Citation: Mohammad Ferdows, Ghulam Murtaza, Jagadis C. Misra, Efstratios E. Tzirtzilakis, Abdulaziz Alsenafi. Dual solutions in biomagnetic fluid flow and heat transfer over a nonlinear stretching/shrinking sheet: Application of lie group transformation method[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 4852-4874. doi: 10.3934/mbe.2020264
[1] | J. C. Misra, A. Sinha, G. C. Shit, Flow of a biomagnetic viscoelastic fluid: application to estimate of blood flow in arteries during electromagnetic hyperthermia, a therapeutic procedure for cancer treatment, App. Math. Mech. Engl., 31 (2010), 1405-1420. |
[2] | P. W. Nelson, M. A. Gilchrist, D. Coombs, J. M. Hyman, A. S. Perelson, An age-structured model of HIV infection that allow for variations in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci. Eng., 1 (2004), 267-288. |
[3] | J. Wang, X. Dong, Analysis of an HIV infection model incorporating latency age and infection age, Math. Biosci. Eng., 15 (2018), 569-594. |
[4] | Y. Haik, C. J. Chen, V. Pai, Development of biomagnetic fluid dynamics. Proceedings of the IX international Symposium on Transport Properties in Thermal fluid engineering, Singapore, Pacific center of thermal fluid engineering, June 25-28: 121-126 (1996). |
[5] | E. E. Tzirtzilakis, A Mathematical model for blood flow in magnetic field, Phys. Fluids, 17 (2005), 077103-1-14. |
[6] | E. E. Tzirtzilakis, N. G. Kafoussias, Biomagnetic fluid flow over a stretching sheet with nonlinear temperature dependent magnetization, Z. Angew. Math. Phys (ZAMP), 8 (2003), 54-65. |
[7] | E. E. Tzirtzilakis, G. B. Tanoudis, Numerical study of biomagnetic fluid flow over a stretching sheet with heat transfer, Int. J. Numer. Methods Heat Fluid Flow, 13 (2003), 830-848. |
[8] | G. M. Murtaza, E. E. Tzirtzilakis, M. Ferdows, Effect of electrical conductivity and magnetization on the biomagnetic fluid flow over a stretching sheet, Z. Angew. Math. Phy. (ZAMP), 68 (2017), 93. |
[9] | M. Ferdows, G. M. Murtaza, E. E. Tzirtzilakis, F. Alzahrani, Numerical study of blood flow and heat transfer through stretching cylinder in presence of a magnetic dipole, Z. Angew. Math. Mech., 2020, e201900278. |
[10] | L. Zhang, M. B. Arain, M. M. Bhatti, A. Zeeshan, H. H. Sulami, Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids, Appl. Math. Mech. Engl. Ed., 41 (2020), 637-654. |
[11] | M. M. Bhatti, M. Marin, A. Zeeshan, R. Ellahi, S. I. Abdelsalam, Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through Anisotropically tapered arteries, Front. Phys., 8 (2020), 95. |
[12] | M. M. Bhatti, A. Zeeshan, R. Ellahi, Heat transfer analysis on peristaltically induced motion of particle-fluid suspension with variable viscosity: clot blood model, Comput. Meth. Prog. Bio., 137 (2016), 115-124. |
[13] | M. M. Bhatti, A. Zeeshan, R. Ellahi, Endoscope analysis on peristaltic blood flow of Sisko fluid with Titanium magneto-nanoparticles, Comput. Biol. Med., 78 (2016), 29-41. |
[14] | S. Mukhopadhyay, Heat transfer in a moving fluid over a moving non-isothermal flat surface, Chin. Phys. Lett., 28 (2011), 124706. |
[15] | K. Vajravelu, G. Sarojamma, K. Sreelakshmi, C. H. Kalyani, Dual solutions of an unsteady flow, heat and mass transfer of an electrically conducting fluid over a shrinking sheet in the presence of radiation and viscous dissipation, Int. J. Mechan. Sci., 130 (2017), 119-132. |
[16] | P. M. Krishna, N. Sandeep, R. Reddy, V. Sugunamma, Dual solutions for unsteady flow of powell-Eyring fluid past an inclined stretching sheet, J. Naval Archit. Mar. Eng., 13 (2016), 89-99. |
[17] | K. Naganthran, R. Nazar, Dual solutions of MHD stagnation-point flow and heat transfer past a stretching/shrinking sheet in a porous medium, 4th International Conference on Mathematical Science AIP Conf., 1830 (2017), 020038-1-020038-8. |
[18] | E. H. Hafidzuddin, R. Nazar, N. M. Arifin, I. Pop, Boundary layer flow and heat transfer over s permeable exponentially stretching/shrinking sheet with generalized slip velocity, J. Appl. Fluid Mechan., 9 (2016), 2025-2036. |
[19] | T. R, Mahapatra, S. K. Nandy, I. Pop, Dual solutions in magnetohydrodynamics stagnation point flow and heat transfer over a shrinking surface with partial slip, J. Heat Transfer, ASME, 136 (2014), 104501: 1-6. |
[20] | R. Dhanai, P. Ranaa, L. Kumar, Multiple solutions in MHD flow and heat transfer of Sisko fluid containing nanoparticles migration with a convective boundary condition: Critical points, Eur. Phys. J. Plus, 131 (2016), 142. |
[21] | M. H. M. Yasin, A. Ishak, I. Pop, MHD heat and mass transfer flow over a permeable stretching/shrinking sheet with radiation effect, J. Magnet. Magnet. Mater., 407 (2016), 235-240. |
[22] | I. S. Awaludin, P. D. Weidman, A. Ishak, Stability analysis of stagnation-point flow over a stretching/shrinking sheet, AIP Advances, 6 (2016), 0453081-7. |
[23] | U. Mishra, G. Singh, Dual solutions of mixed convection flow with momentum and thermal slip flow over a permeable shrinking cylinder, Comput. Fluids, 93 (2014), 107-115. |
[24] | M. Pakdemirli, M. Yurusoy, Similarity transformations for partial differential equations, Soc. Ind. Appl. Math., 40 (1998), 96-101. |
[25] | G. W. Bluman, S. Kumei, Symmetries and differential equations, Applied mathematical sciences, Newyork: Springer-Verlag; 1991. |
[26] | K. S. Prabhu, R. Kandasamy, R. Saravanan, Lie group analysis for the effect of viscosity and thermophoresis particle deposition on free convective heat and mass transfer in the presence of suction/injection, Theor. Appl. Mech., (2009), 275-298. |
[27] | M. Jalil, S. Asghar, M. Mushtaq, Lie group analysis of mixed convection flow with mass transfer over a stretching surface with suction or injection, Math. Probl. Eng., 2010 (2010), 1-14. |
[28] | M. G. Reddy, Lie group analysis of heat and mass transfer effects on steady MHD free convection dissipative fluid flow past an inclined porous surface with heat generation, Theoret. Appl. Mech., 39 (2012), 233-254. |
[29] | M. M. Rashidi, E. Momoniat, M. Ferdows, A. Basiriparsa, Lie group solution for free convective flow of a nanofluid past a chemically reacting horizontal plate in a porous media, Math. Probl. Eng., 2014 (2014), 1-21. |
[30] | M. Ferdows, M. J. Uddin, A. A. Afify, Scaling group transformation for MHD boundary layer free convective heat and mass transfer flow past a convectively heated nonlinear radiating stretching sheet, Int. J. Heat Mass Transfer, 56 (2013),181-187. |
[31] | J. C. Misra, A. Sinha, Effect of thermal radiation on MHD flow of blood and heat transfer in a permeable capillary in stretching motion, Heat Mass Transfer, 49 (2013), 617-628. |
[32] | A. Sinha, J. C. Misra, Effect of induced magnetic field on magnetohydrodynamic stagnation point flow and heat transfer on a stretching sheet, J. Heat Transfer, ASME, 136 (2014), 112701:1-11. |
[33] | J. C. Misra, S. Chandra, Electroosmotically actuated oscillatory flow of a physiological fluid on a porous micro-channel subjected to an AC electric field having dissimilar frequencies, Cent. Euro. J. Phys., 12 (2013), 274-285. |
[34] | J. C. Misra, S. Chandra, H. Herwig, Flow of a micro polar fluid in a micro-channel under the action of an alternating electric field: Estimates of flow in bio-fluidic devices, J. Hydrodyn., 27 (2015), 350-358. |
[35] | J. C. Misra, S. D. Adhikary, MHD oscillatory channel flow, heat and mass transfer of a physiological fluid in presence of chemical reaction, Alex. Engng. J., 55 (2016), 287-297. |
[36] | J. C. Misra, S. D. Adhikary, Flow of a Bingham fluid in a porous bed under the action of a magnetic field, Eng. Sci. Technol., 20 (2017), 973-981. |
[37] | M. Hatami, J. Hatami, D. D. Ganji, Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel, Comput. Method. Program. Biomed., 113 (2014), 632-641. |
[38] | D. S. Chauhan, R. Agrawal, MHD flow through a porous medium adjacent to a stretching sheet: Numerical and an approximate solution, Eur. Phys. J. Plus, 126 (2011), 47. |
[39] | M. W. A. Khan, M. I. Khan, T. Hayat, A. Alsaedi, Numerical solution of MHD flow of power law fluid subject to convective boundary conditions and entropy generation, Comput. Method. Program. Biomed., 188 (2019), 105262. |
[40] | U. S. Mahabaleshwar, K. R. Nagaraju, P. N. V. kumar, M. N. Nadagoud, R. Bennacer, D. Baleanu, An MHD viscous liquid stagnation point flow and heat transfer with thermal radiation and transpiration, Therm. Sci. Eng. Progress, 16 (2020), 100379. |
[41] | U. S. Mahabaleshwar, K. R. Nagaraju, P. N. V. Kumar, M. N. Nadagouda, R. Bennacer, M. A. Sheremet, Effects of Dufour and Soret mechanisms on MHD mixed convective-radiative non-Newtonian liquid flow and heat transfer over a porous sheet, Therm. Sci. Eng. Progress, 16 (2020), 100459. |
[42] | K. Nagranthran, R. Nazar, I. Pop, Unsteady stagnation point flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet, Sci. Rep., 6(2016), 24632. |
[43] | K. Bhattacharyya, Dual solutions in unsteady stagnation-point flow over a shrinking sheet, Chin. Phys. Lett., 28 (2011), 084702. |
[44] | H. S. Hassan, Symmetry analysis for MHD viscous flow and heat transfer over a stretching sheet, Appl. Math., 6(1) (2015), 78-94. |
[45] | S. D. Harris, D. B. Ingham, I. Pop, Mixed convection Boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip, Transp. Porous Media, 77 (2009), 267-285. |
[46] | H. I. Andersson, O. A. Valnes, Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole, Acta Mechan., 128 (1998), 39-47. |