[1]
|
M. J. Wade, R. W. Pattinson, N. G. Parker, J. Dolfing, Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web', J. Theor. Biol., 389 (2016), 171-186. doi: 10.1016/j.jtbi.2015.10.032
|
[2]
|
C. Mazur, W. Jones, C. Tebes-Stevens, H2 consumption during the microbial reductive dehalogenation of chlorinated phenols and tetrachloroethene, Biodegradation, 14 (2003), 285-295. doi: 10.1023/A:1024765706617
|
[3]
|
L. Levén, K. Nyberg, A. Schnürer, Conversion of phenols during anaerobic digestion of organic solid waste - a review of important microorganisms and impact of temperature, J. Env. Manage., 95 (2012), 99-103.
|
[4]
|
T. Großkopf, O. Soyer, Microbial diversity arising from thermodynamic constraints, ISME J., 10 (2016), 2725-2733. doi: 10.1038/ismej.2016.49
|
[5]
|
B. Schink, Energetics of syntrophic cooperation in methanogenic degradation, Microbiol. Mol. Biol. Rev., 61 (1997), 262-280. doi: 10.1128/.61.2.262-280.1997
|
[6]
|
I. Bassani, P. G. Kougias, L. Treu, I. Angelidaki, Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions, Environ. Sci. Technol., 49 (2015), 12585-12593. doi: 10.1021/acs.est.5b03451
|
[7]
|
J. Chen, M. J. Wade, J. Dolfing, O. S. Soyer, Increasing sulfate levels show a differential impact on synthetic communities comprising different methanogens and a sulfate reducer, J. Royal Soc. Interface, 16 (2019), 20190129.
|
[8]
|
N. W. Smith, P. R. Shorten, E. H. Altermann, N. C. Roy, W. C. McNabb, Hydrogen cross-feeders of the human gastrointestinal tract, Gut Microbes, 10 (2019), 270-288. doi: 10.1080/19490976.2018.1546522
|
[9]
|
T. Sari, M. J. Wade, Generalised approach to modelling a three-tiered microbial food-web, Math. Biosci., 291 (2017), 21-37. doi: 10.1016/j.mbs.2017.07.005
|
[10]
|
M. El Hajji, N. Chorfi, M. Jleli, Mathematical modelling and analysis for a three-tiered microbial food web in a chemostat, Electron. J. Differ. Eq., 255 (2017), 1-13.
|
[11]
|
S. Nouaoura, N. Abdellatif, R. Fekih-Salem, T. Sari, Mathematical analysis of a three-tiered model of anaerobic digestion, Preprint, hal-02540350v2.
|
[12]
|
S. Nouaoura, R. Fekih-Salem, N. Abdellatif, T. Sari, Mathematical analysis of a three-tiered food-web in the chemostat, Preprint, hal-02878246.
|
[13]
|
Y. Kuznestov, Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 2004.
|
[14]
|
Maple [Software]. Version 18.02. Waterloo Maple Inc., Waterloo, Ontario, 2018. Available from: https://maplesoft.com.
|
[15]
|
MATLAB [Software]. Version 9.5.0.944444 (R2018b). The MathWorks Inc., Natick, Massachusetts, 2018. Available from: https://www.mathworks.com.
|
[16]
|
H. L. Smith, P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition (Cambridge Studies in Mathematical Biology), Cambridge University Press, 1995.
|
[17]
|
G. J. Butler, H. I. Freedman, P. Waltman, Uniformly persistent systems, P. Am. Math. Soc., 96 (1986), 425-430.
|
[18]
|
G. J. Butler, G. S. K. Wolkowicz, Predator-mediated competition in the chemostat, J. Math. Biol., 24 (1986), 167–191.
|
[19]
|
H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.
|
[20]
|
XPPAUT [Software]. Version 8.0. Dr. Bard Ermentrout, Dept of Mathematics, University of Pittsburgh, Pittsburgh PA, 2016. Available from: http://www.math.pitt.edu/bard/xpp/xpp.html.
|
[21]
|
M. El Karoui, M. Hoyos-Flight, L. Fletcher, Future trends in synthetic biology—a report, Front. Bioeng. Biotechnol., 7 (2019), 175.
|
[22]
|
H. Delattre, J. Chen, M. J. Wade, O. S. Soyer, Thermodynamic modelling of synthetic communities predicts minimum free energy requirements for sulfate reduction and methanogenesis, J. R. Soc. Interface, 17 (2020), 20200053.
|