Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Research article Special Issues

Free vibration of summation resonance of suspended-cable-stayed beam

  • Received: 29 April 2019 Accepted: 01 July 2019 Published: 08 August 2019
  • Free vibration of summation resonance of suspended-cable-stayed beam is investigated in the article. A 3-DOF model of the coupled structure is built, with the main cable and sling (vertical cable) considered to be geometrically nonlinear, and the beam is taken as linear Euler beam. Hamilton's principle is used to derive the dynamic equilibrium equations of the coupled structure. Then, the dynamic equilibrium equations are solved by means of multiple scales method, the second order approximation solutions of single-modal motion of the coupled structure are obtained. Numerical examples are presented to discuss time history of free vibration of the summation resonance, with and without damping. Additionally, fourth-order Runge-Kutta method is directly used for the dynamic equilibrium equations to complement and verify the analytical solutions. The results show that the coupled structure performs strongly nonlinear and coupled characteristics, which is useful for engineering design.

    Citation: Chunguang Dong, Zhuojie Zhang, Xiaoxia Zhen, Mu Chen. Free vibration of summation resonance of suspended-cable-stayed beam[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 7230-7249. doi: 10.3934/mbe.2019363

    Related Papers:

    [1] Hany Bauomy . Safety action over oscillations of a beam excited by moving load via a new active vibration controller. Mathematical Biosciences and Engineering, 2023, 20(3): 5135-5158. doi: 10.3934/mbe.2023238
    [2] Hany Bauomy, Ashraf Taha . Nonlinear saturation controller simulation for reducing the high vibrations of a dynamical system. Mathematical Biosciences and Engineering, 2022, 19(4): 3487-3508. doi: 10.3934/mbe.2022161
    [3] Xiaoyu Du, Yijun Zhou, Lingzhen Li, Cecilia Persson, Stephen J. Ferguson . The porous cantilever beam as a model for spinal implants: Experimental, analytical and finite element analysis of dynamic properties. Mathematical Biosciences and Engineering, 2023, 20(4): 6273-6293. doi: 10.3934/mbe.2023270
    [4] Abdulaziz Alsenafi, M. Ferdows . Effects of thermal slip and chemical reaction on free convective nanofluid from a horizontal plate embedded in a porous media. Mathematical Biosciences and Engineering, 2021, 18(4): 4817-4833. doi: 10.3934/mbe.2021245
    [5] Hao Chen, Shengjie Li, Xi Lu, Qiong Zhang, Jixining Zhu, Jiaxin Lu . Research on bearing fault diagnosis based on a multimodal method. Mathematical Biosciences and Engineering, 2024, 21(12): 7688-7706. doi: 10.3934/mbe.2024338
    [6] Jagadeesh R. Sonnad, Chetan T. Goudar . Solution of the Michaelis-Menten equation using the decomposition method. Mathematical Biosciences and Engineering, 2009, 6(1): 173-188. doi: 10.3934/mbe.2009.6.173
    [7] Ganjun Xu, Ning Dai, Sukun Tian . Principal stress lines based design method of lightweight and low vibration amplitude gear web. Mathematical Biosciences and Engineering, 2021, 18(6): 7060-7075. doi: 10.3934/mbe.2021351
    [8] Igor Grigorev, Albert Burgonutdinov, Valentin Makuev, Evgeniy Tikhonov, Viktoria Shvetsova, Oksana Timokhova, Sergey Revyako, Natalia Dmitrieva . The theoretical modeling of the dynamic compaction process of forest soil. Mathematical Biosciences and Engineering, 2022, 19(3): 2935-2949. doi: 10.3934/mbe.2022135
    [9] Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Abeer S. Alnahdi, Mdi Begum Jeelani, M. A. Abdelkawy . Numerical investigations of the nonlinear smoke model using the Gudermannian neural networks. Mathematical Biosciences and Engineering, 2022, 19(1): 351-370. doi: 10.3934/mbe.2022018
    [10] Anna Andrews, Pezad Doctor, Lasya Gaur, F. Gerald Greil, Tarique Hussain, Qing Zou . Manifold-based denoising for Ferumoxytol-enhanced 3D cardiac cine MRI. Mathematical Biosciences and Engineering, 2024, 21(3): 3695-3712. doi: 10.3934/mbe.2024163
  • Free vibration of summation resonance of suspended-cable-stayed beam is investigated in the article. A 3-DOF model of the coupled structure is built, with the main cable and sling (vertical cable) considered to be geometrically nonlinear, and the beam is taken as linear Euler beam. Hamilton's principle is used to derive the dynamic equilibrium equations of the coupled structure. Then, the dynamic equilibrium equations are solved by means of multiple scales method, the second order approximation solutions of single-modal motion of the coupled structure are obtained. Numerical examples are presented to discuss time history of free vibration of the summation resonance, with and without damping. Additionally, fourth-order Runge-Kutta method is directly used for the dynamic equilibrium equations to complement and verify the analytical solutions. The results show that the coupled structure performs strongly nonlinear and coupled characteristics, which is useful for engineering design.


    In the present work, we shall consider a chemotaxis-haptotaxis model

    {ut=Δuχ(uv)ξ(uw)+μu(1uw),τvt=Δvv+u,wt=vw+ηu(1uw), (1.1)

    where χ and ξ are positive parameters. In the model (1.1), u represents the density of cancer cell, v and w denote the density of matrix degrading enzymes (MDEs) and the extracellular matrix (ECM) with the positive sensitivity χ, ξ, respectively. Such an important extension of chemotaxis to a more complex cell migration mechanism has been proposed by Chaplain and Lolas [3] to describe the cancer cell invasion of tissue. In that process, cancer invasion is associated with the degradation of ECM, which is degraded by MDEs secreted by cancer cells. Besides random motion, the migration of invasive cells is oriented both by a chemotaxis mechanism and by a haptotaxis mechanism.

    In the past ten more years, the global solvability, boundedness and asymptotic behavior for the corresponding no-flux or homogeneous Neumann boundary-initial value problem in bounded domain and its numerous variants have been widely investigated for certain smooth initial data. For the full parabolic system of (1.1), Pang and Wang [4] studied the global boundedness of classical solution in the case τ=1 in 2D domains, and the global solvability also was established for three dimension. When η=0 and τ=1, Tao and Wang [5] proved the existence and uniqueness of global classical solution for any χ>0 in 1D intervals and for small χμ>0 in 2D domains, and Tao [6] improved the results for any μ>0 in two dimension; Cao [7] proved for small χμ>0, the model (1.1) processes a global and bounded classical solution in 3D domains.

    When τ=0, the second equation of (1.1) becomes an elliptic function. In the case of η>0, Tao and Winkler [8] proved the global existence of classical solutions in 2D domains for any μ>0. In the case of η=0, the global existence and boundedness for this simplified model under the condition of μ>(N2)+Nχ in any N-D domains in [9]. Moreover, the stabilization of solutions with on-flux boundary conditions was discussed in [10]. For the explosion phenomenon, Xiang [11] proved that (1.1) possess a striking feature of finite-time blow-up for N3 with μ=η=τ=0; the blow-up results for two dimension was discussed in [2] with wt=vw+ηw(1w) and μ=0.

    When χ=0, the system (1.1) becomes a haptotaxis-only system. The local existence and uniqueness of classical solutions was proved in [12]. In [13,14,15], the authors respectively established the global existence, the uniform-in-time boundedness of classical solutions and the asymptotic behavior. Very recently, Xiang[11] showed that the pure haptotaxis term cannot induce blow-up and pattern for N3 or τ=0 in the case of μ=η=0.

    Without considering the effect of the haptotaxis term in (1.1), we may have the extensively-studied Keller-Segel system, which was proposed in [16] to describe the collective behavior of cells under the influence of chemotaxis

    {tu=Δuχ(uv),τtv=Δuλv+u (1.2)

    with u and v denoting the cell density and chemosignal concentration, respectively. There have been a lot of results in the past years (see [17,18,19,20,21], for instance). Here we only mention some global existence and blow-up results in two dimensional space. For the parabolic-elliptic case of (1.2) with λ=0, 8πχ was proved to be the mass threshold in two dimension in [22,23,24] (see also [25,26] for related results in the bounded domain); namely, the chemotactic collapse (blowup) should occur if and only if u0L1 is greater than 8πχ. If u0L1<8πχ, the existence of free-energy solutions were improved in [22]. Furthermore, the asymptotic behavior was given by a unique self-similar profile of the system (see also [27] for radially symmetric results concerning self-similar behavior). For the results in the threshold 8πχ, we refer readers for [28,29,30] for more details. For the parabolic-elliptic model in higher dimensions (N3) in (1.2), the solvability results were discussed in [31,32,33,34] with small data in critical spaces like LN2(RN),LN2w(RN),MN2(RN), i.e., those which are scale-invariant under the natural scaling. Blowing up solutions to the parabolic-elliptic model of (1.2) in dimension N3 have been studied in [35,36,37,38].

    In the case τ=1, Calvez and Corrias [1] showed that under hypotheses u0ln(1+|x|2)L1(R2) and u0lnu0L1(R2), any solution exists globally in time if u0L1<8πχ. In [39], the extra assumptions on u0 were removed, while the condition on mass was restricted to u0L1<4πχ. The value 4πχ appeared since a Brezis-Merle type inequality played an essential role there. These results were improved in [40,41] to global existence of all solutions with u0L1<8πχ by two different method. Furthermore the global existence of solutions was also obtained under some condition on u0 in the critical case u0L1=8πχ in[40]. The blow-up results of the parabolic-parabolic case in the whole space were discussed in [42,43] with the second equation was replaced by tv=Δu+u.

    However, the global solvability and explosion phenomenon of chemotaxis-haptotaxis model in the whole space have never been touched. Here we consider the global solvability of a simplified model of (1.1)

    {ut=Δuχ(uv)ξ(uw),xR2, t>0,vt=Δvv+u,xR2, t>0,wt=vw,xR2, t>0,u(x,0)=u0(x),  v(x,0)=v0(x),  w(x,0)=w0(x),xR2. (1.3)

    Main results. We assume that the initial data satisfies the following assumptions:

    (u0,v0,w0)H2(R2)×H3(R2)×H3(R2) and u0,v0,w0 are nonnegative, (1.4)
    u0L1(R2,ln(1+|x|2)dx) and u0lnu0L1(R2) (1.5)

    and

    Δw0L(R2) and w0L(R2). (1.6)

    Theorem 1.1. Let χ>0, ξ>0 and the initial data (u0,v0,w0) satisfy (1.4)–(1.6). If m:=u0L1<8πχ, then the corresponding chemotaxis-haptotaxis system (1.3) possesses a unique global-in-time, nonnegative and strong solution (u,v,w) fulfilling that for any T<

    (u,v,w)C(0,T;H2(R2)×H3(R2)×H3(R2)).

