Research article Special Issues

Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow

  • Received: 15 June 2020 Accepted: 29 September 2020 Published: 19 October 2020
  • The mathematical analysis of a three-tiered food-web describing anaerobic chlorophenol mineralisation has suggested the emergence of interesting dynamical behaviour through its specific ecological interactions, which include competition, syntrophy, and product inhibition. Previous numerical analyses have revealed the possibility of a Hopf bifurcation at the interior equilibrium as well as the role of extraneous substrate inputs in both mitigating the emergence of periodic solutions and expanding the desired operating region where the positive steady-state is stable and full mineralisation occurs. Here we show that, for a generalised model, the inflow of multiple substrates results in greater dynamical complexity and show the occurrence of a supercritical Hopf bifurcation resulting from variations in these operating parameters. Further, using numerical estimation, we also show that variations in the dilution rate can lead to Bogdanov-Takens and Bautin bifurcations. Finally, we are able to apply persistence theory for a range of parameter sets to demonstrate persistence in cases where chlorophenol and hydrogen are extraneously added to the system, mirroring recent applied studies highlighting the role of hydrogen in maintaining stable anaerobic microbial communities.

    Citation: Szymon Sobieszek, Matthew J. Wade, Gail S. K. Wolkowicz. Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7045-7073. doi: 10.3934/mbe.2020363

    Related Papers:

    [1] Jinhu Xu, Yicang Zhou . Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences and Engineering, 2016, 13(2): 343-367. doi: 10.3934/mbe.2015006
    [2] Amer Hassan Albargi, Miled El Hajji . Mathematical analysis of a two-tiered microbial food-web model for the anaerobic digestion process. Mathematical Biosciences and Engineering, 2023, 20(4): 6591-6611. doi: 10.3934/mbe.2023283
    [3] Boumediene Benyahia, Tewfik Sari . Effect of a new variable integration on steady states of a two-step Anaerobic Digestion Model. Mathematical Biosciences and Engineering, 2020, 17(5): 5504-5533. doi: 10.3934/mbe.2020296
    [4] Xiaomeng Ma, Zhanbing Bai, Sujing Sun . Stability and bifurcation control for a fractional-order chemostat model with time delays and incommensurate orders. Mathematical Biosciences and Engineering, 2023, 20(1): 437-455. doi: 10.3934/mbe.2023020
    [5] Ranjit Kumar Upadhyay, Swati Mishra, Yueping Dong, Yasuhiro Takeuchi . Exploring the dynamics of a tritrophic food chain model with multiple gestation periods. Mathematical Biosciences and Engineering, 2019, 16(5): 4660-4691. doi: 10.3934/mbe.2019234
    [6] Zhenliang Zhu, Yuming Chen, Zhong Li, Fengde Chen . Dynamic behaviors of a Leslie-Gower model with strong Allee effect and fear effect in prey. Mathematical Biosciences and Engineering, 2023, 20(6): 10977-10999. doi: 10.3934/mbe.2023486
    [7] Christian Cortés García, Jasmidt Vera Cuenca . Impact of alternative food on predator diet in a Leslie-Gower model with prey refuge and Holling Ⅱ functional response. Mathematical Biosciences and Engineering, 2023, 20(8): 13681-13703. doi: 10.3934/mbe.2023610
    [8] A. Aldurayhim, A. Elsonbaty, A. A. Elsadany . Dynamics of diffusive modified Previte-Hoffman food web model. Mathematical Biosciences and Engineering, 2020, 17(4): 4225-4256. doi: 10.3934/mbe.2020234
    [9] Mengyun Xing, Mengxin He, Zhong Li . Dynamics of a modified Leslie-Gower predator-prey model with double Allee effects. Mathematical Biosciences and Engineering, 2024, 21(1): 792-831. doi: 10.3934/mbe.2024034
    [10] Gunog Seo, Mark Kot . The dynamics of a simple Laissez-Faire model with two predators. Mathematical Biosciences and Engineering, 2009, 6(1): 145-172. doi: 10.3934/mbe.2009.6.145
  • The mathematical analysis of a three-tiered food-web describing anaerobic chlorophenol mineralisation has suggested the emergence of interesting dynamical behaviour through its specific ecological interactions, which include competition, syntrophy, and product inhibition. Previous numerical analyses have revealed the possibility of a Hopf bifurcation at the interior equilibrium as well as the role of extraneous substrate inputs in both mitigating the emergence of periodic solutions and expanding the desired operating region where the positive steady-state is stable and full mineralisation occurs. Here we show that, for a generalised model, the inflow of multiple substrates results in greater dynamical complexity and show the occurrence of a supercritical Hopf bifurcation resulting from variations in these operating parameters. Further, using numerical estimation, we also show that variations in the dilution rate can lead to Bogdanov-Takens and Bautin bifurcations. Finally, we are able to apply persistence theory for a range of parameter sets to demonstrate persistence in cases where chlorophenol and hydrogen are extraneously added to the system, mirroring recent applied studies highlighting the role of hydrogen in maintaining stable anaerobic microbial communities.




