a sensible food target for appetite control. a review, Physiol. Behav., 95 (2008), 271–281. |
[215] | H. S. Shin, J. R. Ingram, A. T. McGill, S. D. Poppitt, Lipids, CHOs, proteins: can all macronutrients put a 'brake' on eating?, Physiol. Behav., 120 (2013), 114–123. |
[216] | A. M. Wren, L. J. Seal, M. A. Cohen, A. E. Brynes, G. S. Frost, K. G. Murphy, et. al., Ghrelin enhances appetite and increases food intake in humans, J. Clin. Endocrinol. Metab., 86 (2001), 5992. |
[217] | K. A. Levin, Study design III: cross-sectional studies, Evid. Based Dent., 7 (2006), 24–25. |
[218] | J. Tack, K. J. Lee, Pathophysiology and treatment of functional dyspepsia, J. Clin. Gastroenterol., 39 (2005), 211–216. |
[219] | S. A. Murray, M. Kendall, K. Boyd, A. Sheikh, Illness trajectories and palliative care, BMJ, 330 (2005), 1007–1011. |
[220] | M. Binn, C. Albert, A. Gougeon, H. Maerki, B. Coulie, M. Lemoyne, et. al., Ghrelin gastrokinetic action in patients with neurogenic gastroparesis, Peptides, 27 (2006), 1603–1606. |
[221] | A. Abizaid, T. L. Horvath, Brain circuits regulating energy homeostasis, Regul. Peptides, 149 (2008), 3–10. |
[222] | M. Traebert, T. Riediger, S. Whitebread, E. Scharrer, H. A. Schmid, Ghrelin acts on leptin-responsive neurones in the rat arcuate nucleus, J. Neuroendocrinol., 14 (2002), 580–586. |
[223] | Y. C. L. Tung, A. K. Hewson, S. L. Dickson, Actions of leptin on growth hormone secretagogue-responsive neurones in the rat hypothalamic arcuate nucleus recorded in vitro, J. Neuroendocrinol., 13 (2001), 209–215. |
[224] | N. Sáinz, J. Barrenetxe, M. J. Moreno-Aliaga, J. A. Martínez, Leptin resistance and diet-induced obesity: central and peripheral actions of leptin, Metabolism, 64 (2015), 35–46. |
[225] | NHANES - participants - why I was selected, 2019. Available from: https://www.cdc.gov/nchs/nhanes/participant/participant-selected.htm. |
[226] | E. Archer, G. A. Hand, S. N. Blair, Validity of U.S. nutritional surveillance: national health and nutrition examination survey caloric energy intake data, 1971–2010, PLoS ONE, 8 (2013). |
[227] | E. Archer, G. Pavela, C. J. Lavie, The inadmissibility of what we eat in America and NHANES dietary data in nutrition and obesity research and the scientific formulation of national dietary guidelines, Mayo Clin. Proc., 90 (2015), 911–926. |
[228] | E. Archer, C. J. Lavie, J. O. Hill, The failure to measure dietary intake engendered a fictional discourse on diet-disease relations, Front. Nutr., 5 (2018), 105. |
θ=4,β=1.2,η=0.5 | θ=9,β=1.5,η=0.2 | ||||||||||||
n | r | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
4 | 1 | 0.31693 | 0.32098 | 0.30563 | 0.32664 | 0.28891 | 0.32991 | 0.12492 | 0.12496 | 0.12469 | 0.12499 | 0.12405 | 0.12501 |
4 | 2 | 0.31838 | 0.31973 | 0.31536 | 0.32213 | 0.31187 | 0.32417 | 0.12493 | 0.12495 | 0.12489 | 0.12497 | 0.12484 | 0.12498 |
4 | 3 | 0.31973 | 0.31838 | 0.32213 | 0.31536 | 0.32417 | 0.31187 | 0.12495 | 0.12493 | 0.12497 | 0.12489 | 0.12498 | 0.12484 |
4 | 4 | 0.32098 | 0.31693 | 0.32664 | 0.30563 | 0.32991 | 0.28891 | 0.12496 | 0.12492 | 0.12499 | 0.12469 | 0.12501 | 0.12405 |
6 | 1 | 0.31649 | 0.32132 | 0.3022 | 0.3276 | 0.27969 | 0.3308 | 0.12491 | 0.12496 | 0.12459 | 0.12499 | 0.12352 | 0.12503 |
6 | 2 | 0.31757 | 0.32046 | 0.31021 | 0.32494 | 0.30036 | 0.32803 | 0.12492 | 0.12495 | 0.1248 | 0.12498 | 0.12453 | 0.125 |
6 | 3 | 0.31858 | 0.31954 | 0.31649 | 0.32132 | 0.31417 | 0.3229 | 0.12493 | 0.12494 | 0.12491 | 0.12496 | 0.12488 | 0.12497 |
6 | 4 | 0.31954 | 0.31858 | 0.32132 | 0.31649 | 0.3229 | 0.31417 | 0.12494 | 0.12493 | 0.12496 | 0.12491 | 0.12497 | 0.12488 |
6 | 5 | 0.32046 | 0.31757 | 0.32494 | 0.31021 | 0.32803 | 0.30036 | 0.12495 | 0.12492 | 0.12498 | 0.1248 | 0.125 | 0.12453 |
6 | 6 | 0.32132 | 0.31649 | 0.3276 | 0.3022 | 0.3308 | 0.27969 | 0.12496 | 0.12491 | 0.12499 | 0.12459 | 0.12503 | 0.12352 |
8 | 1 | 0.31625 | 0.3215 | 0.30015 | 0.32808 | 0.27397 | 0.33119 | 0.12491 | 0.12496 | 0.12452 | 0.125 | 0.12313 | 0.12505 |
8 | 2 | 0.3171 | 0.32084 | 0.30688 | 0.32623 | 0.29214 | 0.32949 | 0.12492 | 0.12496 | 0.12473 | 0.12499 | 0.1242 | 0.12501 |
8 | 3 | 0.31791 | 0.32016 | 0.31249 | 0.32385 | 0.30563 | 0.32664 | 0.12493 | 0.12495 | 0.12485 | 0.12498 | 0.12469 | 0.12499 |
8 | 4 | 0.31869 | 0.31944 | 0.3171 | 0.32084 | 0.31536 | 0.32213 | 0.12494 | 0.12494 | 0.12492 | 0.12496 | 0.12489 | 0.12497 |
8 | 5 | 0.31944 | 0.31869 | 0.32084 | 0.3171 | 0.32213 | 0.31536 | 0.12494 | 0.12494 | 0.12496 | 0.12492 | 0.12497 | 0.12489 |
8 | 6 | 0.32016 | 0.31791 | 0.32385 | 0.31249 | 0.32664 | 0.30563 | 0.12495 | 0.12493 | 0.12498 | 0.12485 | 0.12499 | 0.12469 |
8 | 7 | 0.32084 | 0.3171 | 0.32623 | 0.30688 | 0.32949 | 0.29214 | 0.12496 | 0.12492 | 0.12499 | 0.12473 | 0.12501 | 0.1242 |
8 | 8 | 0.3215 | 0.31625 | 0.32808 | 0.30015 | 0.33119 | 0.27397 | 0.12496 | 0.12491 | 0.125 | 0.12452 | 0.12505 | 0.12313 |
10 | 1 | 0.31609 | 0.32162 | 0.29879 | 0.32836 | 0.27008 | 0.33141 | 0.1249 | 0.12496 | 0.12448 | 0.125 | 0.12284 | 0.12507 |
10 | 2 | 0.31679 | 0.32109 | 0.30457 | 0.32696 | 0.28612 | 0.33022 | 0.12491 | 0.12496 | 0.12466 | 0.12499 | 0.1239 | 0.12502 |
10 | 3 | 0.31747 | 0.32054 | 0.30956 | 0.32522 | 0.29879 | 0.32836 | 0.12492 | 0.12495 | 0.12479 | 0.12499 | 0.12448 | 0.125 |
10 | 4 | 0.31813 | 0.31996 | 0.31384 | 0.3231 | 0.30862 | 0.32559 | 0.12493 | 0.12495 | 0.12487 | 0.12497 | 0.12477 | 0.12499 |
10 | 5 | 0.31876 | 0.31937 | 0.31747 | 0.32054 | 0.31609 | 0.32162 | 0.12494 | 0.12494 | 0.12492 | 0.12495 | 0.1249 | 0.12496 |
10 | 6 | 0.31937 | 0.31876 | 0.32054 | 0.31747 | 0.32162 | 0.31609 | 0.12494 | 0.12494 | 0.12495 | 0.12492 | 0.12496 | 0.1249 |
10 | 7 | 0.31996 | 0.31813 | 0.3231 | 0.31384 | 0.32559 | 0.30862 | 0.12495 | 0.12493 | 0.12497 | 0.12487 | 0.12499 | 0.12477 |
10 | 8 | 0.32054 | 0.31747 | 0.32522 | 0.30956 | 0.32836 | 0.29879 | 0.12495 | 0.12492 | 0.12499 | 0.12479 | 0.125 | 0.12448 |
10 | 9 | 0.32109 | 0.31679 | 0.32696 | 0.30457 | 0.33022 | 0.28612 | 0.12496 | 0.12491 | 0.12499 | 0.12466 | 0.12502 | 0.1239 |
10 | 10 | 0.32162 | 0.31609 | 0.32836 | 0.29879 | 0.33141 | 0.27008 | 0.12496 | 0.1249 | 0.125 | 0.12448 | 0.12507 | 0.12284 |
θ=4,β=1.2,η=0.5 | θ=9,β=1.5,η=0.2 | ||||||||
n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
2 | 0.32569 | 0.30839 | 0.3289 | 0.29591 | 2 | 0.12499 | 0.12476 | 0.125 | 0.12437 |
3 | 0.32787 | 0.30106 | 0.33103 | 0.27653 | 3 | 0.125 | 0.12456 | 0.12504 | 0.12331 |
4 | 0.32874 | 0.29681 | 0.33168 | 0.26429 | 4 | 0.125 | 0.1244 | 0.1251 | 0.12237 |
5 | 0.32913 | 0.29453 | 0.33193 | 0.25746 | 5 | 0.125 | 0.12431 | 0.12516 | 0.12176 |
6 | 0.32931 | 0.29335 | 0.33204 | 0.25386 | 6 | 0.125 | 0.12426 | 0.12519 | 0.12141 |
7 | 0.3294 | 0.29274 | 0.3321 | 0.252 | 7 | 0.125 | 0.12423 | 0.12521 | 0.12122 |
8 | 0.32945 | 0.29244 | 0.33212 | 0.25107 | 8 | 0.125 | 0.12422 | 0.12522 | 0.12112 |
9 | 0.32947 | 0.29229 | 0.33213 | 0.25059 | 9 | 0.12501 | 0.12421 | 0.12522 | 0.12107 |
10 | 0.32948 | 0.29221 | 0.33214 | 0.25036 | 10 | 0.12501 | 0.12421 | 0.12522 | 0.12105 |
11 | 0.32948 | 0.29217 | 0.33214 | 0.25024 | 11 | 0.12501 | 0.1242 | 0.12522 | 0.12104 |
12 | 0.32949 | 0.29215 | 0.33214 | 0.25018 | 12 | 0.12501 | 0.1242 | 0.12523 | 0.12103 |
13 | 0.32949 | 0.29215 | 0.33214 | 0.25015 | 13 | 0.12501 | 0.1242 | 0.12523 | 0.12103 |
14 | 0.32949 | 0.29214 | 0.33215 | 0.25013 | 14 | 0.12501 | 0.1242 | 0.12523 | 0.12103 |
15 | 0.32949 | 0.29214 | 0.33215 | 0.25013 | 15 | 0.12501 | 0.1242 | 0.12523 | 0.12102 |
16 | 0.32949 | 0.29214 | 0.33215 | 0.25012 | 16 | 0.12501 | 0.1242 | 0.12523 | 0.12102 |
17 | 0.32949 | 0.29214 | 0.33215 | 0.25012 | 17 | 0.12501 | 0.1242 | 0.12523 | 0.12102 |
θ=4,λ=0.5 | θ=9,λ=0.9 | ||||||||||||
n | r | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
4 | 1 | 0.2425 | 0.2569 | 0.2058 | 0.2793 | 0.1563 | 0.295 | 0.1229 | 0.1233 | 0.1217 | 0.1238 | 0.1198 | 0.1242 |
4 | 2 | 0.2476 | 0.2524 | 0.2371 | 0.2612 | 0.2256 | 0.2691 | 0.123 | 0.1232 | 0.1227 | 0.1234 | 0.1224 | 0.1236 |
4 | 3 | 0.2524 | 0.2476 | 0.2612 | 0.2371 | 0.2691 | 0.2256 | 0.1232 | 0.123 | 0.1234 | 0.1227 | 0.1236 | 0.1224 |
4 | 4 | 0.2569 | 0.2425 | 0.2793 | 0.2058 | 0.295 | 0.1563 | 0.1233 | 0.1229 | 0.1238 | 0.1217 | 0.1242 | 0.1198 |
6 | 1 | 0.241 | 0.2582 | 0.1953 | 0.2836 | 0.1305 | 0.3001 | 0.1228 | 0.1233 | 0.1214 | 0.1239 | 0.1186 | 0.1243 |
6 | 2 | 0.2447 | 0.255 | 0.2202 | 0.2722 | 0.1897 | 0.2856 | 0.1229 | 0.1232 | 0.1222 | 0.1237 | 0.1212 | 0.124 |
6 | 3 | 0.2483 | 0.2517 | 0.241 | 0.2582 | 0.2331 | 0.2641 | 0.123 | 0.1231 | 0.1228 | 0.1233 | 0.1226 | 0.1235 |
6 | 4 | 0.2517 | 0.2483 | 0.2582 | 0.241 | 0.2641 | 0.2331 | 0.1231 | 0.123 | 0.1233 | 0.1228 | 0.1235 | 0.1226 |
6 | 5 | 0.255 | 0.2447 | 0.2722 | 0.2202 | 0.2856 | 0.1897 | 0.1232 | 0.1229 | 0.1237 | 0.1222 | 0.124 | 0.1212 |
6 | 6 | 0.2582 | 0.241 | 0.2836 | 0.1953 | 0.3001 | 0.1305 | 0.1233 | 0.1228 | 0.1239 | 0.1214 | 0.1243 | 0.1186 |
8 | 1 | 0.2402 | 0.2588 | 0.1891 | 0.2858 | 0.1148 | 0.3026 | 0.1228 | 0.1233 | 0.1211 | 0.124 | 0.1179 | 0.1243 |
8 | 2 | 0.2431 | 0.2564 | 0.2097 | 0.2776 | 0.1656 | 0.2928 | 0.1229 | 0.1233 | 0.1219 | 0.1238 | 0.1202 | 0.1241 |
8 | 3 | 0.2459 | 0.2539 | 0.2276 | 0.2678 | 0.2058 | 0.2793 | 0.123 | 0.1232 | 0.1224 | 0.1236 | 0.1217 | 0.1238 |
8 | 4 | 0.2487 | 0.2513 | 0.2431 | 0.2564 | 0.2371 | 0.2612 | 0.1231 | 0.1231 | 0.1229 | 0.1233 | 0.1227 | 0.1234 |
8 | 5 | 0.2513 | 0.2487 | 0.2564 | 0.2431 | 0.2612 | 0.2371 | 0.1231 | 0.1231 | 0.1233 | 0.1229 | 0.1234 | 0.1227 |
8 | 6 | 0.2539 | 0.2459 | 0.2678 | 0.2276 | 0.2793 | 0.2058 | 0.1232 | 0.123 | 0.1236 | 0.1224 | 0.1238 | 0.1217 |
8 | 7 | 0.2564 | 0.2431 | 0.2776 | 0.2097 | 0.2928 | 0.1656 | 0.1233 | 0.1229 | 0.1238 | 0.1219 | 0.1241 | 0.1202 |
8 | 8 | 0.2588 | 0.2402 | 0.2858 | 0.1891 | 0.3026 | 0.1148 | 0.1233 | 0.1228 | 0.124 | 0.1211 | 0.1243 | 0.1179 |
10 | 1 | 0.2396 | 0.2593 | 0.185 | 0.2872 | 0.1043 | 0.3041 | 0.1228 | 0.1233 | 0.121 | 0.124 | 0.1173 | 0.1244 |
10 | 2 | 0.242 | 0.2573 | 0.2025 | 0.2807 | 0.1484 | 0.2967 | 0.1229 | 0.1233 | 0.1216 | 0.1239 | 0.1195 | 0.1242 |
10 | 3 | 0.2444 | 0.2553 | 0.2181 | 0.2734 | 0.185 | 0.2872 | 0.1229 | 0.1232 | 0.1221 | 0.1237 | 0.121 | 0.124 |
10 | 4 | 0.2467 | 0.2532 | 0.232 | 0.2649 | 0.2151 | 0.2749 | 0.123 | 0.1232 | 0.1226 | 0.1235 | 0.122 | 0.1237 |
10 | 5 | 0.2489 | 0.2511 | 0.2444 | 0.2553 | 0.2396 | 0.2593 | 0.1231 | 0.1231 | 0.1229 | 0.1232 | 0.1228 | 0.1233 |
10 | 6 | 0.2511 | 0.2489 | 0.2553 | 0.2444 | 0.2593 | 0.2396 | 0.1231 | 0.1231 | 0.1232 | 0.1229 | 0.1233 | 0.1228 |
10 | 7 | 0.2532 | 0.2467 | 0.2649 | 0.232 | 0.2749 | 0.2151 | 0.1232 | 0.123 | 0.1235 | 0.1226 | 0.1237 | 0.122 |
10 | 8 | 0.2553 | 0.2444 | 0.2734 | 0.2181 | 0.2872 | 0.185 | 0.1232 | 0.1229 | 0.1237 | 0.1221 | 0.124 | 0.121 |
10 | 9 | 0.2573 | 0.242 | 0.2807 | 0.2025 | 0.2967 | 0.1484 | 0.1233 | 0.1229 | 0.1239 | 0.1216 | 0.1242 | 0.1195 |
10 | 10 | 0.2593 | 0.2396 | 0.2872 | 0.185 | 0.3041 | 0.1043 | 0.1233 | 0.1228 | 0.124 | 0.121 | 0.1244 | 0.1173 |
θ=4,λ=0.5 | θ=9,λ=0.9 | ||||||||
n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
2 | 0.2753 | 0.21439 | 0.28981 | 0.17654 | 2 | 0.12373 | 0.12202 | 0.12406 | 0.12064 |
3 | 0.28488 | 0.19183 | 0.30156 | 0.12176 | 3 | 0.12395 | 0.12123 | 0.12432 | 0.1182 |
4 | 0.28903 | 0.17918 | 0.30602 | 0.08876 | 4 | 0.12404 | 0.12075 | 0.12443 | 0.11648 |
5 | 0.29096 | 0.1725 | 0.30796 | 0.0707 | 5 | 0.12408 | 0.12048 | 0.12448 | 0.11546 |
6 | 0.29189 | 0.16906 | 0.30887 | 0.06126 | 6 | 0.1241 | 0.12034 | 0.12451 | 0.11491 |
7 | 0.29235 | 0.16732 | 0.3093 | 0.05644 | 7 | 0.12411 | 0.12027 | 0.12453 | 0.11462 |
8 | 0.29257 | 0.16645 | 0.30952 | 0.054 | 8 | 0.12412 | 0.12023 | 0.12454 | 0.11447 |
9 | 0.29269 | 0.16601 | 0.30962 | 0.05277 | 9 | 0.12412 | 0.12022 | 0.12454 | 0.1144 |
10 | 0.29274 | 0.16579 | 0.30968 | 0.05216 | 10 | 0.12412 | 0.12021 | 0.12454 | 0.11436 |
11 | 0.29277 | 0.16567 | 0.3097 | 0.05185 | 11 | 0.12412 | 0.1202 | 0.12454 | 0.11434 |
12 | 0.29278 | 0.16562 | 0.30972 | 0.0517 | 12 | 0.12412 | 0.1202 | 0.12454 | 0.11433 |
13 | 0.29279 | 0.16559 | 0.30972 | 0.05162 | 13 | 0.12412 | 0.1202 | 0.12454 | 0.11433 |
14 | 0.29279 | 0.16558 | 0.30973 | 0.05158 | 14 | 0.12412 | 0.1202 | 0.12454 | 0.11432 |
15 | 0.2928 | 0.16557 | 0.30973 | 0.05156 | 15 | 0.12412 | 0.1202 | 0.12454 | 0.11432 |
16 | 0.2928 | 0.16557 | 0.30973 | 0.05155 | 16 | 0.12412 | 0.1202 | 0.12454 | 0.11432 |
17 | 0.2928 | 0.16557 | 0.30973 | 0.05155 | 17 | 0.12412 | 0.1202 | 0.12454 | 0.11432 |
18 | 0.2928 | 0.16557 | 0.30973 | 0.05155 | 18 | 0.12412 | 0.1202 | 0.12454 | 0.11432 |
19 | 0.2928 | 0.16556 | 0.30973 | 0.05154 | 19 | 0.12412 | 0.1202 | 0.12454 | 0.11432 |
θ=4,β=0.2,η=0.5 | θ=9,β=2,η=1.5 | ||||||||||||
n | r | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
4 | 1 | 0.1195 | 0.13 | 0.0906 | 0.1451 | 0.0485 | 0.1543 | 0.2899 | 0.3026 | 0.2646 | 0.3277 | 0.239 | 0.3527 |
4 | 2 | 0.1233 | 0.1268 | 0.1155 | 0.1331 | 0.1065 | 0.1384 | 0.2942 | 0.2984 | 0.2857 | 0.3067 | 0.2773 | 0.3151 |
4 | 3 | 0.1268 | 0.1233 | 0.1331 | 0.1155 | 0.1384 | 0.1065 | 0.2984 | 0.2942 | 0.3067 | 0.2857 | 0.3151 | 0.2773 |
4 | 4 | 0.13 | 0.1195 | 0.1451 | 0.0906 | 0.1543 | 0.0485 | 0.3026 | 0.2899 | 0.3277 | 0.2646 | 0.3527 | 0.239 |
6 | 1 | 0.1184 | 0.1309 | 0.082 | 0.1477 | 0.0254 | 0.157 | 0.2887 | 0.3037 | 0.2585 | 0.3336 | 0.2278 | 0.3634 |
6 | 2 | 0.1212 | 0.1287 | 0.1023 | 0.1405 | 0.0773 | 0.1489 | 0.2918 | 0.3008 | 0.2737 | 0.3187 | 0.2555 | 0.3366 |
6 | 3 | 0.1238 | 0.1263 | 0.1184 | 0.1309 | 0.1124 | 0.1351 | 0.2948 | 0.2978 | 0.2887 | 0.3037 | 0.2827 | 0.3097 |
6 | 4 | 0.1263 | 0.1238 | 0.1309 | 0.1184 | 0.1351 | 0.1124 | 0.2978 | 0.2948 | 0.3037 | 0.2887 | 0.3097 | 0.2827 |
6 | 5 | 0.1287 | 0.1212 | 0.1405 | 0.1023 | 0.1489 | 0.0773 | 0.3008 | 0.2918 | 0.3187 | 0.2737 | 0.3366 | 0.2555 |
6 | 6 | 0.1309 | 0.1184 | 0.1477 | 0.082 | 0.157 | 0.0254 | 0.3037 | 0.2887 | 0.3336 | 0.2585 | 0.3634 | 0.2278 |
8 | 1 | 0.1178 | 0.1314 | 0.0768 | 0.1491 | 0.0111 | 0.1583 | 0.2881 | 0.3044 | 0.2551 | 0.3369 | 0.2216 | 0.3693 |
8 | 2 | 0.1199 | 0.1297 | 0.0938 | 0.144 | 0.0566 | 0.1531 | 0.2904 | 0.3021 | 0.267 | 0.3253 | 0.2433 | 0.3485 |
8 | 3 | 0.1221 | 0.1279 | 0.1081 | 0.1376 | 0.0906 | 0.1451 | 0.2928 | 0.2998 | 0.2787 | 0.3137 | 0.2646 | 0.3277 |
8 | 4 | 0.1241 | 0.126 | 0.1199 | 0.1297 | 0.1155 | 0.1331 | 0.2951 | 0.2974 | 0.2904 | 0.3021 | 0.2857 | 0.3067 |
8 | 5 | 0.126 | 0.1241 | 0.1297 | 0.1199 | 0.1331 | 0.1155 | 0.2974 | 0.2951 | 0.3021 | 0.2904 | 0.3067 | 0.2857 |
8 | 6 | 0.1279 | 0.1221 | 0.1376 | 0.1081 | 0.1451 | 0.0906 | 0.2998 | 0.2928 | 0.3137 | 0.2787 | 0.3277 | 0.2646 |
8 | 7 | 0.1297 | 0.1199 | 0.144 | 0.0938 | 0.1531 | 0.0566 | 0.3021 | 0.2904 | 0.3253 | 0.267 | 0.3485 | 0.2433 |
8 | 8 | 0.1314 | 0.1178 | 0.1491 | 0.0768 | 0.1583 | 0.0111 | 0.3044 | 0.2881 | 0.3369 | 0.2551 | 0.3693 | 0.2216 |
10 | 1 | 0.1174 | 0.1317 | 0.0733 | 0.1499 | 0.0014 | 0.159 | 0.2877 | 0.3048 | 0.253 | 0.339 | 0.2177 | 0.3731 |
10 | 2 | 0.1192 | 0.1303 | 0.088 | 0.146 | 0.0415 | 0.1552 | 0.2896 | 0.3029 | 0.2627 | 0.3296 | 0.2354 | 0.3561 |
10 | 3 | 0.1209 | 0.1289 | 0.1006 | 0.1413 | 0.0733 | 0.1499 | 0.2915 | 0.301 | 0.2723 | 0.3201 | 0.253 | 0.339 |
10 | 4 | 0.1226 | 0.1274 | 0.1116 | 0.1356 | 0.0982 | 0.1423 | 0.2934 | 0.2991 | 0.2819 | 0.3106 | 0.2704 | 0.322 |
10 | 5 | 0.1243 | 0.1259 | 0.1209 | 0.1289 | 0.1174 | 0.1317 | 0.2953 | 0.2972 | 0.2915 | 0.301 | 0.2877 | 0.3048 |
10 | 6 | 0.1259 | 0.1243 | 0.1289 | 0.1209 | 0.1317 | 0.1174 | 0.2972 | 0.2953 | 0.301 | 0.2915 | 0.3048 | 0.2877 |
10 | 7 | 0.1274 | 0.1226 | 0.1356 | 0.1116 | 0.1423 | 0.0982 | 0.2991 | 0.2934 | 0.3106 | 0.2819 | 0.322 | 0.2704 |
10 | 8 | 0.1289 | 0.1209 | 0.1413 | 0.1006 | 0.1499 | 0.0733 | 0.301 | 0.2915 | 0.3201 | 0.2723 | 0.339 | 0.253 |
10 | 9 | 0.1303 | 0.1192 | 0.146 | 0.088 | 0.1552 | 0.0415 | 0.3029 | 0.2896 | 0.3296 | 0.2627 | 0.3561 | 0.2354 |
10 | 10 | 0.1317 | 0.1174 | 0.1499 | 0.0733 | 0.159 | 0.0014 | 0.3048 | 0.2877 | 0.339 | 0.253 | 0.3731 | 0.2177 |
θ=4,β=0.2,η=0.5 | θ=9,β=2,η=1.5 | ||||||||
n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
2 | 0.14252 | 0.09764 | 0.15139 | 0.06608 | 2 | 0.32243 | 0.2699 | 0.3433 | 0.24861 |
3 | 0.14849 | 0.07907 | 0.15772 | 0.01748 | 3 | 0.33548 | 0.25662 | 0.36672 | 0.22435 |
4 | 0.15094 | 0.06835 | 0.15989 | –0.01305 | 4 | 0.342 | 0.24995 | 0.37841 | 0.21204 |
5 | 0.15205 | 0.0626 | 0.16079 | –0.03006 | 5 | 0.34525 | 0.24661 | 0.38426 | 0.20584 |
6 | 0.15257 | 0.05963 | 0.1612 | –0.03904 | 6 | 0.34688 | 0.24493 | 0.38718 | 0.20272 |
7 | 0.15283 | 0.05812 | 0.1614 | –0.04364 | 7 | 0.34769 | 0.24409 | 0.38864 | 0.20116 |
8 | 0.15296 | 0.05735 | 0.1615 | –0.04598 | 8 | 0.3481 | 0.24368 | 0.38937 | 0.20037 |
9 | 0.15302 | 0.05697 | 0.16154 | –0.04715 | 9 | 0.3483 | 0.24347 | 0.38974 | 0.19998 |
10 | 0.15305 | 0.05678 | 0.16157 | –0.04774 | 10 | 0.3484 | 0.24336 | 0.38992 | 0.19979 |
11 | 0.15307 | 0.05668 | 0.16158 | –0.04804 | 11 | 0.34846 | 0.24331 | 0.39001 | 0.19969 |
12 | 0.15307 | 0.05663 | 0.16158 | –0.04818 | 12 | 0.34848 | 0.24328 | 0.39006 | 0.19964 |
13 | 0.15308 | 0.05661 | 0.16159 | –0.04826 | 13 | 0.34849 | 0.24327 | 0.39008 | 0.19961 |
14 | 0.15308 | 0.0566 | 0.16159 | –0.04829 | 14 | 0.3485 | 0.24326 | 0.39009 | 0.1996 |
15 | 0.15308 | 0.05659 | 0.16159 | –0.04831 | 15 | 0.3485 | 0.24326 | 0.3901 | 0.1996 |
16 | 0.15308 | 0.05659 | 0.16159 | –0.04832 | 16 | 0.3485 | 0.24326 | 0.3901 | 0.19959 |
17 | 0.15308 | 0.05659 | 0.16159 | –0.04833 | 17 | 0.34851 | 0.24326 | 0.3901 | 0.19959 |
θ=4 | θ=9 | ||||||||
n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
2 | 0.0538 | 0.0558 | 0.0511 | 0.0552 | 2 | 0.0304 | 0.0295 | 0.0298 | 0.0286 |
3 | 0.0522 | 0.0555 | 0.0466 | 0.0536 | 3 | 0.0301 | 0.029 | 0.0281 | 0.0273 |
4 | 0.0513 | 0.0552 | 0.0437 | 0.0525 | 4 | 0.0299 | 0.0287 | 0.0268 | 0.0265 |
5 | 0.0508 | 0.0551 | 0.042 | 0.0519 | 5 | 0.0297 | 0.0285 | 0.0259 | 0.0262 |
6 | 0.0505 | 0.055 | 0.0411 | 0.0516 | 6 | 0.0296 | 0.0284 | 0.0255 | 0.026 |
7 | 0.0504 | 0.0549 | 0.0407 | 0.0514 | 7 | 0.0296 | 0.0284 | 0.0252 | 0.0259 |
8 | 0.0503 | 0.0549 | 0.0405 | 0.0513 | 8 | 0.0296 | 0.0283 | 0.0251 | 0.0258 |
9 | 0.0503 | 0.0549 | 0.0404 | 0.0513 | 9 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
10 | 0.0503 | 0.0549 | 0.0403 | 0.0513 | 10 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
11 | 0.0503 | 0.0549 | 0.0403 | 0.0512 | 11 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
12 | 0.0503 | 0.0549 | 0.0403 | 0.0512 | 12 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
13 | 0.0503 | 0.0549 | 0.0402 | 0.0512 | 13 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
14 | 0.0502 | 0.0549 | 0.0402 | 0.0512 | 14 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
15 | 0.0502 | 0.0549 | 0.0402 | 0.0512 | 15 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
16 | 0.0502 | 0.0549 | 0.0402 | 0.0512 | 16 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
θ=4 | θ=9 | ||||||||||||
n | r | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
4 | 1 | 0.0558 | 0.0553 | 0.0557 | 0.0532 | 0.0546 | 0.0495 | 0.0302 | 0.0304 | 0.0293 | 0.0303 | 0.0281 | 0.0293 |
4 | 2 | 0.0556 | 0.0555 | 0.0558 | 0.055 | 0.0559 | 0.0544 | 0.0303 | 0.0303 | 0.0301 | 0.0304 | 0.0298 | 0.0305 |
4 | 3 | 0.0555 | 0.0556 | 0.055 | 0.0558 | 0.0544 | 0.0559 | 0.0303 | 0.0303 | 0.0304 | 0.0301 | 0.0305 | 0.0298 |
4 | 4 | 0.0553 | 0.0558 | 0.0532 | 0.0557 | 0.0495 | 0.0546 | 0.0304 | 0.0302 | 0.0303 | 0.0293 | 0.0293 | 0.0281 |
6 | 1 | 0.0558 | 0.0552 | 0.0556 | 0.0525 | 0.0538 | 0.0473 | 0.0301 | 0.0304 | 0.0291 | 0.0302 | 0.0275 | 0.0284 |
6 | 2 | 0.0557 | 0.0554 | 0.0559 | 0.0541 | 0.0555 | 0.0521 | 0.0302 | 0.0304 | 0.0297 | 0.0304 | 0.0289 | 0.0301 |
6 | 3 | 0.0556 | 0.0555 | 0.0558 | 0.0552 | 0.0559 | 0.0548 | 0.0303 | 0.0303 | 0.0301 | 0.0304 | 0.03 | 0.0305 |
6 | 4 | 0.0555 | 0.0556 | 0.0552 | 0.0558 | 0.0548 | 0.0559 | 0.0303 | 0.0303 | 0.0304 | 0.0301 | 0.0305 | 0.03 |
6 | 5 | 0.0554 | 0.0557 | 0.0541 | 0.0559 | 0.0521 | 0.0555 | 0.0304 | 0.0302 | 0.0304 | 0.0297 | 0.0301 | 0.0289 |
6 | 6 | 0.0552 | 0.0558 | 0.0525 | 0.0556 | 0.0473 | 0.0538 | 0.0304 | 0.0301 | 0.0302 | 0.0291 | 0.0284 | 0.0275 |
8 | 1 | 0.0558 | 0.0552 | 0.0554 | 0.0521 | 0.0533 | 0.046 | 0.0301 | 0.0304 | 0.0289 | 0.0301 | 0.0271 | 0.0279 |
8 | 2 | 0.0557 | 0.0553 | 0.0558 | 0.0535 | 0.0549 | 0.0502 | 0.0302 | 0.0304 | 0.0294 | 0.0304 | 0.0283 | 0.0295 |
8 | 3 | 0.0557 | 0.0554 | 0.0559 | 0.0546 | 0.0557 | 0.0532 | 0.0302 | 0.0304 | 0.0299 | 0.0305 | 0.0293 | 0.0303 |
8 | 4 | 0.0556 | 0.0555 | 0.0557 | 0.0553 | 0.0558 | 0.055 | 0.0303 | 0.0303 | 0.0302 | 0.0304 | 0.0301 | 0.0304 |
8 | 5 | 0.0555 | 0.0556 | 0.0553 | 0.0557 | 0.055 | 0.0558 | 0.0303 | 0.0303 | 0.0304 | 0.0302 | 0.0304 | 0.0301 |
8 | 6 | 0.0554 | 0.0557 | 0.0546 | 0.0559 | 0.0532 | 0.0557 | 0.0304 | 0.0302 | 0.0305 | 0.0299 | 0.0303 | 0.0293 |
8 | 7 | 0.0553 | 0.0557 | 0.0535 | 0.0558 | 0.0502 | 0.0549 | 0.0304 | 0.0302 | 0.0304 | 0.0294 | 0.0295 | 0.0283 |
8 | 8 | 0.0552 | 0.0558 | 0.0521 | 0.0554 | 0.046 | 0.0533 | 0.0304 | 0.0301 | 0.0301 | 0.0289 | 0.0279 | 0.0271 |
10 | 1 | 0.0558 | 0.0551 | 0.0554 | 0.0518 | 0.053 | 0.045 | 0.0301 | 0.0304 | 0.0288 | 0.03 | 0.0269 | 0.0274 |
10 | 2 | 0.0558 | 0.0553 | 0.0557 | 0.053 | 0.0544 | 0.0489 | 0.0302 | 0.0304 | 0.0292 | 0.0303 | 0.0279 | 0.029 |
10 | 3 | 0.0557 | 0.0554 | 0.0559 | 0.054 | 0.0554 | 0.0518 | 0.0302 | 0.0304 | 0.0296 | 0.0304 | 0.0288 | 0.03 |
10 | 4 | 0.0557 | 0.0554 | 0.0559 | 0.0548 | 0.0559 | 0.0538 | 0.0302 | 0.0304 | 0.03 | 0.0305 | 0.0296 | 0.0304 |
10 | 5 | 0.0556 | 0.0555 | 0.0557 | 0.0554 | 0.0558 | 0.0551 | 0.0303 | 0.0303 | 0.0302 | 0.0304 | 0.0301 | 0.0304 |
10 | 6 | 0.0555 | 0.0556 | 0.0554 | 0.0557 | 0.0551 | 0.0558 | 0.0303 | 0.0303 | 0.0304 | 0.0302 | 0.0304 | 0.0301 |
10 | 7 | 0.0554 | 0.0557 | 0.0548 | 0.0559 | 0.0538 | 0.0559 | 0.0304 | 0.0302 | 0.0305 | 0.03 | 0.0304 | 0.0296 |
10 | 8 | 0.0554 | 0.0557 | 0.054 | 0.0559 | 0.0518 | 0.0554 | 0.0304 | 0.0302 | 0.0304 | 0.0296 | 0.03 | 0.0288 |
10 | 9 | 0.0553 | 0.0558 | 0.053 | 0.0557 | 0.0489 | 0.0544 | 0.0304 | 0.0302 | 0.0303 | 0.0292 | 0.029 | 0.0279 |
10 | 10 | 0.0551 | 0.0558 | 0.0518 | 0.0554 | 0.045 | 0.053 | 0.0304 | 0.0301 | 0.03 | 0.0288 | 0.0274 | 0.0269 |
θ | r | 1 | 2 | 14 | 15 | 29 | 30 |
4 | ξwθ,α=0.348(Z[r:30]) | 3958.94 | 3945.32 | 3781.93 | 3768.32 | 3577.69 | 3564.08 |
ζwθ,α=0.348(Z[r:30]) | 0.333164 | 0.333158 | 0.333068 | 0.333059 | 0.332893 | 0.332878 | |
9 | ξwθ,α=0.348(Z[r:30]) | 1484.6 | 1479.49 | 1418.22 | 1413.12 | 1341.64 | 1336.53 |
ζwθ,α=0.348(Z[r:30]) | 0.12499 | 0.124989 | 0.124983 | 0.124982 | 0.124968 | 0.124966 |
θ | r | 1 | 2 | 14 | 15 | 29 | 30 |
4 | ξwθ[r:30](Z) | 0.26141 | 0.253816 | 0.158299 | 0.149854 | 0.0190433 | 0.00855513 |
ζwθ[r:30](Z) | 0.308546 | 0.30781 | 0.294593 | 0.293007 | 0.258213 | 0.254584 | |
15 | ξwθ[r:30](Z) | 0.0594999 | 0.0579511 | 0.0392552 | 0.0376493 | 0.0123585 | 0.0101515 |
ζwθ[r:30](Z) | 0.0696003 | 0.0695212 | 0.0684611 | 0.0683249 | 0.0636092 | 0.0628719 | |
30 | ξwθ[r:30](Z) | 0.0291314 | 0.0283863 | 0.019546 | 0.0187973 | 0.00726299 | 0.00626894 |
ζwθ[r:30](Z) | 0.0340075 | 0.0339718 | 0.0336455 | 0.0336062 | 0.0320047 | 0.0317202 |
θ=4,β=1.2,η=0.5 | θ=9,β=1.5,η=0.2 | ||||||||||||
n | r | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
4 | 1 | 0.31693 | 0.32098 | 0.30563 | 0.32664 | 0.28891 | 0.32991 | 0.12492 | 0.12496 | 0.12469 | 0.12499 | 0.12405 | 0.12501 |
4 | 2 | 0.31838 | 0.31973 | 0.31536 | 0.32213 | 0.31187 | 0.32417 | 0.12493 | 0.12495 | 0.12489 | 0.12497 | 0.12484 | 0.12498 |
4 | 3 | 0.31973 | 0.31838 | 0.32213 | 0.31536 | 0.32417 | 0.31187 | 0.12495 | 0.12493 | 0.12497 | 0.12489 | 0.12498 | 0.12484 |
4 | 4 | 0.32098 | 0.31693 | 0.32664 | 0.30563 | 0.32991 | 0.28891 | 0.12496 | 0.12492 | 0.12499 | 0.12469 | 0.12501 | 0.12405 |
6 | 1 | 0.31649 | 0.32132 | 0.3022 | 0.3276 | 0.27969 | 0.3308 | 0.12491 | 0.12496 | 0.12459 | 0.12499 | 0.12352 | 0.12503 |
6 | 2 | 0.31757 | 0.32046 | 0.31021 | 0.32494 | 0.30036 | 0.32803 | 0.12492 | 0.12495 | 0.1248 | 0.12498 | 0.12453 | 0.125 |
6 | 3 | 0.31858 | 0.31954 | 0.31649 | 0.32132 | 0.31417 | 0.3229 | 0.12493 | 0.12494 | 0.12491 | 0.12496 | 0.12488 | 0.12497 |
6 | 4 | 0.31954 | 0.31858 | 0.32132 | 0.31649 | 0.3229 | 0.31417 | 0.12494 | 0.12493 | 0.12496 | 0.12491 | 0.12497 | 0.12488 |
6 | 5 | 0.32046 | 0.31757 | 0.32494 | 0.31021 | 0.32803 | 0.30036 | 0.12495 | 0.12492 | 0.12498 | 0.1248 | 0.125 | 0.12453 |
6 | 6 | 0.32132 | 0.31649 | 0.3276 | 0.3022 | 0.3308 | 0.27969 | 0.12496 | 0.12491 | 0.12499 | 0.12459 | 0.12503 | 0.12352 |
8 | 1 | 0.31625 | 0.3215 | 0.30015 | 0.32808 | 0.27397 | 0.33119 | 0.12491 | 0.12496 | 0.12452 | 0.125 | 0.12313 | 0.12505 |
8 | 2 | 0.3171 | 0.32084 | 0.30688 | 0.32623 | 0.29214 | 0.32949 | 0.12492 | 0.12496 | 0.12473 | 0.12499 | 0.1242 | 0.12501 |
8 | 3 | 0.31791 | 0.32016 | 0.31249 | 0.32385 | 0.30563 | 0.32664 | 0.12493 | 0.12495 | 0.12485 | 0.12498 | 0.12469 | 0.12499 |
8 | 4 | 0.31869 | 0.31944 | 0.3171 | 0.32084 | 0.31536 | 0.32213 | 0.12494 | 0.12494 | 0.12492 | 0.12496 | 0.12489 | 0.12497 |
8 | 5 | 0.31944 | 0.31869 | 0.32084 | 0.3171 | 0.32213 | 0.31536 | 0.12494 | 0.12494 | 0.12496 | 0.12492 | 0.12497 | 0.12489 |
8 | 6 | 0.32016 | 0.31791 | 0.32385 | 0.31249 | 0.32664 | 0.30563 | 0.12495 | 0.12493 | 0.12498 | 0.12485 | 0.12499 | 0.12469 |
8 | 7 | 0.32084 | 0.3171 | 0.32623 | 0.30688 | 0.32949 | 0.29214 | 0.12496 | 0.12492 | 0.12499 | 0.12473 | 0.12501 | 0.1242 |
8 | 8 | 0.3215 | 0.31625 | 0.32808 | 0.30015 | 0.33119 | 0.27397 | 0.12496 | 0.12491 | 0.125 | 0.12452 | 0.12505 | 0.12313 |
10 | 1 | 0.31609 | 0.32162 | 0.29879 | 0.32836 | 0.27008 | 0.33141 | 0.1249 | 0.12496 | 0.12448 | 0.125 | 0.12284 | 0.12507 |
10 | 2 | 0.31679 | 0.32109 | 0.30457 | 0.32696 | 0.28612 | 0.33022 | 0.12491 | 0.12496 | 0.12466 | 0.12499 | 0.1239 | 0.12502 |
10 | 3 | 0.31747 | 0.32054 | 0.30956 | 0.32522 | 0.29879 | 0.32836 | 0.12492 | 0.12495 | 0.12479 | 0.12499 | 0.12448 | 0.125 |
10 | 4 | 0.31813 | 0.31996 | 0.31384 | 0.3231 | 0.30862 | 0.32559 | 0.12493 | 0.12495 | 0.12487 | 0.12497 | 0.12477 | 0.12499 |
10 | 5 | 0.31876 | 0.31937 | 0.31747 | 0.32054 | 0.31609 | 0.32162 | 0.12494 | 0.12494 | 0.12492 | 0.12495 | 0.1249 | 0.12496 |
10 | 6 | 0.31937 | 0.31876 | 0.32054 | 0.31747 | 0.32162 | 0.31609 | 0.12494 | 0.12494 | 0.12495 | 0.12492 | 0.12496 | 0.1249 |
10 | 7 | 0.31996 | 0.31813 | 0.3231 | 0.31384 | 0.32559 | 0.30862 | 0.12495 | 0.12493 | 0.12497 | 0.12487 | 0.12499 | 0.12477 |
10 | 8 | 0.32054 | 0.31747 | 0.32522 | 0.30956 | 0.32836 | 0.29879 | 0.12495 | 0.12492 | 0.12499 | 0.12479 | 0.125 | 0.12448 |
10 | 9 | 0.32109 | 0.31679 | 0.32696 | 0.30457 | 0.33022 | 0.28612 | 0.12496 | 0.12491 | 0.12499 | 0.12466 | 0.12502 | 0.1239 |
10 | 10 | 0.32162 | 0.31609 | 0.32836 | 0.29879 | 0.33141 | 0.27008 | 0.12496 | 0.1249 | 0.125 | 0.12448 | 0.12507 | 0.12284 |
θ=4,β=1.2,η=0.5 | θ=9,β=1.5,η=0.2 | ||||||||
n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
2 | 0.32569 | 0.30839 | 0.3289 | 0.29591 | 2 | 0.12499 | 0.12476 | 0.125 | 0.12437 |
3 | 0.32787 | 0.30106 | 0.33103 | 0.27653 | 3 | 0.125 | 0.12456 | 0.12504 | 0.12331 |
4 | 0.32874 | 0.29681 | 0.33168 | 0.26429 | 4 | 0.125 | 0.1244 | 0.1251 | 0.12237 |
5 | 0.32913 | 0.29453 | 0.33193 | 0.25746 | 5 | 0.125 | 0.12431 | 0.12516 | 0.12176 |
6 | 0.32931 | 0.29335 | 0.33204 | 0.25386 | 6 | 0.125 | 0.12426 | 0.12519 | 0.12141 |
7 | 0.3294 | 0.29274 | 0.3321 | 0.252 | 7 | 0.125 | 0.12423 | 0.12521 | 0.12122 |
8 | 0.32945 | 0.29244 | 0.33212 | 0.25107 | 8 | 0.125 | 0.12422 | 0.12522 | 0.12112 |
9 | 0.32947 | 0.29229 | 0.33213 | 0.25059 | 9 | 0.12501 | 0.12421 | 0.12522 | 0.12107 |
10 | 0.32948 | 0.29221 | 0.33214 | 0.25036 | 10 | 0.12501 | 0.12421 | 0.12522 | 0.12105 |
11 | 0.32948 | 0.29217 | 0.33214 | 0.25024 | 11 | 0.12501 | 0.1242 | 0.12522 | 0.12104 |
12 | 0.32949 | 0.29215 | 0.33214 | 0.25018 | 12 | 0.12501 | 0.1242 | 0.12523 | 0.12103 |
13 | 0.32949 | 0.29215 | 0.33214 | 0.25015 | 13 | 0.12501 | 0.1242 | 0.12523 | 0.12103 |
14 | 0.32949 | 0.29214 | 0.33215 | 0.25013 | 14 | 0.12501 | 0.1242 | 0.12523 | 0.12103 |
15 | 0.32949 | 0.29214 | 0.33215 | 0.25013 | 15 | 0.12501 | 0.1242 | 0.12523 | 0.12102 |
16 | 0.32949 | 0.29214 | 0.33215 | 0.25012 | 16 | 0.12501 | 0.1242 | 0.12523 | 0.12102 |
17 | 0.32949 | 0.29214 | 0.33215 | 0.25012 | 17 | 0.12501 | 0.1242 | 0.12523 | 0.12102 |
θ=4,λ=0.5 | θ=9,λ=0.9 | ||||||||||||
n | r | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
4 | 1 | 0.2425 | 0.2569 | 0.2058 | 0.2793 | 0.1563 | 0.295 | 0.1229 | 0.1233 | 0.1217 | 0.1238 | 0.1198 | 0.1242 |
4 | 2 | 0.2476 | 0.2524 | 0.2371 | 0.2612 | 0.2256 | 0.2691 | 0.123 | 0.1232 | 0.1227 | 0.1234 | 0.1224 | 0.1236 |
4 | 3 | 0.2524 | 0.2476 | 0.2612 | 0.2371 | 0.2691 | 0.2256 | 0.1232 | 0.123 | 0.1234 | 0.1227 | 0.1236 | 0.1224 |
4 | 4 | 0.2569 | 0.2425 | 0.2793 | 0.2058 | 0.295 | 0.1563 | 0.1233 | 0.1229 | 0.1238 | 0.1217 | 0.1242 | 0.1198 |
6 | 1 | 0.241 | 0.2582 | 0.1953 | 0.2836 | 0.1305 | 0.3001 | 0.1228 | 0.1233 | 0.1214 | 0.1239 | 0.1186 | 0.1243 |
6 | 2 | 0.2447 | 0.255 | 0.2202 | 0.2722 | 0.1897 | 0.2856 | 0.1229 | 0.1232 | 0.1222 | 0.1237 | 0.1212 | 0.124 |
6 | 3 | 0.2483 | 0.2517 | 0.241 | 0.2582 | 0.2331 | 0.2641 | 0.123 | 0.1231 | 0.1228 | 0.1233 | 0.1226 | 0.1235 |
6 | 4 | 0.2517 | 0.2483 | 0.2582 | 0.241 | 0.2641 | 0.2331 | 0.1231 | 0.123 | 0.1233 | 0.1228 | 0.1235 | 0.1226 |
6 | 5 | 0.255 | 0.2447 | 0.2722 | 0.2202 | 0.2856 | 0.1897 | 0.1232 | 0.1229 | 0.1237 | 0.1222 | 0.124 | 0.1212 |
6 | 6 | 0.2582 | 0.241 | 0.2836 | 0.1953 | 0.3001 | 0.1305 | 0.1233 | 0.1228 | 0.1239 | 0.1214 | 0.1243 | 0.1186 |
8 | 1 | 0.2402 | 0.2588 | 0.1891 | 0.2858 | 0.1148 | 0.3026 | 0.1228 | 0.1233 | 0.1211 | 0.124 | 0.1179 | 0.1243 |
8 | 2 | 0.2431 | 0.2564 | 0.2097 | 0.2776 | 0.1656 | 0.2928 | 0.1229 | 0.1233 | 0.1219 | 0.1238 | 0.1202 | 0.1241 |
8 | 3 | 0.2459 | 0.2539 | 0.2276 | 0.2678 | 0.2058 | 0.2793 | 0.123 | 0.1232 | 0.1224 | 0.1236 | 0.1217 | 0.1238 |
8 | 4 | 0.2487 | 0.2513 | 0.2431 | 0.2564 | 0.2371 | 0.2612 | 0.1231 | 0.1231 | 0.1229 | 0.1233 | 0.1227 | 0.1234 |
8 | 5 | 0.2513 | 0.2487 | 0.2564 | 0.2431 | 0.2612 | 0.2371 | 0.1231 | 0.1231 | 0.1233 | 0.1229 | 0.1234 | 0.1227 |
8 | 6 | 0.2539 | 0.2459 | 0.2678 | 0.2276 | 0.2793 | 0.2058 | 0.1232 | 0.123 | 0.1236 | 0.1224 | 0.1238 | 0.1217 |
8 | 7 | 0.2564 | 0.2431 | 0.2776 | 0.2097 | 0.2928 | 0.1656 | 0.1233 | 0.1229 | 0.1238 | 0.1219 | 0.1241 | 0.1202 |
8 | 8 | 0.2588 | 0.2402 | 0.2858 | 0.1891 | 0.3026 | 0.1148 | 0.1233 | 0.1228 | 0.124 | 0.1211 | 0.1243 | 0.1179 |
10 | 1 | 0.2396 | 0.2593 | 0.185 | 0.2872 | 0.1043 | 0.3041 | 0.1228 | 0.1233 | 0.121 | 0.124 | 0.1173 | 0.1244 |
10 | 2 | 0.242 | 0.2573 | 0.2025 | 0.2807 | 0.1484 | 0.2967 | 0.1229 | 0.1233 | 0.1216 | 0.1239 | 0.1195 | 0.1242 |
10 | 3 | 0.2444 | 0.2553 | 0.2181 | 0.2734 | 0.185 | 0.2872 | 0.1229 | 0.1232 | 0.1221 | 0.1237 | 0.121 | 0.124 |
10 | 4 | 0.2467 | 0.2532 | 0.232 | 0.2649 | 0.2151 | 0.2749 | 0.123 | 0.1232 | 0.1226 | 0.1235 | 0.122 | 0.1237 |
10 | 5 | 0.2489 | 0.2511 | 0.2444 | 0.2553 | 0.2396 | 0.2593 | 0.1231 | 0.1231 | 0.1229 | 0.1232 | 0.1228 | 0.1233 |
10 | 6 | 0.2511 | 0.2489 | 0.2553 | 0.2444 | 0.2593 | 0.2396 | 0.1231 | 0.1231 | 0.1232 | 0.1229 | 0.1233 | 0.1228 |
10 | 7 | 0.2532 | 0.2467 | 0.2649 | 0.232 | 0.2749 | 0.2151 | 0.1232 | 0.123 | 0.1235 | 0.1226 | 0.1237 | 0.122 |
10 | 8 | 0.2553 | 0.2444 | 0.2734 | 0.2181 | 0.2872 | 0.185 | 0.1232 | 0.1229 | 0.1237 | 0.1221 | 0.124 | 0.121 |
10 | 9 | 0.2573 | 0.242 | 0.2807 | 0.2025 | 0.2967 | 0.1484 | 0.1233 | 0.1229 | 0.1239 | 0.1216 | 0.1242 | 0.1195 |
10 | 10 | 0.2593 | 0.2396 | 0.2872 | 0.185 | 0.3041 | 0.1043 | 0.1233 | 0.1228 | 0.124 | 0.121 | 0.1244 | 0.1173 |
θ=4,λ=0.5 | θ=9,λ=0.9 | ||||||||
n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
2 | 0.2753 | 0.21439 | 0.28981 | 0.17654 | 2 | 0.12373 | 0.12202 | 0.12406 | 0.12064 |
3 | 0.28488 | 0.19183 | 0.30156 | 0.12176 | 3 | 0.12395 | 0.12123 | 0.12432 | 0.1182 |
4 | 0.28903 | 0.17918 | 0.30602 | 0.08876 | 4 | 0.12404 | 0.12075 | 0.12443 | 0.11648 |
5 | 0.29096 | 0.1725 | 0.30796 | 0.0707 | 5 | 0.12408 | 0.12048 | 0.12448 | 0.11546 |
6 | 0.29189 | 0.16906 | 0.30887 | 0.06126 | 6 | 0.1241 | 0.12034 | 0.12451 | 0.11491 |
7 | 0.29235 | 0.16732 | 0.3093 | 0.05644 | 7 | 0.12411 | 0.12027 | 0.12453 | 0.11462 |
8 | 0.29257 | 0.16645 | 0.30952 | 0.054 | 8 | 0.12412 | 0.12023 | 0.12454 | 0.11447 |
9 | 0.29269 | 0.16601 | 0.30962 | 0.05277 | 9 | 0.12412 | 0.12022 | 0.12454 | 0.1144 |
10 | 0.29274 | 0.16579 | 0.30968 | 0.05216 | 10 | 0.12412 | 0.12021 | 0.12454 | 0.11436 |
11 | 0.29277 | 0.16567 | 0.3097 | 0.05185 | 11 | 0.12412 | 0.1202 | 0.12454 | 0.11434 |
12 | 0.29278 | 0.16562 | 0.30972 | 0.0517 | 12 | 0.12412 | 0.1202 | 0.12454 | 0.11433 |
13 | 0.29279 | 0.16559 | 0.30972 | 0.05162 | 13 | 0.12412 | 0.1202 | 0.12454 | 0.11433 |
14 | 0.29279 | 0.16558 | 0.30973 | 0.05158 | 14 | 0.12412 | 0.1202 | 0.12454 | 0.11432 |
15 | 0.2928 | 0.16557 | 0.30973 | 0.05156 | 15 | 0.12412 | 0.1202 | 0.12454 | 0.11432 |
16 | 0.2928 | 0.16557 | 0.30973 | 0.05155 | 16 | 0.12412 | 0.1202 | 0.12454 | 0.11432 |
17 | 0.2928 | 0.16557 | 0.30973 | 0.05155 | 17 | 0.12412 | 0.1202 | 0.12454 | 0.11432 |
18 | 0.2928 | 0.16557 | 0.30973 | 0.05155 | 18 | 0.12412 | 0.1202 | 0.12454 | 0.11432 |
19 | 0.2928 | 0.16556 | 0.30973 | 0.05154 | 19 | 0.12412 | 0.1202 | 0.12454 | 0.11432 |
θ=4,β=0.2,η=0.5 | θ=9,β=2,η=1.5 | ||||||||||||
n | r | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
4 | 1 | 0.1195 | 0.13 | 0.0906 | 0.1451 | 0.0485 | 0.1543 | 0.2899 | 0.3026 | 0.2646 | 0.3277 | 0.239 | 0.3527 |
4 | 2 | 0.1233 | 0.1268 | 0.1155 | 0.1331 | 0.1065 | 0.1384 | 0.2942 | 0.2984 | 0.2857 | 0.3067 | 0.2773 | 0.3151 |
4 | 3 | 0.1268 | 0.1233 | 0.1331 | 0.1155 | 0.1384 | 0.1065 | 0.2984 | 0.2942 | 0.3067 | 0.2857 | 0.3151 | 0.2773 |
4 | 4 | 0.13 | 0.1195 | 0.1451 | 0.0906 | 0.1543 | 0.0485 | 0.3026 | 0.2899 | 0.3277 | 0.2646 | 0.3527 | 0.239 |
6 | 1 | 0.1184 | 0.1309 | 0.082 | 0.1477 | 0.0254 | 0.157 | 0.2887 | 0.3037 | 0.2585 | 0.3336 | 0.2278 | 0.3634 |
6 | 2 | 0.1212 | 0.1287 | 0.1023 | 0.1405 | 0.0773 | 0.1489 | 0.2918 | 0.3008 | 0.2737 | 0.3187 | 0.2555 | 0.3366 |
6 | 3 | 0.1238 | 0.1263 | 0.1184 | 0.1309 | 0.1124 | 0.1351 | 0.2948 | 0.2978 | 0.2887 | 0.3037 | 0.2827 | 0.3097 |
6 | 4 | 0.1263 | 0.1238 | 0.1309 | 0.1184 | 0.1351 | 0.1124 | 0.2978 | 0.2948 | 0.3037 | 0.2887 | 0.3097 | 0.2827 |
6 | 5 | 0.1287 | 0.1212 | 0.1405 | 0.1023 | 0.1489 | 0.0773 | 0.3008 | 0.2918 | 0.3187 | 0.2737 | 0.3366 | 0.2555 |
6 | 6 | 0.1309 | 0.1184 | 0.1477 | 0.082 | 0.157 | 0.0254 | 0.3037 | 0.2887 | 0.3336 | 0.2585 | 0.3634 | 0.2278 |
8 | 1 | 0.1178 | 0.1314 | 0.0768 | 0.1491 | 0.0111 | 0.1583 | 0.2881 | 0.3044 | 0.2551 | 0.3369 | 0.2216 | 0.3693 |
8 | 2 | 0.1199 | 0.1297 | 0.0938 | 0.144 | 0.0566 | 0.1531 | 0.2904 | 0.3021 | 0.267 | 0.3253 | 0.2433 | 0.3485 |
8 | 3 | 0.1221 | 0.1279 | 0.1081 | 0.1376 | 0.0906 | 0.1451 | 0.2928 | 0.2998 | 0.2787 | 0.3137 | 0.2646 | 0.3277 |
8 | 4 | 0.1241 | 0.126 | 0.1199 | 0.1297 | 0.1155 | 0.1331 | 0.2951 | 0.2974 | 0.2904 | 0.3021 | 0.2857 | 0.3067 |
8 | 5 | 0.126 | 0.1241 | 0.1297 | 0.1199 | 0.1331 | 0.1155 | 0.2974 | 0.2951 | 0.3021 | 0.2904 | 0.3067 | 0.2857 |
8 | 6 | 0.1279 | 0.1221 | 0.1376 | 0.1081 | 0.1451 | 0.0906 | 0.2998 | 0.2928 | 0.3137 | 0.2787 | 0.3277 | 0.2646 |
8 | 7 | 0.1297 | 0.1199 | 0.144 | 0.0938 | 0.1531 | 0.0566 | 0.3021 | 0.2904 | 0.3253 | 0.267 | 0.3485 | 0.2433 |
8 | 8 | 0.1314 | 0.1178 | 0.1491 | 0.0768 | 0.1583 | 0.0111 | 0.3044 | 0.2881 | 0.3369 | 0.2551 | 0.3693 | 0.2216 |
10 | 1 | 0.1174 | 0.1317 | 0.0733 | 0.1499 | 0.0014 | 0.159 | 0.2877 | 0.3048 | 0.253 | 0.339 | 0.2177 | 0.3731 |
10 | 2 | 0.1192 | 0.1303 | 0.088 | 0.146 | 0.0415 | 0.1552 | 0.2896 | 0.3029 | 0.2627 | 0.3296 | 0.2354 | 0.3561 |
10 | 3 | 0.1209 | 0.1289 | 0.1006 | 0.1413 | 0.0733 | 0.1499 | 0.2915 | 0.301 | 0.2723 | 0.3201 | 0.253 | 0.339 |
10 | 4 | 0.1226 | 0.1274 | 0.1116 | 0.1356 | 0.0982 | 0.1423 | 0.2934 | 0.2991 | 0.2819 | 0.3106 | 0.2704 | 0.322 |
10 | 5 | 0.1243 | 0.1259 | 0.1209 | 0.1289 | 0.1174 | 0.1317 | 0.2953 | 0.2972 | 0.2915 | 0.301 | 0.2877 | 0.3048 |
10 | 6 | 0.1259 | 0.1243 | 0.1289 | 0.1209 | 0.1317 | 0.1174 | 0.2972 | 0.2953 | 0.301 | 0.2915 | 0.3048 | 0.2877 |
10 | 7 | 0.1274 | 0.1226 | 0.1356 | 0.1116 | 0.1423 | 0.0982 | 0.2991 | 0.2934 | 0.3106 | 0.2819 | 0.322 | 0.2704 |
10 | 8 | 0.1289 | 0.1209 | 0.1413 | 0.1006 | 0.1499 | 0.0733 | 0.301 | 0.2915 | 0.3201 | 0.2723 | 0.339 | 0.253 |
10 | 9 | 0.1303 | 0.1192 | 0.146 | 0.088 | 0.1552 | 0.0415 | 0.3029 | 0.2896 | 0.3296 | 0.2627 | 0.3561 | 0.2354 |
10 | 10 | 0.1317 | 0.1174 | 0.1499 | 0.0733 | 0.159 | 0.0014 | 0.3048 | 0.2877 | 0.339 | 0.253 | 0.3731 | 0.2177 |
θ=4,β=0.2,η=0.5 | θ=9,β=2,η=1.5 | ||||||||
n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
2 | 0.14252 | 0.09764 | 0.15139 | 0.06608 | 2 | 0.32243 | 0.2699 | 0.3433 | 0.24861 |
3 | 0.14849 | 0.07907 | 0.15772 | 0.01748 | 3 | 0.33548 | 0.25662 | 0.36672 | 0.22435 |
4 | 0.15094 | 0.06835 | 0.15989 | –0.01305 | 4 | 0.342 | 0.24995 | 0.37841 | 0.21204 |
5 | 0.15205 | 0.0626 | 0.16079 | –0.03006 | 5 | 0.34525 | 0.24661 | 0.38426 | 0.20584 |
6 | 0.15257 | 0.05963 | 0.1612 | –0.03904 | 6 | 0.34688 | 0.24493 | 0.38718 | 0.20272 |
7 | 0.15283 | 0.05812 | 0.1614 | –0.04364 | 7 | 0.34769 | 0.24409 | 0.38864 | 0.20116 |
8 | 0.15296 | 0.05735 | 0.1615 | –0.04598 | 8 | 0.3481 | 0.24368 | 0.38937 | 0.20037 |
9 | 0.15302 | 0.05697 | 0.16154 | –0.04715 | 9 | 0.3483 | 0.24347 | 0.38974 | 0.19998 |
10 | 0.15305 | 0.05678 | 0.16157 | –0.04774 | 10 | 0.3484 | 0.24336 | 0.38992 | 0.19979 |
11 | 0.15307 | 0.05668 | 0.16158 | –0.04804 | 11 | 0.34846 | 0.24331 | 0.39001 | 0.19969 |
12 | 0.15307 | 0.05663 | 0.16158 | –0.04818 | 12 | 0.34848 | 0.24328 | 0.39006 | 0.19964 |
13 | 0.15308 | 0.05661 | 0.16159 | –0.04826 | 13 | 0.34849 | 0.24327 | 0.39008 | 0.19961 |
14 | 0.15308 | 0.0566 | 0.16159 | –0.04829 | 14 | 0.3485 | 0.24326 | 0.39009 | 0.1996 |
15 | 0.15308 | 0.05659 | 0.16159 | –0.04831 | 15 | 0.3485 | 0.24326 | 0.3901 | 0.1996 |
16 | 0.15308 | 0.05659 | 0.16159 | –0.04832 | 16 | 0.3485 | 0.24326 | 0.3901 | 0.19959 |
17 | 0.15308 | 0.05659 | 0.16159 | –0.04833 | 17 | 0.34851 | 0.24326 | 0.3901 | 0.19959 |
θ=4 | θ=9 | ||||||||
n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | n | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
2 | 0.0538 | 0.0558 | 0.0511 | 0.0552 | 2 | 0.0304 | 0.0295 | 0.0298 | 0.0286 |
3 | 0.0522 | 0.0555 | 0.0466 | 0.0536 | 3 | 0.0301 | 0.029 | 0.0281 | 0.0273 |
4 | 0.0513 | 0.0552 | 0.0437 | 0.0525 | 4 | 0.0299 | 0.0287 | 0.0268 | 0.0265 |
5 | 0.0508 | 0.0551 | 0.042 | 0.0519 | 5 | 0.0297 | 0.0285 | 0.0259 | 0.0262 |
6 | 0.0505 | 0.055 | 0.0411 | 0.0516 | 6 | 0.0296 | 0.0284 | 0.0255 | 0.026 |
7 | 0.0504 | 0.0549 | 0.0407 | 0.0514 | 7 | 0.0296 | 0.0284 | 0.0252 | 0.0259 |
8 | 0.0503 | 0.0549 | 0.0405 | 0.0513 | 8 | 0.0296 | 0.0283 | 0.0251 | 0.0258 |
9 | 0.0503 | 0.0549 | 0.0404 | 0.0513 | 9 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
10 | 0.0503 | 0.0549 | 0.0403 | 0.0513 | 10 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
11 | 0.0503 | 0.0549 | 0.0403 | 0.0512 | 11 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
12 | 0.0503 | 0.0549 | 0.0403 | 0.0512 | 12 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
13 | 0.0503 | 0.0549 | 0.0402 | 0.0512 | 13 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
14 | 0.0502 | 0.0549 | 0.0402 | 0.0512 | 14 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
15 | 0.0502 | 0.0549 | 0.0402 | 0.0512 | 15 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
16 | 0.0502 | 0.0549 | 0.0402 | 0.0512 | 16 | 0.0295 | 0.0283 | 0.025 | 0.0258 |
θ=4 | θ=9 | ||||||||||||
n | r | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 | α=−0.1 | α=0.1 | α=−0.5 | α=0.5 | α=−0.9 | α=0.9 |
4 | 1 | 0.0558 | 0.0553 | 0.0557 | 0.0532 | 0.0546 | 0.0495 | 0.0302 | 0.0304 | 0.0293 | 0.0303 | 0.0281 | 0.0293 |
4 | 2 | 0.0556 | 0.0555 | 0.0558 | 0.055 | 0.0559 | 0.0544 | 0.0303 | 0.0303 | 0.0301 | 0.0304 | 0.0298 | 0.0305 |
4 | 3 | 0.0555 | 0.0556 | 0.055 | 0.0558 | 0.0544 | 0.0559 | 0.0303 | 0.0303 | 0.0304 | 0.0301 | 0.0305 | 0.0298 |
4 | 4 | 0.0553 | 0.0558 | 0.0532 | 0.0557 | 0.0495 | 0.0546 | 0.0304 | 0.0302 | 0.0303 | 0.0293 | 0.0293 | 0.0281 |
6 | 1 | 0.0558 | 0.0552 | 0.0556 | 0.0525 | 0.0538 | 0.0473 | 0.0301 | 0.0304 | 0.0291 | 0.0302 | 0.0275 | 0.0284 |
6 | 2 | 0.0557 | 0.0554 | 0.0559 | 0.0541 | 0.0555 | 0.0521 | 0.0302 | 0.0304 | 0.0297 | 0.0304 | 0.0289 | 0.0301 |
6 | 3 | 0.0556 | 0.0555 | 0.0558 | 0.0552 | 0.0559 | 0.0548 | 0.0303 | 0.0303 | 0.0301 | 0.0304 | 0.03 | 0.0305 |
6 | 4 | 0.0555 | 0.0556 | 0.0552 | 0.0558 | 0.0548 | 0.0559 | 0.0303 | 0.0303 | 0.0304 | 0.0301 | 0.0305 | 0.03 |
6 | 5 | 0.0554 | 0.0557 | 0.0541 | 0.0559 | 0.0521 | 0.0555 | 0.0304 | 0.0302 | 0.0304 | 0.0297 | 0.0301 | 0.0289 |
6 | 6 | 0.0552 | 0.0558 | 0.0525 | 0.0556 | 0.0473 | 0.0538 | 0.0304 | 0.0301 | 0.0302 | 0.0291 | 0.0284 | 0.0275 |
8 | 1 | 0.0558 | 0.0552 | 0.0554 | 0.0521 | 0.0533 | 0.046 | 0.0301 | 0.0304 | 0.0289 | 0.0301 | 0.0271 | 0.0279 |
8 | 2 | 0.0557 | 0.0553 | 0.0558 | 0.0535 | 0.0549 | 0.0502 | 0.0302 | 0.0304 | 0.0294 | 0.0304 | 0.0283 | 0.0295 |
8 | 3 | 0.0557 | 0.0554 | 0.0559 | 0.0546 | 0.0557 | 0.0532 | 0.0302 | 0.0304 | 0.0299 | 0.0305 | 0.0293 | 0.0303 |
8 | 4 | 0.0556 | 0.0555 | 0.0557 | 0.0553 | 0.0558 | 0.055 | 0.0303 | 0.0303 | 0.0302 | 0.0304 | 0.0301 | 0.0304 |
8 | 5 | 0.0555 | 0.0556 | 0.0553 | 0.0557 | 0.055 | 0.0558 | 0.0303 | 0.0303 | 0.0304 | 0.0302 | 0.0304 | 0.0301 |
8 | 6 | 0.0554 | 0.0557 | 0.0546 | 0.0559 | 0.0532 | 0.0557 | 0.0304 | 0.0302 | 0.0305 | 0.0299 | 0.0303 | 0.0293 |
8 | 7 | 0.0553 | 0.0557 | 0.0535 | 0.0558 | 0.0502 | 0.0549 | 0.0304 | 0.0302 | 0.0304 | 0.0294 | 0.0295 | 0.0283 |
8 | 8 | 0.0552 | 0.0558 | 0.0521 | 0.0554 | 0.046 | 0.0533 | 0.0304 | 0.0301 | 0.0301 | 0.0289 | 0.0279 | 0.0271 |
10 | 1 | 0.0558 | 0.0551 | 0.0554 | 0.0518 | 0.053 | 0.045 | 0.0301 | 0.0304 | 0.0288 | 0.03 | 0.0269 | 0.0274 |
10 | 2 | 0.0558 | 0.0553 | 0.0557 | 0.053 | 0.0544 | 0.0489 | 0.0302 | 0.0304 | 0.0292 | 0.0303 | 0.0279 | 0.029 |
10 | 3 | 0.0557 | 0.0554 | 0.0559 | 0.054 | 0.0554 | 0.0518 | 0.0302 | 0.0304 | 0.0296 | 0.0304 | 0.0288 | 0.03 |
10 | 4 | 0.0557 | 0.0554 | 0.0559 | 0.0548 | 0.0559 | 0.0538 | 0.0302 | 0.0304 | 0.03 | 0.0305 | 0.0296 | 0.0304 |
10 | 5 | 0.0556 | 0.0555 | 0.0557 | 0.0554 | 0.0558 | 0.0551 | 0.0303 | 0.0303 | 0.0302 | 0.0304 | 0.0301 | 0.0304 |
10 | 6 | 0.0555 | 0.0556 | 0.0554 | 0.0557 | 0.0551 | 0.0558 | 0.0303 | 0.0303 | 0.0304 | 0.0302 | 0.0304 | 0.0301 |
10 | 7 | 0.0554 | 0.0557 | 0.0548 | 0.0559 | 0.0538 | 0.0559 | 0.0304 | 0.0302 | 0.0305 | 0.03 | 0.0304 | 0.0296 |
10 | 8 | 0.0554 | 0.0557 | 0.054 | 0.0559 | 0.0518 | 0.0554 | 0.0304 | 0.0302 | 0.0304 | 0.0296 | 0.03 | 0.0288 |
10 | 9 | 0.0553 | 0.0558 | 0.053 | 0.0557 | 0.0489 | 0.0544 | 0.0304 | 0.0302 | 0.0303 | 0.0292 | 0.029 | 0.0279 |
10 | 10 | 0.0551 | 0.0558 | 0.0518 | 0.0554 | 0.045 | 0.053 | 0.0304 | 0.0301 | 0.03 | 0.0288 | 0.0274 | 0.0269 |
θ | r | 1 | 2 | 14 | 15 | 29 | 30 |
4 | ξwθ,α=0.348(Z[r:30]) | 3958.94 | 3945.32 | 3781.93 | 3768.32 | 3577.69 | 3564.08 |
ζwθ,α=0.348(Z[r:30]) | 0.333164 | 0.333158 | 0.333068 | 0.333059 | 0.332893 | 0.332878 | |
9 | ξwθ,α=0.348(Z[r:30]) | 1484.6 | 1479.49 | 1418.22 | 1413.12 | 1341.64 | 1336.53 |
ζwθ,α=0.348(Z[r:30]) | 0.12499 | 0.124989 | 0.124983 | 0.124982 | 0.124968 | 0.124966 |
θ | r | 1 | 2 | 14 | 15 | 29 | 30 |
4 | ξwθ[r:30](Z) | 0.26141 | 0.253816 | 0.158299 | 0.149854 | 0.0190433 | 0.00855513 |
ζwθ[r:30](Z) | 0.308546 | 0.30781 | 0.294593 | 0.293007 | 0.258213 | 0.254584 | |
15 | ξwθ[r:30](Z) | 0.0594999 | 0.0579511 | 0.0392552 | 0.0376493 | 0.0123585 | 0.0101515 |
ζwθ[r:30](Z) | 0.0696003 | 0.0695212 | 0.0684611 | 0.0683249 | 0.0636092 | 0.0628719 | |
30 | ξwθ[r:30](Z) | 0.0291314 | 0.0283863 | 0.019546 | 0.0187973 | 0.00726299 | 0.00626894 |
ζwθ[r:30](Z) | 0.0340075 | 0.0339718 | 0.0336455 | 0.0336062 | 0.0320047 | 0.0317202 |