    Remark 1.1. Our theorem extends the previous results in two aspects. First, our result agrees with that in [1] by setting w=0, which proved that if u0L1<8πχ, then the Cauchy problem of the system (1.2) admits a global solution. Secondly, our theorem extends Theorem 1.1 in [2], where the authors proved that 4πχ is the critical mass of the system (1.3) in bounded domains, implying the negligibility of haptotaxis on global existence.

    We obtain the critical mass value using the energy method in [1,22]. The energy functional:

    F(u,v,w)(t)=R2ulnuχR2uvξR2uw+χ2R2(v2+|v|2),t(0,Tmax) (1.7)

    as shown in [2] comes out to be the key ingredient leading to the global existence of solutions under the smallness condition for the mass. Under the assumption

    u0L1<8πχ (1.8)

    and (1.5), we can derive an integral-type Gronwall inequality for F(t). As a result, we can get a priori estimate for the R2ulnu, which is the key step to establish the global existence of solutions to the system (1.3).

    The rest of this paper is organized as follows. In Section 2, we prove local-in-time existence of the solution, and obtain the blow-up criteria for the solution. In Section 3, we give the proof of the Theorem 1.1.

    In the following, (u)+ and (u) will denote the positive and negative part of u as usual, while Lp:=Lp(R2).

    We now establish the local existence and uniqueness of strong solutions to system (1.3). Our strategy is first to construct an iteration scheme for (1.3) to obtain the approximate solutions and then to derive uniform bounds for the approximate solutions to pass the limit.

    Lemma 2.1. Let χ>0, ξ>0 and u00. Then, there exists a maximal existence time Tmax>0, such that, if the initial data (u0,v0,w0) satisfy (1.4), then there exists a unique solution (u,v,w) of (1.3) satisfying for any T<Tmax, and

    (u,v,w)C(0,T;H2(R2)×H3(R2)×H3(R2)). (2.1)

    Furthermore, u, v and w are all nonnegative.

    Proof. To obtain the local solution, we follow similar procedures of an iterative scheme developed in [45,46]. We construct the solution sequence (uj,vj,wj)j0 by iteratively solving the Cauchy problems of the following system

    {tuj+1=Δuj+1χ(uj+1vj)ξ(uj+1wj),xR2, t>0,tvj+1=Δvj+1vj+1+uj,xR2, t>0,twj+1=vj+1wj+1,xR2, t>0,u(x,0)=u0(x),  v(x,0)=v0(x),  w(x,0)=w0(x),xR2. (2.2)

    We first set (u0(x,t),v0(x,t),w0(x,t))=(u0(x),v0(x),w0(x)). We point out that the system is decouple, then by the linear parabolic equations theory in [44,Theorem Ⅲ.5.2], we can obtain the unique solution u1,v1V1,122([0,T]×R2), then we get w1C1([0,T],H1(R2)) by directly solving the ordinary equation. Similarly, we define (uj,vj,wj) iteratively.

    In the following, we shall prove the convergence of the iterative sequences {uj,vj,wj}j1 in C(0,T;X) with X:= H2×H3×H3 for some small T>0. To obtain the uniform estimates, we may use the standard mollifying procedure. However, since the procedure is lengthy, we omit the details, like in the proofs of Theorem 1.1 in [45] and Theorem 2.1 in [46].

    Uniform estimates: We will use the induction argument to show that the iterative sequences {uj,vj,wj}j1 are in C(0,T;X) with X:= H2×H3×H3 for some small T>0, which means that there exists a constant R>0 such that, for any j, the following inequality holds for a small time interval

    sup0tT(ujH2+vjH3+wjH3)R, (2.3)

    where R=2{u0H2+v0H3+w0H3}+8. Due to the definition of R, the case j=0 is obvious. Then, we need to show that (2.3) is also true for j+1. This will be done by establishing the energy estimate for (uj+1,vj+1,wj+1). First, we begin with the estimate of vj+1.

    (ⅰ) Estimates of vj+1. Taking the L2 inner product of the second equation of (2.2) with vj+1, integrating by parts and using Young's inequality, we have

    12ddtvj+1(t)2L2+vj+12L2=R2(vj+1)2+R2vj+1uj12vj+12L2+12uj2L2. (2.4)

    To show the H1 estimate of vj+1, we will multiply the second equation of (2.2) by tvj+1, integrating by parts and then obtain

    12ddtvj+1(t)2L2+tvj+12L2=R2vj+1tvj+1+R2ujtvj+112tvj+12L2+vj+12L2+uj2L2. (2.5)

    For the H2 estimate of vj+1, by Young's inequality, we have

    12ddt2vj+1(t)2L2+Δvj+12L2=R2(Δvj+1)2+R2Δvj+1Δuj12Δvj+12L2+12Δuj2L2. (2.6)

    Similarly, integrating by parts, it is clear that for all t(0,T)

    ddt3vj+1(t)2L2=2R23vj+13(Δvj+1vj+1+uj)=2R2|4vj+1|22R2|3vj+1|22R24vj+12uj4vj+12L223vj+12L2+2uj2L2,

    togethering with (2.3)–(2.6) and adjusting the coefficients carefully, we can find a positive constant α such that

     ddtvj+1(t)2H3+α(vj+12H4+tvj+12L2)c1(vj+12H3+uj2H2) (2.7)

    with c1>0. Here after ci(i=2,3...) denotes the constant independent of R. Integrating on (0,t), we can obtain for all t(0,T)

    vj+1(t)2H3+αt0(vj+1(s)2H4+tvj+1(s)2L2)ec1Tv02H3+ec1TTsupt(0,T)uj(t)2H2ec1Tv02H3+ec1TTR22v02H3+2, (2.8)

    by choosing T>0 small enough to satisfy ec1T<2 and TR2<1.

    (ⅱ) The estimate of wj+1. In fact, the third component of the above solution of (2.2) can be expressed explicitly in terms of vj+1. This leads to the representation formulae

    wj+1(x,t)=w0(x)et0vj+1(x,s)ds, (2.9)
    wj+1(x,t)=w0(x)et0vj+1(x,s)dsw0(x)et0vj+1(x,s)dst0vj+1(x,s)ds (2.10)

    as well as

    Δwj+1(x,t)=Δw0(x)et0vj+1(x,s)ds2et0vj+1(x,s)dsw0(x)t0vj+1(x,s)ds+w0(x)et0vj+1(x,s)ds|t0vj+1(x,s)ds|2w0(x)et0vj+1(x,s)dst0Δvj+1(x,s)ds. (2.11)

    From (2.9), we can easily get for t(0,T)

    wj+1Lpw0Lp,p(1,]. (2.12)

    From (2.10), by (2.8), the definition of R and the following inequality

     t0f(x,s)dsLp={R2|t0f(x,s)ds|pdx}1p{tp1R2t0|f|pdsdx}1ptsups(0,t)f(s)Lp,for all p(1,), (2.13)

    we can obtain

    wj+1L2w0L2+w0et0vj+1dst0vj+1dsL2w0L2+w0Lt0vj+1dsL2w0L2+w0LTsupt(0,T)vj+1L2w0L2+c2R2Tw0L2+1 (2.14)

    by setting T small enough to satisfy c2R2T<1.

    Similarly, by the embedding H2W1,4 and (2.13), we can obtain from (2.11) for all t(0,T)

    Δwj+1L2Δw0L2+2w0t0vj+1dsL2+w0|t0vj+1ds|2L2 +w0t0Δvj+1dsL2Δw0L2+2w0L4t0vj+1dsL4+w0L|t0vj+1ds|2L2 +w0Lt0Δvj+1dsL2Δw0L2+2w0L4Tsupt(0,T)vj+1L4+w0LT2supt(0,T)vj+12L2 +w0LTsupt(0,T)Δvj+1L2Δw0L2+c3R2T+c3R3T2Δw0L2+2 (2.15)

    by setting T small enough to satisfy c3R2T<1 and c3R3T2<1.

    Now we deduce the L2 norm of 3wj+1. According to the equation of w and Hölder inequality, we can easily get for all t(0,T)

    ddt3wj+1(t)2L2=2R23wj+13wj+1t=2R23wj+13(vj+1wj+1)23wj+1L23(vj+1wj+1)L2c43wj+1L23wj+1vj+1+32wj+1vj+1+32vj+1wj+1+3vj+1wj+1L2c4{3wj+12L2vj+1L+3wj+1L22wj+1L4vj+1L4+3wj+1L22vj+1L2wj+1L+3wj+1L23vj+1L2wj+1L}. (2.16)

    By Galiardo-Nirenberg inequality, we have

    2wj+1L4c53wj+134L2wj+114L,wj+1Lc53wj+112L2wj+112L.

    Together with Young's inequality, (2.8), (2.12) and (2.16), we can get

    ddt3wj+1(t)2L2c6(vj+12H3+1)3wj+12L2+c6wj+12Lc7R23wj+12L2+c6w02Lc7R23wj+12L2+c7R2. (2.17)

    Then, we can deduce from Gronwall's inequality that for all t(0,T)

    3wj+12L2ec7R2T33w02L2+ec7R2T3c7R2T23w02L2+2 (2.18)

    by setting T small enough to satisfy ec7R2T3<2 and c7R2T<1.

    Combining with (2.12)–(2.15) and (2.18), we can see that

    wj+1H32w0H3+5. (2.19)

    (ⅲ) Estimates of uj+1. Taking the L2 inner product of the equation of uj+1 in (2.2), integrating by part we obtain

    12ddtuj+1(t)2L2+uj+12L2=χR2uj+1vjuj+1+ξR2uj+1wjuj+1uj+1L2vjLuj+1L2+uj+1L2wjLuj+1L2. (2.20)

    By (2.8), (2.19) and (2.20) and the embedding H3W1,, we can see for all t(0,T)

    12ddtuj+1(t)2L2+uj+12L2c8R2uj+12L2+12uj+12L2. (2.21)

    Now we turn to show the L2-estimate of uj+1. Multiplying Δuj+1 to both sides of the first equation of (2.3) and integrating by parts, we obtain for all t(0,T)

    12ddtuj+1(t)2L2+Δuj+12L2=χR2Δuj+1(uj+1vj)+ξR2Δui+1(ui+1wj)=I1+I2. (2.22)

    By Hölder inequality and Young's inequality, it yields that

    I1c9Δuj+1L2(uj+1vj)L2c10Δuj+1L2{uj+1H1vjH2}14Δuj+12L2+c210vj2H2uj+12H1.