    [1] M. J. Wade, R. W. Pattinson, N. G. Parker, J. Dolfing, Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web', J. Theor. Biol., 389 (2016), 171-186. doi: 10.1016/j.jtbi.2015.10.032
    [2] C. Mazur, W. Jones, C. Tebes-Stevens, H2 consumption during the microbial reductive dehalogenation of chlorinated phenols and tetrachloroethene, Biodegradation, 14 (2003), 285-295. doi: 10.1023/A:1024765706617
    [3] L. Levén, K. Nyberg, A. Schnürer, Conversion of phenols during anaerobic digestion of organic solid waste - a review of important microorganisms and impact of temperature, J. Env. Manage., 95 (2012), 99-103.
    [4] T. Großkopf, O. Soyer, Microbial diversity arising from thermodynamic constraints, ISME J., 10 (2016), 2725-2733. doi: 10.1038/ismej.2016.49
    [5] B. Schink, Energetics of syntrophic cooperation in methanogenic degradation, Microbiol. Mol. Biol. Rev., 61 (1997), 262-280. doi: 10.1128/.61.2.262-280.1997
    [6] I. Bassani, P. G. Kougias, L. Treu, I. Angelidaki, Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions, Environ. Sci. Technol., 49 (2015), 12585-12593. doi: 10.1021/acs.est.5b03451
    [7] J. Chen, M. J. Wade, J. Dolfing, O. S. Soyer, Increasing sulfate levels show a differential impact on synthetic communities comprising different methanogens and a sulfate reducer, J. Royal Soc. Interface, 16 (2019), 20190129.
    [8] N. W. Smith, P. R. Shorten, E. H. Altermann, N. C. Roy, W. C. McNabb, Hydrogen cross-feeders of the human gastrointestinal tract, Gut Microbes, 10 (2019), 270-288. doi: 10.1080/19490976.2018.1546522
    [9] T. Sari, M. J. Wade, Generalised approach to modelling a three-tiered microbial food-web, Math. Biosci., 291 (2017), 21-37. doi: 10.1016/j.mbs.2017.07.005
    [10] M. El Hajji, N. Chorfi, M. Jleli, Mathematical modelling and analysis for a three-tiered microbial food web in a chemostat, Electron. J. Differ. Eq., 255 (2017), 1-13.
    [11] S. Nouaoura, N. Abdellatif, R. Fekih-Salem, T. Sari, Mathematical analysis of a three-tiered model of anaerobic digestion, Preprint, hal-02540350v2.
    [12] S. Nouaoura, R. Fekih-Salem, N. Abdellatif, T. Sari, Mathematical analysis of a three-tiered food-web in the chemostat, Preprint, hal-02878246.
    [13] Y. Kuznestov, Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 2004.
    [14] Maple [Software]. Version 18.02. Waterloo Maple Inc., Waterloo, Ontario, 2018. Available from: https://maplesoft.com.
    [15] MATLAB [Software]. Version 9.5.0.944444 (R2018b). The MathWorks Inc., Natick, Massachusetts, 2018. Available from: https://www.mathworks.com.
    [16] H. L. Smith, P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition (Cambridge Studies in Mathematical Biology), Cambridge University Press, 1995.
    [17] G. J. Butler, H. I. Freedman, P. Waltman, Uniformly persistent systems, P. Am. Math. Soc., 96 (1986), 425-430.
    [18] G. J. Butler, G. S. K. Wolkowicz, Predator-mediated competition in the chemostat, J. Math. Biol., 24 (1986), 167–191.
    [19] H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.
    [20] XPPAUT [Software]. Version 8.0. Dr. Bard Ermentrout, Dept of Mathematics, University of Pittsburgh, Pittsburgh PA, 2016. Available from: http://www.math.pitt.edu/bard/xpp/xpp.html.
    [21] M. El Karoui, M. Hoyos-Flight, L. Fletcher, Future trends in synthetic biology—a report, Front. Bioeng. Biotechnol., 7 (2019), 175.
    [22] H. Delattre, J. Chen, M. J. Wade, O. S. Soyer, Thermodynamic modelling of synthetic communities predicts minimum free energy requirements for sulfate reduction and methanogenesis, J. R. Soc. Interface, 17 (2020), 20200053.
  • This article has been cited by:

    1. Rachidi B. Salako, Wenxian Shen, Shuwen Xue, Can chemotaxis speed up or slow down the spatial spreading in parabolic–elliptic Keller–Segel systems with logistic source?, 2019, 79, 0303-6812, 1455, 10.1007/s00285-019-01400-0
    2. Yingjie Zhu, Existence of a Nontrivial Steady-State Solution to a Parabolic-Parabolic Chemotaxis System with Singular Sensitivity, 2019, 2019, 1026-0226, 1, 10.1155/2019/8140380
    3. Rachidi B. Salako, Wenxian Shen, Existence of traveling wave solutions of parabolic–parabolic chemotaxis systems, 2018, 42, 14681218, 93, 10.1016/j.nonrwa.2017.12.004
    4. Rachidi B. Salako, Wenxian Shen, Parabolic–Elliptic Chemotaxis Model with Space–Time Dependent Logistic Sources on RN
    . III: Transition Fronts, 2020, 1040-7294, 10.1007/s10884-020-09901-z
    5. Rachidi B. Salako, Wenxian Shen, Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on RN, 2017, 37, 1553-5231, 6189, 10.3934/dcds.2017268
    6. Yizhuo Wang, Shangjiang Guo, Dynamics for a two-species competitive Keller-Segel chemotaxis system with a free boundary, 2021, 502, 0022247X, 125259, 10.1016/j.jmaa.2021.125259
    7. José Luis López, On nonstandard chemotactic dynamics with logistic growth induced by a modified complex Ginzburg–Landau equation, 2022, 148, 0022-2526, 248, 10.1111/sapm.12440
    8. Yizhuo Wang, Shangjiang Guo, Traveling wave solutions for a two-species competitive Keller–Segel chemotaxis system, 2023, 73, 14681218, 103900, 10.1016/j.nonrwa.2023.103900
    9. Shangbing Ai, Zengji Du, Traveling wave solutions for a Keller-Segel system with nonlinear chemical gradient, 2024, 0022247X, 129128, 10.1016/j.jmaa.2024.129128
    10. Dong Li, Nengxing Tan, Xiaxia Wu, Periodic Travelling Wave Solutions in a Two-Species Chemotaxis Model with Time Delay Effect, 2025, 48, 0126-6705, 10.1007/s40840-025-01904-7
    11. J. L. López, On the compatibility of a family of generalized Keller–Segel models with the Kardar–Parisi–Zhang equation: A traveling wave study, 2025, 35, 0218-2025, 1971, 10.1142/S0218202525500265
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4024) PDF downloads(92) Cited by(13)

Article outline

Figures and Tables

Figures(10)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog