Citation: Szymon Sobieszek, Matthew J. Wade, Gail S. K. Wolkowicz. Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7045-7073. doi: 10.3934/mbe.2020363
[1] | M. J. Wade, R. W. Pattinson, N. G. Parker, J. Dolfing, Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web', J. Theor. Biol., 389 (2016), 171-186. doi: 10.1016/j.jtbi.2015.10.032 |
[2] | C. Mazur, W. Jones, C. Tebes-Stevens, H_{2} consumption during the microbial reductive dehalogenation of chlorinated phenols and tetrachloroethene, Biodegradation, 14 (2003), 285-295. doi: 10.1023/A:1024765706617 |
[3] | L. Levén, K. Nyberg, A. Schnürer, Conversion of phenols during anaerobic digestion of organic solid waste - a review of important microorganisms and impact of temperature, J. Env. Manage., 95 (2012), 99-103. |
[4] | T. Großkopf, O. Soyer, Microbial diversity arising from thermodynamic constraints, ISME J., 10 (2016), 2725-2733. doi: 10.1038/ismej.2016.49 |
[5] | B. Schink, Energetics of syntrophic cooperation in methanogenic degradation, Microbiol. Mol. Biol. Rev., 61 (1997), 262-280. doi: 10.1128/.61.2.262-280.1997 |
[6] | I. Bassani, P. G. Kougias, L. Treu, I. Angelidaki, Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions, Environ. Sci. Technol., 49 (2015), 12585-12593. doi: 10.1021/acs.est.5b03451 |
[7] | J. Chen, M. J. Wade, J. Dolfing, O. S. Soyer, Increasing sulfate levels show a differential impact on synthetic communities comprising different methanogens and a sulfate reducer, J. Royal Soc. Interface, 16 (2019), 20190129. |
[8] | N. W. Smith, P. R. Shorten, E. H. Altermann, N. C. Roy, W. C. McNabb, Hydrogen cross-feeders of the human gastrointestinal tract, Gut Microbes, 10 (2019), 270-288. doi: 10.1080/19490976.2018.1546522 |
[9] | T. Sari, M. J. Wade, Generalised approach to modelling a three-tiered microbial food-web, Math. Biosci., 291 (2017), 21-37. doi: 10.1016/j.mbs.2017.07.005 |
[10] | M. El Hajji, N. Chorfi, M. Jleli, Mathematical modelling and analysis for a three-tiered microbial food web in a chemostat, Electron. J. Differ. Eq., 255 (2017), 1-13. |
[11] | S. Nouaoura, N. Abdellatif, R. Fekih-Salem, T. Sari, Mathematical analysis of a three-tiered model of anaerobic digestion, Preprint, hal-02540350v2. |
[12] | S. Nouaoura, R. Fekih-Salem, N. Abdellatif, T. Sari, Mathematical analysis of a three-tiered food-web in the chemostat, Preprint, hal-02878246. |
[13] | Y. Kuznestov, Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 2004. |
[14] | Maple [Software]. Version 18.02. Waterloo Maple Inc., Waterloo, Ontario, 2018. Available from: https://maplesoft.com. |
[15] | MATLAB [Software]. Version 9.5.0.944444 (R2018b). The MathWorks Inc., Natick, Massachusetts, 2018. Available from: https://www.mathworks.com. |
[16] | H. L. Smith, P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition (Cambridge Studies in Mathematical Biology), Cambridge University Press, 1995. |
[17] | G. J. Butler, H. I. Freedman, P. Waltman, Uniformly persistent systems, P. Am. Math. Soc., 96 (1986), 425-430. |
[18] | G. J. Butler, G. S. K. Wolkowicz, Predator-mediated competition in the chemostat, J. Math. Biol., 24 (1986), 167–191. |
[19] | H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763. |
[20] | XPPAUT [Software]. Version 8.0. Dr. Bard Ermentrout, Dept of Mathematics, University of Pittsburgh, Pittsburgh PA, 2016. Available from: http://www.math.pitt.edu/bard/xpp/xpp.html. |
[21] | M. El Karoui, M. Hoyos-Flight, L. Fletcher, Future trends in synthetic biology—a report, Front. Bioeng. Biotechnol., 7 (2019), 175. |
[22] | H. Delattre, J. Chen, M. J. Wade, O. S. Soyer, Thermodynamic modelling of synthetic communities predicts minimum free energy requirements for sulfate reduction and methanogenesis, J. R. Soc. Interface, 17 (2020), 20200053. |