    Applying the similar procedure to I2, we can obtain

    I214Δuj+12L2+c210wj2H2uj+12H1,

    which entails that for all t(0,T)

    12ddtuj+1(t)2L2+12Δuj+12L2c11R2uj+12H1. (2.23)

    Similar as (2.16), we can get

    ddt2uj+1(t)2L2=2R22uj+12uj+1t=2R22uj+1{2(Δuj+1χ(uj+1vj)ξ(uj+1wj))}=2R22uj+12Δuj+12χR22uj+13(uj+1vj)2ξR22ui+13(uj+1wj)=23uj+12L2+2χR23uj+12(uj+1vj)+2ξR23ui+12(ui+1wj)3uj+12L2+c12{2(uj+1vj)2L2+2(ui+1wj)2L2}3uj+12L2+c13R2uj+12H2. (2.24)

    Together with (2.21), (2.23) and (2.24), and adjusting the coefficients carefully, we can find a positive constant β such that

    ddtuj+1(t)2H2+βuj+12H3c14R2uj+12H2, (2.25)

    which implies from Gronwall's inequality that

    uj+12H2+βt0uj+12H3 (2.26)

    by choosing T small enough to satisfy e^{c_{14}R^2T} < 2 .

    Combining (2.8), (2.19) and (2.26), we can get for all t\in(0, T)

    \begin{eqnarray} \left\|u^{j+1}\right\|_{H^{2}}+\left\|v^{j+1}\right\|_{H^{2}}+\left\|w^{j+1}\right\|_{H^{3}}\leq 2\left\{\left\|u_0\right\|_{H^1}+\left\|v_0\right\|_{H^2}+\left\|w_0\right\|_{H^3}\right\}+7\leq R, \end{eqnarray} (2.27)

    by the definition of R .

    Convergence: The derivation of the relevant estimates of u^{j+1}-u^j , v^{j+1}-v^j and w^{j+1}-w^j are similar to the ones of u^{j+1} , v^{j+1} and w^{j+1} , so we omit the details. For simplicity, we denote \delta f^{j+1}: = f^{j+1}-f^j . Subtracting the j -th equations from the (j+1) -th equations, we have the following equations for \delta u^{j+1}, \delta v^{j+1} and \delta w^{j+1} :

    \begin{eqnarray} \left\{\begin{array}{l} \partial_{t} \delta u^{j+1} = \Delta\delta u^{j+1}-\chi\nabla \cdot\left(\delta u^{j+1} \nabla v^{j}\right)-\chi\nabla \cdot\left( u^{j} \nabla\delta v^{j}\right) -\xi\nabla \cdot\left(\delta u^{j+1} \nabla w^{j}\right)-\xi\nabla \cdot\left(u^{j} \nabla\delta w^{j}\right), \\ \partial_{t} \delta v^{j+1} = \Delta\delta v^{j+1}-\delta v^{j+1}+\delta u^{j},\\ [1mm] \partial_{t}\delta w^{j+1} = -v^{j+1}\delta w^{j+1}-\delta v^{j+1} w^{j+1}. \end{array}\right. \end{eqnarray} (2.28)

    (ⅰ) Estimates of \delta v^{j+1} . Using the same procedure as proving (2.8), we can obtain that for all t \in (0, T)

    \begin{eqnarray} \left\|\delta v^{j+1}(t)\right\|_{H^3}^2+\alpha\int_0^t\left(\left\|\delta v^{j+1}(s)\right\|_{H^{4}}^{2}+\left\|\partial_{t}\delta v^{j+1}(s)\right\|_{L^{2}}^{2} \right)ds \leq e^{ c_{15}T} c_{15}T \sup \limits_{0 \leq t \leq T}\left\|\delta u^{j}(t)\right\|_{H^2}^2. \end{eqnarray} (2.29)

    (ⅱ) Estimates of \delta w^{j+1} . According to the third equation of (2.28), we have for all t \in (0, T)

    \begin{equation} \delta w^{j+1}(t) = -\int_0^t e^{-\int_s^t v^{j+1}(\tau) d \tau} w^{j+1}(s) \delta v^{j+1}(s) d s. \end{equation} (2.30)

    Using the same procedure as proving (2.19) entails that for all t \in (0, T)

    \left\|\delta w^{j+1}\right\|_{L^2} \leqslant \sup\limits_{t \in (0, T)}\left\|w^{j+1}\right\|_{L^{\infty}} \sup \limits_{t \in(0, T)}\left\|\delta v^{j+1}\right\|_{L^2} T \leqslant c_{16}R T \sup\limits _{t \in (0, T)}\left\|\delta v^{j+1}\right\|_{L^2},
    \begin{eqnarray*} \begin{aligned} \left\|\nabla \delta w^{j+1}\right\|_{L^2} \leqslant &\left\|\int_0^t \nabla w^{j+1}(s)\delta v^{j+1}(s) d s\right\|_{L^2}+\left\|\int_0^t w^{j+1}(s) \nabla \delta v^{j+1}(s) d s\right\|_{L^2} \\ &+\left\|\int_0^t w^{j+1} \delta v^{j+1} \int_s^t \nabla v^{j+1} d \tau d s\right\|_{L^2} \\ \leqslant & c_{17}R T\sup \limits_{t \in (0, T)}\left\|\delta v^{j+1}\right\|_{L^2}+c_{17}R T \sup \limits_{t \in (0, T)}\left\|\nabla \delta v^{j+1}\right\|_{L^2}+c_{17}R^2 T^2\sup \limits_{t \in (0, T)}\left\|\delta v^{j+1}\right\|_{L^2} \\ \leqslant & c_{18}(R^2+R) T\sup \limits_{t \in (0, T)}\left\|\delta v^{j+1}\right\|_{H^{1}},\\ \left\|\Delta \delta w^{j+1}\right\|_{L^2} = &\left\|-\int_0^t \Delta\left\{e^{-\int_s^{t} v^{j+1} d \tau} w^{j+1} \delta v^{j+1}\right\} d s\right\|_{L^2}\\ \leqslant& T \sup \limits_{t \in (0, T)}\left\|\Delta\left\{e^{-\int_s^{t} v^{j+1} d \tau} w^{j+1} \delta v^{j+1}\right\}\right\|_{L^2}\\ \leqslant &T \sup \limits_{t \in (0, T)}\Big\{\left(\left\| v^{j+1}\right\|_{H^2}^2T^2+\left\|v^{j+1}\right\|_{H^2}T\right)\left\|w^{j+1}\right\|_{H^2}\left\|\delta v^{j+1}\right\|_{H^2}\Big\}\\ \leqslant &c_{19}(R^3+R^2) T \sup \limits_{t \in (0, T)}\left\|\delta v^{j+1}\right\|_{H^2} \end{aligned} \end{eqnarray*}

    and

    \left\|\nabla^3 \delta w^{j+1}\right\|_{L^2}^2 \leqslant e^{c_{20}R^2T}T\sup \limits_{t \in (0, T)} \left\|\delta v^{j+1}\right\|_{H^3},

    which imply that for all t \in (0, T)

    \begin{eqnarray} \left\| \delta w^{j+1}\right\|_{H^3}\leq c_{21}(R^3+R^2+R)T \sup \limits_{0 \leq t \leq T}\left\|\delta u^{j}(t)\right\|_{H^2}. \end{eqnarray} (2.31)

    by setting T < 1 .

    (ⅲ) Estimates of \delta u^{j+1} . Using the same procedure as proving (2.26) entails that for all t \in (0, T)

    \begin{eqnarray} \sup \limits_{0 \leq t \leq T}\left\|\delta u^{j+1}\right\|_{H^2}^2+\beta\int_0^t \left\|\delta u^{j+1}\right\|_{H^3}^2 \leqslant e^{c_{22}RT}c_{22}RT\sup \limits_{0 \leq t \leq T}\left(\left\|\delta v^j\right\|_{H^3}^2+\left\|\delta w^j\right\|_{H^2}^2\right). \end{eqnarray} (2.32)

    Combining with (2.29), (2.31) and (2.32), we can obtain for all t \in (0, T)

    \begin{align} &\sup\limits_{0 \leq t \leq T}\left(\left\|\delta u^{j+1}\right\|_{H^{2}}+\left\|\delta v^{j+1}\right\|_{H^3}+\left\|\delta w^{j+1}\right\|_{H^3}\right) \\ \leq& e^{c_{23}(R^3+R^2+R)T}c_{23}(R^3+R^2+R)T \sup\limits _{0 \leq t \leq T}\left(\left\|\delta u^j\right\|_{H^{2}}+\left\|\delta v^j\right\|_{H^3}+\left\|\delta w^j\right\|_{H^3}\right). \end{align} (2.33)

    Taking T > 0 small enough, we can find a constant r \in(0, 1) such that

    \begin{equation} \sup\limits _{0 \leq t \leq T}\left(\left\|\delta u^{j+1}\right\|_{H^{2}}+\left\|\delta v^{j+1}\right\|_{H^3}+\left\|\delta w^{j+1}\right\|_{H^3}\right) \leq r \sup \limits_{0 \leq t \leq T}\left(\left\|\delta u^j\right\|_{H^{2}}+\left\|\delta v^j\right\|_{H^3}+\left\|\delta w^j\right\|_{H^3}\right) \end{equation} (2.34)

    for any j \geq 1 and t \in (0, T) . From the above inequality, we find that \left(u^j, v^j, w^j\right) is a Cauchy sequence in the Banach space C\left(0, T; X\right) for some small T > 0 , and thus its corresponding limit denoted by \left(u, v, w\right) definitely exists in the same space.

    Uniqueness: If (\bar{u}, \bar{v}, \bar{w}) is another local-in-time solution of system (1.3), (\tilde{u}, \tilde{v}, \tilde{w}): = (u-\bar{u}, v-\bar{v}, w-\bar{w}) solves

    \begin{eqnarray*} \left\{\begin{array}{lll} \partial_{t} \tilde{u} = \Delta \tilde{u}-\chi\nabla \cdot\left(\tilde{u} \nabla \bar{v}\right)-\chi\nabla \cdot\left( u \nabla\tilde{v}\right) -\xi\nabla \cdot\left(\tilde{u} \nabla\bar{w}\right)-\xi\nabla \cdot\left(u \nabla \tilde{w}\right), &{} x\in\mathbb{R}^2,\ 0 < t\leq T,\\ \partial_{t} \tilde{v} = \Delta\tilde{v}-\tilde{v}+\tilde{u},&{}x\in\mathbb{R}^2,\ 0 < t\leq T,\\ \partial_{t}\tilde{w} = -v\tilde{w}-\tilde{v}\bar{w},&{}x\in\mathbb{R}^2,\ 0 < t\leq T,\\ \tilde{u}(x,0) = \tilde{v}(x,0) = \tilde{w}(x,0) = 0,&{} x\in\mathbb{R}^2, \end{array}\right. \end{eqnarray*}

    where T is any time before the maximal time of existence. Following a same procedure as (2.34), we can deduce that \tilde{u} = \tilde{v} = \tilde{w} = 0 , which implies the uniqueness of the local solution.

    Nonnegativity: The nonnegativity of w^j can be easily obtained by (2.9) and the nonnegativity of w_0 . We will use the induction argument to show that u^j and v^j are nonnegative for all j > 0 . We assume that u^j and v^j are nonnegative. If we apply the maximum principle to the second equation of (2.2), we find v^{j+1} is nonnegative ( u^j is nonnegative). Then we turn to deal with u^{j+1} . Let us decompose u^{j+1} = u_{+}^{j+1}-u_{-}^{j+1} , where u_{+}^{j+1} = \left\{\begin{array}{ll}u^{j+1} & u^{j+1} \geq 0 \\ 0 & u^{j+1} < 0\end{array}\quad\text{and} \quad u_{-}^{j+1} = \left\{\begin{array}{cc}-u^{j+1} &u^{j+1} \leq 0 \\ 0 & u^{j+1} > 0\end{array}\right.\right. . Now multiplying the negative part u_{-}^{j+1} on both sides of the first equation of (2.2) and integrating over [0, t]\times{\mathbb{R}^2} , we can get

    \begin{aligned} &\int_0^t \int_{\mathbb{R}^2} \partial_t u^{j+1}u_{-}^{j+1} d x d s\\ = &-\int_0^t\left\|\nabla\left(u_{-}^{j+1}\right)\right\|_{L^2}^2 d s+ \chi\int_0^t\int_{\mathbb{R}^2} u^{j+1}\nabla v^{j}\cdot\nabla u_{-}^{j+1}+\xi\int_{\mathbb{R}^2} u^{j+1}\nabla w^{j}\cdot\nabla u_{-}^{j+1} \\ \leq& C \int_0^t\left\|\left(u^{j+1}\right)_{-}\right\|_{L^2}^2\left(\left\|\nabla v^j\right\|_{L^{\infty}}^2+\left\|\nabla w^j\right\|_{L^{\infty}}^2\right)+\frac{1}{2}\left\|\nabla\left(u_{-}^{j+1}\right)\right\|_{L^2}^2 d s \end{aligned}

    by Young's inequality and the fact the weak derivative of u_{-}^{j+1} is -\nabla u^{j+1} if u_{-}^{j+1} < 0 , otherwise zero. Since u_{-}^{j+1}, \ \partial_t u^{j+1} \in L^2\left(0, T; L^2\left(\mathbb{R}^2\right)\right) , we can have

    \int_0^t \int_{\mathbb{R}^2} \partial_t u^{j+1}\left(u^{j+1}\right)_{-} d x d s = \frac{1}{2}\left(\left\|\left(u_{-}^{j+1}\right)(0)\right\|_{L^2}-\left\|\left(u_{-}^{j+1}\right)(0)\right\|_{L^2}\right),

    together with the above inequality, it holds that

    \left\|\left(u_{-}^{j+1}\right)(t)\right\|_{L^2}^2 \leq\left\|\left(u_{-}^{j+1}\right)(0)\right\|_{L^2}^2 \exp \left(C \int_0^t\left(\left\|\nabla v^j\right\|_{L^{\infty}}^2+\left\|\nabla w^j\right\|_{L^{\infty}}^2\right) d s\right).

    Due to the fact u_{-}^{j+1}(0) is nonnegative, we can deduce that u^{j+1} is nonnegative. This completes the proof of Lemma 2.1.

    Remark 2.1. Since the above choice of T depends only on \|u_0\|_{H^2(\mathbb{R}^2)} , \|v_0\|_{H^3(\mathbb{R}^2)} and \|w_0\|_{H^3(\mathbb{R}^2)} , it is clear by a standard argument that (u, v, w) can be extended up to some T_{\max}\leq\infty . If T_{\max} < \infty in Lemma 2.1, then

    \begin{eqnarray} \limsup _{t \rightarrow T_{\max}}\left(\|u(t)\|_{H^2(\mathbb{R}^2)}+\|v(t)\|_{H^3(\mathbb{R}^2)}+\|w(t)\|_{H^3(\mathbb{R}^2)}\right) = \infty. \end{eqnarray} (2.35)

    In order to show the H^2\times H^3\times H^3 -boundedness of (u, v, w) , it suffices to estimate a suitable L^p -norm of u , with some large, but finite p .

    Lemma 2.2. Suppose that \chi, \xi > 0 and the initial data (u_0, v_0, w_0) satisfy all the assumptions presented in Lemma 2.1. Then for every K > 0 there is C > 0 such that whenever (u, v, w) \in C\left(0, T;H^2(\mathbb{R}^2)\times H^3(\mathbb{R}^2)\times H^3(\mathbb{R}^2)\right) solves (1.3) for some T > 0 and q_0 > 2 satisfies

    \begin{eqnarray} \|u(\cdot, t)\|_{L^{q_0}} \leq K, \mathit{\text{for all}} t \in(0, T), \end{eqnarray} (2.36)

    then

    \begin{eqnarray} \|u(t)\|_{H^2(\mathbb{R}^2)}+\|v(t)\|_{H^3(\mathbb{R}^2)}+\|w(t)\|_{H^3(\mathbb{R}^2)} \leq C \mathit{\text{for all}} t \in(0, T). \end{eqnarray} (2.37)

    Proof. Firstly, we suppose that for some q_0 > 2 and K > 0

    \begin{eqnarray} \|u(t)\|_{L^{q_0}(\mathbb{R}^2)}\leq K, \quad \text{for all } t\in(0,T). \end{eqnarray} (2.38)

    By the Duhamel principle, we represent u and v of the following integral equations

    \begin{eqnarray} u(t) = e^{t \Delta} u_{0}-\chi\int_{0}^{t} e^{(t-\tau) \Delta} \nabla\cdot(u \nabla v)(\tau) d \tau-\xi\int_{0}^{t} e^{(t-\tau) \Delta} \nabla\cdot(u \nabla w)(\tau) d \tau \end{eqnarray} (2.39)

    and

    \begin{eqnarray} v(t) = e^{-t(-\Delta+1)} v_{0}+\int_{0}^{t} e^{-(t-\tau)(-\Delta+1)} u(\tau) d \tau. \end{eqnarray} (2.40)

    where e^{t \Delta} f(x) = \int_{\mathbb{R}^{2}} G(x-y, t)f(y)dy and

    G(x, t) = G_t(x): = \frac{1}{(4 \pi t)} \exp \left(-\frac{|x|^2}{4 t}\right)

    is the Gaussian heat kernel. The following well-known L^{p}-L^{q} estimates of the heat semigroup play an important role in the proofs [47,48]. For 1 \leqslant p \leqslant q \leqslant \infty and f \in L^{q}\left(\mathbb{R}^{2}\right) , we have

    \begin{aligned} &\left\|e^{t \Delta} f\right\|_{L^p} \leqslant(4 \pi t)^{-\left(\frac{1}{q}-\frac{1}{p}\right)}\|f\|_{L^q}, \\ &\left\|\nabla e^{t \Delta} f\right\|_{L^p} \leqslant C_3 t^{-\frac{1}{2}-\left(\frac{1}{q}-\frac{1}{p}\right)}\|f\|_{L^q}, \end{aligned}

    where C_3 is a constant depending on p and q . Then, according to (2.39), we can see that for q_0 > 2 and all t\in(0, T)

    \begin{align} \|u(t)\|_{L^{\infty}}&\leq \|u_0\|_{L^{\infty}}+\chi\int_{0}^{t}(t-\tau)^{-\frac{1}{2}-\frac{1}{q_0}}\|u\cdot\nabla v\|_{L^{q_0}}d \tau+\xi\int_{0}^{t}(t-\tau)^{-\frac{1}{2}-\frac{1}{q_0}}\|u\cdot\nabla w\|_{L^{q_0}}d \tau \\&\leq\|u_0\|_{L^{\infty}}+K\chi\int_{0}^{t}(t-\tau)^{-\frac{1}{2}-\frac{1}{q_0}}\|\nabla v\|_{L^{\infty}}d \tau+K\xi\int_{0}^{t}(t-\tau)^{-\frac{1}{2}-\frac{1}{q_0}}\|\nabla w\|_{L^{\infty}}d \tau. \end{align} (2.41)

    From (2.40) and the above L^{p}-L^{q} estimates of the heat semigroup, we have

    \begin{eqnarray} \|v(t)\|_{L^{q}}\leq \|v_0\|_{L^{q}}+\int_{0}^{t}e^{-(t-\tau)}(t-\tau)^{-(\frac{1}{q_0}-\frac{1}{q})}\|u(t)\|_{L^{q_0}}d \tau\leq C_4,\forall q\in(1,\infty] \end{eqnarray} (2.42)

    and by the embedding H^3(\mathbb{R}^2)\hookrightarrow W^{1, \infty}(\mathbb{R}^2)

    \begin{eqnarray} \|\nabla v(t)\|_{L^{\infty}}\leq \|\nabla v_0\|_{L^{\infty}}+\int_{0}^{t}e^{-(t-\tau)}(t-\tau)^{-\frac{1}{2}-\frac{1}{q_0}}\|u(t)\|_{L^{q_0}}d \tau\leq C_5, \end{eqnarray} (2.43)

    where C_4 and C_5 depend on \| v_0\|_{H^{3}} and K in (2.38).

    According to the equation of w , we can see that for some C_6 = C_6(\|w_0\|_{H^{3}}, \| v_0\|_{H^{2}}, K, T) > 0 and all t\in(0, T)

    \begin{align} \|\nabla w(t)\|_{L^{\infty}}&\leq \left\|\nabla w_0e^{-\int_0^tv(s) ds}\right\|_{L^{\infty}}+\left\|w_0e^{-\int_0^tv(s) ds}\int_0^t \nabla v(s) ds\right\|_{L^{\infty}} \\&\leq \|w_0\|_{H^{3}}+\|w_0\|_{L^{\infty}}\sup\limits_{t\in(0,T)}\|\nabla v(t)\|_{L^{\infty}}T\leq C_6 \end{align} (2.44)

    by the embedding H^3(\mathbb{R}^2)\hookrightarrow W^{1, \infty}(\mathbb{R}^2) . Inserting (2.43) and (2.44) into (2.41), this yields for all t\in(0, T)

    \begin{eqnarray} \|u(t)\|_{L^{\infty}}\leq\|u_0\|_{L^{\infty}}+KC_5\chi\int_{0}^{t}(t-\tau)^{-\frac{1}{2}-\frac{1}{q_0}}d \tau+KC_6\xi\int_{0}^{t}(t-\tau)^{-\frac{1}{2}-\frac{1}{q_0}}d \tau\leq C_7, \end{eqnarray} (2.45)

    where C_7 depends on \|u_0\|_{H^{2}} , \| v_0\|_{H^{2}} , \|w_0\|_{H^{3}} , K and T .

    Integrating by parts and by Young's inequality, we can obtain from the second equation of (1.3) that for all t\in(0, T)

    \begin{align} \frac{1}{2} \frac{d}{d t}\left\|\partial_{t}v(t)\right\|_{L^{2}}^{2}+\left\|\nabla\partial_{t} v\right\|_{L^{2}}^{2}& = -\int_{\mathbb{R}^2} (\partial_{t}v)^{2}+\int_{\mathbb{R}^2} \partial_{t}v\partial_{t}u \\&\leq-\frac{1}{2}\left\|\partial_{t}v\right\|_{L^{2}}^{2}+\frac{1}{2}\left\|\partial_{t}u\right\|_{L^{2}}^{2} \end{align} (2.46)

    and

    \begin{align} \frac{1}{2} \frac{d}{d t}\left\|\nabla v(t)\right\|_{L^{2}}^{2}+\left\|\Delta v\right\|_{L^{2}}^{2}& = \int_{\mathbb{R}^2} v \Delta v+\int_{\mathbb{R}^2} u \Delta v\\&\leq-\left\|\nabla v\right\|_{L^{2}}^{2}+\frac{1}{2}\left\|u\right\|_{L^{2}}^{2}+\frac{1}{2}\left\|\Delta v\right\|_{L^{2}}^{2}. \end{align} (2.47)

    Similarly, according to the first equation of (1.3), (2.43) and (2.44), we have for all t\in(0, T)

    \begin{align} \frac{1}{2} \frac{d}{d t}\left\|u(t)\right\|_{L^{2}}^{2}+\left\|\nabla u\right\|_{L^{2}}^{2}& = \chi\int_{\mathbb{R}^2}u\nabla v\cdot \nabla u+\xi\int_{\mathbb{R}^2}u\nabla w\cdot \nabla u \\&\leq\frac{\chi^2}{2}\left\|u \nabla v\right\|_{L^{2}}^{2}+\frac{\xi^2}{2}\left\|u \nabla w\right\|_{L^{2}}^{2}+\frac{1}{2}\left\|\nabla u\right\|_{L^{2}}^{2} \\&\leq\frac{\chi^2C_5^2}{2}\left\|u\right\|_{L^{2}}^{2}+\frac{\xi^2C_6^2}{2}\left\|u \right\|_{L^{2}}^{2}+\frac{1}{2}\left\|\nabla u\right\|_{L^{2}}^{2} \end{align} (2.48)

    and by (2.27) for some \theta > 0

    \begin{align} \frac{1}{2} \frac{d}{d t}\left\|\partial_{t} u(t)\right\|_{L^{2}}^{2}+\left\|\nabla \partial_{t} u\right\|_{L^{2}}^{2} = &\chi\int_{\mathbb{R}^2}\partial_{t}u\nabla v\cdot \nabla \partial_{t}u+\chi\int_{\mathbb{R}^2}u\partial_{t}\nabla v\cdot \nabla \partial_{t}u \\&+\xi\int_{\mathbb{R}^2}\partial_{t}u\nabla w\cdot \nabla \partial_{t}u+\xi\int_{\mathbb{R}^2}u\nabla \partial_{t}w\cdot \nabla \partial_{t}u \\ \leq &C_8\left(\|\nabla v\|_{L^{\infty}}+\|\nabla w\|_{L^{\infty}}\right)\left(\theta\left\|\partial_{t} u\right\|_{L^{2}}^{2}+\frac{1}{\theta}\left\|\nabla\partial_{t} u\right\|_{L^{2}}^{2}\right) \\&+C_8\|u\|_{L^{\infty}}\left(\theta\left\|\nabla\partial_{t} v\right\|_{L^{2}}^{2}+\theta\left\|\nabla\partial_{t} w\right\|_{L^{2}}^{2}+\frac{2}{\theta}\left\|\nabla\partial_{t} u\right\|_{L^{2}}^{2}\right) \\ \leq& C_8(C_5+C_6)\theta\left\|\partial_{t} u\right\|_{L^{2}}^{2}+\frac{C_8(C_5+C_6+2C_7)}{\theta}\left\|\nabla\partial_{t} u\right\|_{L^{2}}^{2} \\&+\theta C_8C_7\left(\left\|\nabla\partial_{t} v\right\|_{L^{2}}^{2}+\left\|\nabla\partial_{t} w\right\|_{L^{2}}^{2}\right). \end{align} (2.49)

    Now we turn to estimate the last term of the right side of (2.49). According to the third equation of (1.3), (2.42) and (2.43), we obtain for some C_9 > 0

    \begin{align} \left\|\nabla\partial_{t} w\right\|_{L^{2}}^{2}&\leq \left\|\nabla v\right\|_{L^{2}}^{2}\left\| w\right\|_{L^{\infty}}^{2}+\left\|\nabla w\right\|_{L^{2}}^{2}\left\| v\right\|_{L^{\infty}}^{2}\\&\leq \left\| w_0\right\|_{L^{\infty}}^{2}\left\|\nabla v\right\|_{L^{2}}^{2}+C_4^2\left(\|\nabla w_0\|_{L^{2}}^{2}+T^2\sup\limits_{t\in(0,T)}\|\nabla v\|_{L^{\infty}}^2\left\| w_0\right\|_{L^{2}}^2\right)\\&\leq C_9\left\|\nabla v\right\|_{L^{2}}^{2}+C_9. \end{align} (2.50)

    Combining with (2.46)–(2.50) and setting \theta > 0 to satisfy \frac{C_8(C_5+C_6+2C_7)}{\theta} < \frac{1}{2} , we can obtain such Gronwall-type inequality

    \begin{align} &\frac{d}{d t}\left\{\left\|\partial_{t}v(t)\right\|_{L^{2}}^{2}+\left\|\nabla v(t)\right\|_{L^{2}}^{2}+\left\|u(t)\right\|_{L^{2}}^{2}+\left\|\partial_{t} u(t)\right\|_{L^{2}}^{2}\right\} \\&+C_{10} \left(\left\|\nabla\partial_{t} v\right\|_{L^{2}}^{2}+\left\|\nabla u\right\|_{L^{2}}^{2}+\left\|\nabla v\right\|_{L^{2}}^{2}+\left\|\Delta v\right\|_{L^{2}}^{2}+\left\|\nabla \partial_{t} u\right\|_{L^{2}}^{2}\right) \\ \leq &C_{10}\left(\left\|\partial_{t}v\right\|_{L^{2}}^{2}+\left\|\nabla v\right\|_{L^{2}}^{2}+\left\|u\right\|_{L^{2}}^{2}+\left\|\partial_{t} u\right\|_{L^{2}}^{2}+1\right),\quad \text{for all } t\in(0,T), \end{align} (2.51)

    then by direct integration, we can have for some C_{11} = C_{11}(\|w_0\|_{H^{3}}, \| v_0\|_{H^{2}}, \|u_0\|_{H^{2}}, K, T) > 0

    \begin{eqnarray} &\ &\int_0^t \left(\left\|\nabla\partial_{t} v\right\|_{L^{2}}^{2}+\left\|\nabla u\right\|_{L^{2}}^{2}+\left\|\nabla v\right\|_{L^{2}}^{2}+\left\|\Delta v\right\|_{L^{2}}^{2}+\left\|\nabla \partial_{t} u\right\|_{L^{2}}^{2}\right)\\&\ &+\left\{\left\|\partial_{t}v\right\|_{L^{2}}^{2}+\left\|\nabla v\right\|_{L^{2}}^{2}+\left\|u\right\|_{L^{2}}^{2}+\left\|\partial_{t} u\right\|_{L^{2}}^{2}\right\}\leq C_{11} ,\quad \text{for all } t\in(0,T). \end{eqnarray} (2.52)

    By (2.42) and (2.52) and the second equation of v in (1.3), we have

    \begin{eqnarray} \left\|\Delta v\right\|_{L^{2}}\leq \left\|\partial_{t} v\right\|_{L^{2}}+\left\| v\right\|_{L^{2}}+\left\|u\right\|_{L^{2}}\leq C_{12} ,\quad \text{for all } t\in(0,T), \end{eqnarray} (2.53)

    where C_{12} = C_{12}(\|w_0\|_{H^{3}}, \| v_0\|_{H^{2}}, \|u_0\|_{H^{2}}, K, T) . Hence by the equation of w and Young's inequality, we obtain for some C_{13} = C_{13}(\|w_0\|_{H^{3}}, \| v_0\|_{H^{2}}, \|u_0\|_{H^{2}}, K, T) > 0

    \begin{align} \left\|\Delta w\right\|_{L^{2}}\leq& \left\|\Delta w_0\right\|_{L^{2}}+2\left\|\nabla w_0\right\|_{L^{4}}\left\|\int_0^t \nabla v\right\|_{L^{4}}+\left\|w_0\right\|_{L^{\infty}}\left\|\left|\int_0^t \nabla v\right|^2\right\|_{L^{2}}+\left\|w_0\right\|_{L^{\infty}}\left\|\int_0^t\Delta v\right\|_{L^{2}} \\ \leq& \left\|\Delta w_0\right\|_{L^{2}}+2\left\|\nabla w_0\right\|_{L^{4}}\sup\limits_{t\in(0,T)}\left\|\nabla v\right\|_{L^{4}}T \\&+\left\|w_0\right\|_{L^{\infty}}\sup\limits_{t\in(0,T)}\left\|\nabla v\right\|_{L^{4}}^2T+\left\|w_0\right\|_{L^{\infty}}\sup\limits_{t\in(0,T)}\left\|\Delta v\right\|_{L^{2}}T \\ \leq&C_{13},\quad \text{for all } t\in(0,T). \end{align} (2.54)

    By (2.42) and (2.43) and the embedding W^{2, 2}(\mathbb{R}^2)\hookrightarrow W^{1, 4}(\mathbb{R}^2) , we can see

    \begin{align} \frac{d}{d t}\left\|\nabla^{3} w(t)\right\|_{L^{2}}^{2} &\leqslant C \left\{\left\|\nabla^{3} w\right\|_{L^{2}}^{2}\|v\|_{L^{\infty}}+\left\|\nabla^{3} w\right\|_{L^{2}}\left\|\nabla^{2} w\right\|_{L^{4}}\|\nabla v\|_{L^{4}}\right.\\ &\quad\left.+\left\|\nabla^{3} w\right\|_{L^{2}}\left\|\nabla^{2} v\right\|_{L^{2}}\|\nabla w\|_{L^{\infty}}+\left\|\nabla^{3} w\right\|_{L^{2}}\|w\|_{L^{\infty}}\left\|\nabla^{3} v\right\|_{L^{2}}\right\} \\&\leq C_{14}\left\|\nabla^{3} w\right\|_{L^{2}}^{2}+C_{14}\left\|\nabla^{3} v\right\|_{L^{2}}^{2}+C_{14},\quad \text{for all } t\in(0,T). \end{align} (2.55)

    Integrating on (0, t) , we have

    \begin{eqnarray} \begin{aligned} \left\|\nabla^{3} w\right\|_{L^{2}}^{2} \leq C_{15}\left\|\nabla^{3} w_0\right\|_{L^{2}}^{2}+ C_{15}\int_0^t \left\|\nabla^{3} v\right\|_{L^{2}}^{2}+C_{15},\quad \text{for all } t\in(0,T). \end{aligned} \end{eqnarray} (2.56)

    Now we turn to estimate the second integral of the right side of (2.56). Applying \nabla to the second equation of (1.3) and rewriting the equation as \nabla\Delta v = \nabla v_t+\nabla v-\nabla u , then by (2.52) we have that

    \begin{align} \int_0^t \left\|\nabla^{3} v\right\|_{L^{2}}^{2} &\leq \int_0^t \left\|\nabla v_t\right\|_{L^{2}}^{2}+ \int_0^t \left\|\nabla v\right\|_{L^{2}}^{2}+\int_0^t \left\|\nabla u\right\|_{L^{2}}^{2}\\&\leq C_{11},\quad \text{for all } t\in(0,T). \end{align} (2.57)

    Inserting (2.57) into (2.56), we can obtain that for some C_{16} > 0

    \begin{eqnarray} \begin{aligned} \left\|\nabla^{3} w\right\|_{L^{2}} \leq C_{16},\quad \text{for all } t\in(0,T). \end{aligned} \end{eqnarray} (2.58)

    Now we deduce the L^2 -norm of \nabla u and \nabla^2 u . We multiply the first equation of (1.3) by -\Delta u , integrate by parts and then obtain

    \begin{align} \frac{1}{2} \frac{d}{d t}\|\nabla u(t)\|_{L^2}^2+\|\Delta u\|_{L^2}^2 = & \chi \int_{\mathbb{R}^2} \Delta u \nabla \cdot(u \nabla v)+\xi \int_{\mathbb{R}^2} \Delta u \cdot \nabla(u \nabla w) \\ = & \chi \int_{\mathbb{R}^2} \Delta u \nabla u \cdot \nabla v+\chi \int_{\mathbb{R}^2} u\Delta u \Delta v \\&+\xi \int_{\mathbb{R}^2} \Delta u\nabla u \cdot \nabla w+\xi \int_{\mathbb{R}^2} u\Delta u \Delta w \\ = &I_1+I_2+I_3+I_4. \end{align} (2.59)

    Then by (2.42), (2.45) and (2.52), Hölder's inequality and Young's inequality, we have

    \begin{aligned} I_1+I_2 & \leqslant \chi\|\nabla v\|_{L^{\infty}}\|\Delta u\|_{L^2}\|\nabla u\|_{L^2}+\chi\|\Delta v\|_{L^2}\|\Delta u\|_{L^2}\|u\|_{L^{\infty}} \\ & \leqslant \frac{1}{4}\|\Delta u\|_{L^2}^2+C_{17}\|\nabla u\|_{L^2}^2+C_{17}. \end{aligned}

    Similarly, according to (2.43), (2.45) and (2.56), we can obtain

    \begin{aligned} I_3+I_4 & \leqslant \chi\|\nabla v\|_{L^{\infty}}\|\Delta u\|_{L^2}\|\nabla u\|_{L^2}+\chi\|\Delta v\|_{L^2}\|\Delta u\|_{L^2}\|u\|_{L^{\infty}} \\ & \leqslant \frac{1}{4}\|\Delta u\|_{L^2}^2+C_{17}\|\nabla u\|_{L^2}^2+C_{18}. \end{aligned}

    Then we have

    \frac{1}{2} \frac{d}{d t}\|\nabla u(t)\|_{L^2}^2+\frac{1}{2}\|\Delta u\|_{L^2}^2\leq C_{19}\|\nabla u\|_{L^2}^2+C_{19}.

    Integrating on (0, t) , we have for some C_{20} > 0

    \begin{eqnarray} \left\|\nabla u\right\|_{L^{2}}\leq C_{20},\quad \text{for all } t\in(0,T). \end{eqnarray} (2.60)

    Rewriting the first equation of (1.3) as \Delta u = u_t+\chi\nabla\cdot(u\nabla v)+\xi\nabla\cdot(u\nabla w) , and by (2.42)–(2.44), (2.53) and (2.54), we have for some C_{21} > 0

    \begin{align} \left\|\Delta u\right\|_{L^{2}} \leq& \left\|\partial_{t} u\right\|_{L^{2}}+\chi\left\|\nabla u\cdot\nabla v\right\|_{L^{2}}+\chi\left\|u\Delta v\right\|_{L^{2}}+\xi\left\|\nabla u\cdot\nabla w\right\|_{L^{2}}+\xi\left\| u\Delta w\right\|_{L^{2}} \\ \leq&\left\|\partial_{t} u\right\|_{L^{2}}+\chi\left\|\nabla u\right\|_{L^{2}}\left\|\nabla v\right\|_{L^{\infty}}+\chi\left\|\Delta v\right\|_{L^{2}}\left\|u\right\|_{L^{\infty}} \\&+\xi\left\|\nabla u\right\|_{L^{2}}\left\|\nabla w\right\|_{L^{\infty}}+\xi\left\|\Delta w\right\|_{L^{2}}\left\|u\right\|_{L^{\infty}} \\ \leq&C_{21}. \end{align} (2.61)

    For the L^2 -norm of \nabla^3 v , integrating by parts, we deduce that

    \begin{aligned} \frac{d}{d t} \left\|\nabla^3 v(t)\right\|_{L^{2}}^2 & = 2 \int_{\mathbb{R}^2} \nabla^3 v \nabla^3(\Delta v-v+u) \\ & = -2 \int_{\mathbb{R}^2}\left|\nabla^4 v\right|^2-2 \int_{\mathbb{R}^2}\left|\nabla^3 v\right|^2+2 \int_{\mathbb{R}^2} \nabla^3 v \nabla^3 u \\ &\leq-\left\|\nabla^4 v\right\|_{L^{2}}^2-2\left\|\nabla^3 v\right\|_{L^{2}}^2+\left\|\nabla^2 u\right\|_{L^{2}}^2, \end{aligned}

    then by (2.61) and Gronwall's inequality, we can see that for all t\in(0, T)

    \begin{eqnarray} \left\|\nabla^3 v(t)\right\|_{L^{2}}\leq C_{22}. \end{eqnarray} (2.62)

    Putting (2.52)–(2.54), (2.58) and (2.60)–(2.62) together, we conclude that for some C > 0

    \begin{eqnarray} \|u(t)\|_{H^2(\mathbb{R}^2)}+\|v(t)\|_{H^3(\mathbb{R}^2)}+\|w(t)\|_{H^3(\mathbb{R}^2)}\leq C,\quad \forall t\in(0,T), \end{eqnarray} (2.63)

    which completes the proof.

    As a preparation, we first state some results concerning the system which will be used in the proof of Theorem 1.1.

    Lemma 3.1. The local-in-time classical solution (u, v, w) of system (1.3) satisfies

    \begin{eqnarray} \|u(t)\|_{L^{1}} = \left\|u_{0}\right\|_{L^{1}}: = M, \quad \forall t \in\left(0, T_{\max}\right) \end{eqnarray} (3.1)

    and

    \begin{eqnarray} \|v(t)\|_{L^{1}} = \left\|u_{0}\right\|_{L^{1}}+\left(\left\|v_{0}\right\|_{L^{1}}-\left\|u_{0}\right\|_{L^{1}}\right) e^{-t}, \quad \forall t \in\left(0, T_{\max}\right). \end{eqnarray} (3.2)

    Proof. Integrating the first and second equation of (1.3) on \mathbb{R}^2 , we can obtain

    \frac{d}{d t} \int_{\mathbb{R}^2} u = \int_{\mathbb{R}^2} \Delta u-\chi\int_{\mathbb{R}^2} \nabla \cdot(u \nabla v)-\xi\int_{\mathbb{R}^2} \nabla \cdot(u \nabla w) = 0

    and

    \frac{d}{d t} \int_{\mathbb{R}^2} v = \int_{\mathbb{R}^2} \Delta v-\int_{\mathbb{R}^2} v+\int_{\mathbb{R}^2} u = -\int_{\mathbb{R}^2} v+\int_{\mathbb{R}^2} u,

    which can easily yield (3.1) and (3.2).

    The following energy

    F(t) = \int_{\mathbb{R}^2} u \ln u-\chi \int_{\mathbb{R}^2} u v-\xi \int_{\mathbb{R}^2} u w+\frac{\chi}{2} \int_{\mathbb{R}^2}\left(v^{2}+|\nabla v|^{2}\right)

    plays a key role in the proof. The main idea of the proof is similar to the strategy introduced in [2].

    Lemma 3.2. Assume that (1.4) and (1.5) holds. Let (u, v, w) be the local-in-time classical solution of system (1.3). Then F(t) satisfies

    \begin{eqnarray} F(t)+\chi\int_0^t\int_{\mathbb{R}^{2}} v_{t}^{2}+\int_0^t\int_{\mathbb{R}^{2}} u|\nabla(\ln u-\chi v-\xi w)|^{2} = F(0)+\xi \int_0^t\int_{\mathbb{R}^{2}} u v w, \quad \forall t \in\left(0, T_{\max}\right). \end{eqnarray} (3.3)

    Proof. We use the same ideas as in the proofs of [45,Theorem 1.3], [46,Lemma 3.1] and [1,Theorem 3.2]. The equation of u can be written as u_t = \nabla \cdot(u \nabla(\ln u-\chi v-\xi w)) . Multiplying by \ln u-\chi v-\xi w and integrating by parts, we obtain

    \begin{align} -\int_{\mathbb{R}^{2}} u|\nabla(\ln u-\chi v-\xi w)|^{2} & = \int_{\mathbb{R}^{2}} u_{t}(\ln u-\chi v-\xi w) \\ & = \frac{d}{d t} \int_{\mathbb{R}^{2}}(u \ln u-\chi u v-\xi u w)+\chi \int_{\mathbb{R}^{2}} u v_{t}+\xi \int_{\mathbb{R}^{2}} u w_{t}. \end{align} (3.4)

    Substituting the second and third equation of (1.3) into (3.4) and integrating by parts, we have

    \begin{align} &-\int_{\mathbb{R}^{2}} u|\nabla(\ln u-\chi v-\xi w)|^{2} \\ = &\frac{d}{d t} \int_{\mathbb{R}^{2}}(u \ln u-\chi u v-\xi u w)+\chi \int_{\mathbb{R}^{2}} \left( v_{t}-\Delta v+v\right) v_{t}+\xi \int_{\mathbb{R}^{2}} uvw \\ = & \frac{d}{d t} \int_{\mathbb{R}^{2}}(u \ln u-\chi u v-\xi u w)-\chi\int_{\mathbb{R}^{2}} v_{t}^{2}+\frac{\chi}{2} \frac{d}{d t} \int_{\mathbb{R}^{2}}\left(v^{2}+|\nabla v|^{2}\right)+\xi \int_{\mathbb{R}^{2}} uvw, \end{align} (3.5)

    which, upon being integrated from 0 to t , yields simply that (3.3). We give some lemmas to deal with the term \int_{\mathbb{R}^{2}} u\ln u in (1.7).

    Lemma 3.3. ([1,Lemma 2.1]) Let \psi be any function such that e^{\psi} \in L^{1}\left(\mathbb{R}^{2}\right) and denote \bar{u} = M e^{\psi}\left(\int_{\mathbb{R}^{2}} e^{\psi} d x\right)^{-1} with M a positive arbitrary constant. Let E: L_{+}^{1}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{R} \cup\{\infty\} be the entropy functional

    \begin{eqnarray*} E(u ; \psi) = \int_{\mathbb{R}^{2}}\left(u \ln u-u \psi\right) d x \end{eqnarray*}

    and let RE: L_{+}^{1}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{R} \cup\{\infty\} defined by

    RE(u \mid \bar{u}) = \int_{\mathbb{R}^{2}} u \ln(\frac{u}{\bar{u}}) d x

    be the relative (to \bar{u} ) entropy.

    Then E(u; \psi) and RE(u\mid\bar{u}) are finite or infinite in the same time and for all u in the set \mathcal{U} = \left\{u \in L_{+}^{1}\left(\mathbb{R}^{2}\right), \int_{\mathbb{R}^{2}} u(x) d x = M\right\} and it holds true that

    E(u ; \psi)-E(\bar{u};\psi) = RE(u\mid\bar{u}) \geq 0 .

    Next, we give a Moser-Trudinger-Onofri inequality.

    Lemma 3.4. ([1,Lemma 3.1]) Let H be defined as H(x) = \frac{1}{\pi} \frac{1}{\left(1+|x|^{2}\right)^{2}} . Then

    \begin{eqnarray} \int_{\mathbb{R}^{2}} e^{\varphi(x)} H(x) d x \leq \exp \left\{\int_{\mathbb{R}^{2}} \varphi(x) H(x) d x+\frac{1}{16 \pi} \int_{\mathbb{R}^{2}}|\nabla \varphi(x)|^{2} d x\right\}, \end{eqnarray} (3.6)

    for all functions \varphi \in L^{1}\left(\mathbb{R}^{2}, H(x) d x\right) such that |\nabla \varphi(x)| \in L^{2}\left(\mathbb{R}^{2}, d x\right) .

    Lemma 3.5. ([1,Lemma 2.4]) Let \psi be any function such that e^\psi \in L^1\left(\mathbb{R}^2\right) , and let f be a non-negative function such that \left(f \bf{1}_{\{f \leq 1\}}\right) \in L^1\left(\mathbb{R}^2\right) \cap L^1\left(\mathbb{R}^2, |\psi(x)| d x\right) . Then there exists a constant C such that

    \int_{\mathbb{R}^2} f(x)(\ln f(x))_{-} d x \leq C-\int_{\{f \leq 1\}} f(x) \psi(x) d x.

    With the help of Lemma 3.2–3.5, we now use the subcritical mass condition (1.8) to derive a Gronwall-type inequality and to get a time-dependent bound for \|(u \ln u)(t)\|_{L^{1}} .

    Lemma 3.6. Under the subcritical mass condition (1.8) and (1.5), there exists C = C\left(u_{0}, v_{0}, w_{0}\right) > 0 such that

    \begin{eqnarray} \|(u \ln u)(t)\|_{L^{1}}+\|v(t)\|_{H^{1}}^{2} \leq C e^{\frac{\xi K}{\gamma} t}, \quad \forall t \in\left(0, T_{\max}\right), \end{eqnarray} (3.7)

    where K > 0 and \gamma are defined by (3.8) and (3.10) below, respectively.

    Proof. According to the third equation of (1.3), we have for all t\in (0, T)

    \begin{eqnarray} \|w\|_{L^{\infty}} \leq \|w_{0}\|_{L^{\infty}}: = K, \end{eqnarray} (3.8)

    then we apply the estimate of (3.3) to find that

    \begin{eqnarray} F(t)+\int_0^t\int_{\mathbb{R}^{2} } u|\nabla(\ln u-\chi v-\xi w)|^{2}\leq F(0)+\xi K \int_0^t \int_{\mathbb{R}^{2} } u v, \quad \forall t \in\left(0, T_{\max}\right). \end{eqnarray} (3.9)

    For our later purpose, since M < \frac{8\pi}{\chi} , we first choose some positive constant \gamma > 0 small enough to satisfy

    \begin{eqnarray} \chi-\frac{M(\chi+\gamma)^2}{8\pi} > 0, \end{eqnarray} (3.10)

    then by the definition of F(t) in (1.7), we use (3.1) and (3.8) to deduce that

    \begin{eqnarray} F(t)& = &\int_{\mathbb{R}^2} u \ln u-\chi \int_{\mathbb{R}^2} u v-\xi \int_{\mathbb{R}^2} u w+\frac{\chi}{2} \int_{\mathbb{R}^2}\left(v^{2}+|\nabla v|^{2}\right) \\&\geq&\int_{\mathbb{R}^2} u \ln u-(\chi+\gamma) \int_{\mathbb{R}^2} u v-\xi KM+\frac{\chi}{2} \int_{\mathbb{R}^2}\left(v^{2}+|\nabla v|^{2}\right)+ \gamma\int_{\mathbb{R}^2} u v. \end{eqnarray} (3.11)

    Similar as the calculation shown in [1], we set \bar{u}(x, t) = M e^{(\chi+\gamma) v(x, t)} H(x)\left(\int_{\mathbb{R}^{2}} e^{(\chi+\gamma) v(x, t)} H(x) d x\right)^{-1} , where H(x) is defined in Lemma 3.4. Then, we can apply the Entropy Lemma 3.3 with \psi = (\chi+\gamma) v+\ln H to obtain

    \begin{align} E(u ;(\chi+\gamma)v+\ln H) & \geq E(\bar{u} ;(\chi+\gamma)v+\ln H) \\ & = M \ln M-M \ln \left(\int_{\mathbb{R}^{2}} e^{(\chi+\gamma) v(x, t)} H(x) d x\right). \end{align} (3.12)

    Furthermore, applying Lemma 3.4 with \varphi = (\chi+\gamma) v to the last term in the right hand side of (3.12), we have that

    \begin{align} E(u ;(\chi+\gamma)v+\ln H) & = \int_{\mathbb{R}^2} u \ln u-(\chi+\gamma) \int_{\mathbb{R}^2} u v-\int_{\mathbb{R}^2} u \ln H\\ &\geq M \ln M-M \ln \left(\int_{\mathbb{R}^{2}} e^{(\chi+\gamma) v(x, t)} H(x) d x\right)\\ &\geq M \ln M-M(\chi+\gamma)\int_{\mathbb{R}^{2}} vH-\frac{M(\chi+\gamma)^2}{16\pi}\int_{\mathbb{R}^{2}}|\nabla v|^{2}. \end{align} (3.13)

    Then by Young's inequality, we have M(\chi+\gamma)\int_{\mathbb{R}^{2}} vH\leq \frac{M(\chi+\gamma)^2}{16\pi}\int_{\mathbb{R}^{2}}v^{2}+ 4M\pi \int_{\mathbb{R}^{2}}H^2 . Together with (3.13) and the fact \int_{\mathbb{R}^{2}} H^2(x) dx = \frac{1}{3\pi} , we can easily obtain

    \begin{align} &\int_{\mathbb{R}^2} u \ln u-(\chi+\gamma) \int_{\mathbb{R}^2} u v-\int_{\mathbb{R}^2} u \ln H\\ \geq &M \ln M-M(\chi+\gamma)\int_{\mathbb{R}^{2}} vH-\frac{M(\chi+\gamma)^2}{16\pi}\int_{\mathbb{R}^{2}}|\nabla v|^{2}\\ \geq &M \ln M-\frac{M(\chi+\gamma)^2}{16\pi}\int_{\mathbb{R}^{2}}v^{2}-\frac{M(\chi+\gamma)^2}{16\pi}\int_{\mathbb{R}^{2}}|\nabla v|^{2}- \frac{4}{3}M. \end{align} (3.14)

    Substituting (3.14) into (3.11), we have

    \begin{align} F(t)&\geq\int_{\mathbb{R}^2} u \ln u-(\chi+\gamma) \int_{\mathbb{R}^2} u v+\frac{\chi}{2} \int_{\mathbb{R}^2}\left(v^{2}+|\nabla v|^{2}\right)+\gamma\int_{\mathbb{R}^2} u v-\xi KM \\&\geq M \ln M+\int_{\mathbb{R}^2} u \ln H+\left(\frac{\chi}{2}-\frac{M(\chi+\gamma)^2}{16\pi}\right)\int_{\mathbb{R}^2}\left(v^{2}+|\nabla v|^{2}\right)+ \gamma\int_{\mathbb{R}^2} u v-(\xi K+ \frac{4}{3})M \\&\geq M \ln M+\int_{\mathbb{R}^2} u \ln H+\gamma\int_{\mathbb{R}^2} u v-(\xi K+ \frac{4}{3})M \end{align} (3.15)

    by (3.10). Now we turn to estimate the second term on the right side of (3.15). We set \phi(x) = \ln (1+|x|^2) , then we can obtain by Young's inequality

    \begin{align*} &\ \frac{d}{dt}\int_{\mathbb{R}^2} u\phi = \int_{\mathbb{R}^2} u_t\phi = \int_{\mathbb{R}^2} u \nabla \phi\cdot\nabla(\ln u-\chi v-\xi w)\nonumber\\ \leq&\int_{\mathbb{R}^2}u|\nabla \phi|^{2}+\frac{1}{4}\int_{\mathbb{R}^2} u|\nabla(\ln u-\chi v-\xi w)|^{2},\quad \text{for all}\ t\in(0,T_{\max}). \end{align*}

    By the fact |\nabla \phi(x)| = \left|\frac{2x}{1+|x|^2}\right|\leq1 , we have

    \begin{align*} \frac{d}{dt}\int_{\mathbb{R}^2} u\phi\leq \int_{\mathbb{R}^2}u+\frac{1}{4}\int_{\mathbb{R}^2} u|\nabla(\ln u-\chi v-\xi w)|^{2}\leq M+\frac{1}{4}\int_{\mathbb{R}^2} u|\nabla(\ln u-\chi v-\xi w)|^{2}, \end{align*}

    upon being integrated from 0 to t , which yields simply that for all t\in(0, T_{\max})

    \begin{eqnarray} \int_{\mathbb{R}^2} u\ln (1+|x|^2)\leq\int_{\mathbb{R}^2} u_0\ln (1+|x|^2)+Mt+\frac{1}{4}\int_0^t\int_{\mathbb{R}^2} u|\nabla(\ln u-\chi v-\xi w)|^{2}. \end{eqnarray} (3.16)

    By the definition of H(x) , we have for all t\in(0, T_{\max})

    \begin{align} \int_{\mathbb{R}^2} u \ln H& = -2\int_{\mathbb{R}^2}u\ln (1+|x|^2)- M\ln \pi \\&\geq-2\int_{\mathbb{R}^2} u_0\ln (1+|x|^2)-2Mt-\frac{1}{2}\int_0^t\int_{\mathbb{R}^2} u|\nabla(\ln u-\chi v-\xi w)|^{2}- M\ln \pi. \end{align} (3.17)

    Substituting (3.15) and (3.17) into (3.9), we have for all t\in(0, T_{\max})

    \begin{eqnarray} \gamma\int_{\mathbb{R}^2} u v\leq \xi K \int_0^t \int_{\mathbb{R}^{2} } u v+2Mt+F(0)+2\int_{\mathbb{R}^2}u_0\ln (1+|x|^2)+(\ln \pi+\xi K+ \frac{4}{3}-\ln M )M. \end{eqnarray} (3.18)

    From (1.4), we have assumed for convenience that u_{0} \ln u_{0} and u_0\ln (1+|x|^2) belongs to L^{1}(\mathbb{R}^2) for convenience. Then we conclude an integral-type Gronwall inequality as follows

    \begin{eqnarray} \gamma\int_{\mathbb{R}^2} u v\leq \xi K \int_0^t \int_{\mathbb{R}^{2} } u v+2Mt+C_1, \quad \forall t \in\left(0, T_{\max}\right), \end{eqnarray} (3.19)

    where C_1 = F(0)+2\int_{\mathbb{R}^2}u_0\ln (1+|x|^2)+(\ln \pi+\xi K+ \frac{4}{3}-\ln M)M is a finite number. Solving the integral-type Gronwall inequality (3.19) via integrating factor method, we infer that for some C_2 > 0

    \int_{\mathbb{R}^2} u v+\int_{0}^{t} \int_{\mathbb{R}^2} u v \leq C_{2} e^{\frac{\xi K}{\gamma} t}, \quad \forall t \in\left(0, T_{\max}\right) .

    Then by (3.9), one can simply deduce that F(t) grows no great than exponentially as well:

    \begin{eqnarray} F(t) \leq C_{3} e^{\frac{\xi K}{\gamma} t}, \quad \forall t \in\left(0, T_{\max}\right). \end{eqnarray} (3.20)

    Similarly, this along with (1.7) shows that for some C_4 > 0

    \begin{eqnarray} \int_{\mathbb{R}^2} u\ln u+\int_{\mathbb{R}^2} v^{2}+\int_{\mathbb{R}^2}|\nabla v|^{2} \leq C_{4} e^{\frac{\xi K}{\gamma} t}, \quad \forall t \in\left(0, T_{\max}\right). \end{eqnarray} (3.21)

    According to Lemma 3.5 with \psi = -(1+\delta) \ln \left(1+|x|^{2}\right) , for arbitrary \delta > 0 in order to have e^{-(1+\delta) \ln \left(1+|x|^{2}\right)} \in L^{1}\left(\mathbb{R}^{2}\right) , we have for all t \in(0, T_{\max})

    \begin{align} &\int_{\mathbb{R}^{2}} u(\ln u)_{-} d x\\ \leq & (1+\delta) \int_{\mathbb{R}^{2}} u \ln \left(1+|x|^{2}\right) d x+C_5 \\ \leq & (1+\delta) \left\{\int_{\mathbb{R}^2} u_0\ln (1+|x|^2)+Mt+\frac{1}{4}\int_0^t\int_{\mathbb{R}^2} u|\nabla(\ln u-\chi v-\xi w)|^{2}\right\}+C_5\\ \leq &\frac{1+\delta}{4}\left\{F(0)-F(t)+ \xi K \int_0^t \int_{\mathbb{R}^{2} } u v\right\}+M(1+\delta)t+C_6\\ \leq &C_{7}e^{\frac{\xi K}{\gamma} t} \end{align} (3.22)

    for some C_i > 0 (i = 5, 6, 7) . Finally, the identity

    \begin{eqnarray} \int_{\mathbb{R}^{2}}|u \ln u| d x = \int_{\mathbb{R}^{2}} u \ln u d x+2 \int_{\mathbb{R}^{2}} u(\ln u)_{-} d x \end{eqnarray} (3.23)

    gives that \|(u \ln u)(t)\|_{L^{1}}\leq C_{8}e^{\frac{\xi K}{\gamma} t} for some C_8 > 0 . Together with (3.21), this easily yield (3.7).

    Next, we wish to raise the regularity of u based on the local L^{1} -boundedness of u \ln u . In particular, for subcritical mass M , we have \int_{\mathbb{R}^{2}}(u(x, t)-k)_{+} d x \leq M for any k > 0 , while for k > 1 we have for all t \in(0, T_{\max})

    \begin{align} \int_{\mathbb{R}^{2}}(u(x, t)-k)_{+} d x & \leq \frac{1}{\ln k} \int_{\mathbb{R}^{2}}(u(x, t)-k)_{+} \ln u(x, t) d x \\ & \leq \frac{1}{\ln k} \int_{\mathbb{R}^{2}} u(x, t)(\ln u(x, t))_{+} d x\leq \frac{C e^{\frac{\xi K}{\gamma} t}}{\ln k}. \end{align} (3.24)

    Lemma 3.7. Under the condition (1.5) and (1.8), for any T \in(0, T_{\max}) , there exists C(T) > 0 such that the local solution (u, v, w) of (1.1) verifies that for any p\geq2

    \begin{eqnarray} \int_{\mathbb{R}^{2}} u^{p}(x, t) d x \leq C(T),\ \forall t \in\left(0, T\right], \end{eqnarray} (3.25)

    where C(T) = 2^p\bar{C}(T)+(2k)^{p-1}M with k and \bar{C}(T) respectively given by (3.37) and (3.40) below, which are finite for any T > 0 .

    Proof. Let k > 0 , to be chosen later. We derive a non-linear differential inequality for the quantity Y_{p}(t): = \int_{\mathbb{R}^{2}}(u(x, t)-k)_{+}^{p} d x , which guarantees that the L^{p} -norm of u remains finite.

    Multiplying the equation of u in (1.3) by p(u-k)_{+}^{p-1} yields, using integration by parts,

    \begin{align} &\frac{d}{d t} \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x \\ = &-4 \frac{(p-1)}{p} \int_{\mathbb{R}^{2}}\left|\nabla(u-k)_{+}^{\frac{p}{2}}\right|^{2} d x -(p-1) \chi\int_{\mathbb{R}^{2}}(u-k)_{+}^{p} \Delta v d x-p k \chi\int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1} \Delta v d x \\ & -(p-1)\xi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} \Delta w d x-p k \xi\int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1} \Delta w d x \\ = &I_1+I_2+I_3+I_4+I_5. \end{align} (3.26)

    Now using the equation of v in (1.3) and the nonnegativity of v , one obtains

    \begin{eqnarray} I_2& = &-(p-1)\chi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} \Delta v dx \\& = &(p-1)\chi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p}(-v_t-v+u)dx \\&\leq&-(p-1)\chi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p}v_t+(p-1)\chi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p+1}dx+(p-1)k\chi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p}dx \end{eqnarray} (3.27)

    and

    \begin{eqnarray} I_3& = &-p k \chi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1} \Delta vdx\\& = &pk\chi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1}(-v_t-v+u)dx\\&\leq&-pk \chi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1}v_tdx+pk\chi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p}dx+pk^2\chi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1}dx. \end{eqnarray} (3.28)

    Using Gagliardo-Nirenberg inequality \int_{\mathbb{R}^{2}} f^{4}(x) d x \leq C \int_{\mathbb{R}^{2}} f^{2}(x) d x \int_{\mathbb{R}^{2}}|\nabla f(x)|^{2} d x with f = (u-k)_{+}^{\frac{p}{2}} and Hölder inequality, we obtain for \varepsilon > 0

    \begin{align} \left|\int_{\mathbb{R}^{2}}(u-k)_{+}^{p} v_t d x\right| & \leq\left(\int_{\mathbb{R}^{2}}(u-k)_{+}^{2 p} d x\right)^{\frac{1}{2}}\left\|v_t\right\|_{L^{2}} \\ & \leq C\left(\int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{2}}\left|\nabla(u-k)_{+}^{\frac{p}{2}}\right|^{2} d x\right)^{1 / 2}\left\|v_t\right\|_{L^{2}} \\ & \leq C(p)\varepsilon\left\| v_t\right\|_{L^{2}}^{2} \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x+\frac{2}{\varepsilon p} \int_{\mathbb{R}^{2}}\left|\nabla(u-k)_{+}^{\frac{p}{2}}\right|^{2} d x. \end{align} (3.29)

    Similarly, we have, for p \geq \frac{3}{2}

    \begin{align} \left|\int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1} v_t d x\right| \leq & \left(\int_{\mathbb{R}^{2}}(u-k)_{+}^{2(p-1)} d x\right)^{\frac{1}{2}}\left\| v_t\right\|_{L^{2}} \\ \leq& \left(C(M, p)+C(p) \int_{\mathbb{R}^{2}}(u-k)_{+}^{2 p} d x\right)^{\frac{1}{2}}\left\| v_t\right\|_{L^{2}} \\ \leq & C(M, p)\left\| v_t\right\|_{L^{2}}+ C(p)\varepsilon\left\| v_t\right\|_{L^{2}}^{2} \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x \\ &+\frac{p-1}{\varepsilon p^2 k} \int_{\mathbb{R}^{2}}\left|\nabla(u-k)_{+}^{\frac{p}{2}}\right|^{2} d x. \end{align} (3.30)

    Then we can see that

    \begin{eqnarray} I_2+I_3&\leq &(p-1)\int_{\mathbb{R}^{2}}(u-k)_{+}^{p+1}dx+\frac{(p-1)}{p} \int_{\mathbb{R}^{2}}\left|\nabla(u-k)_{+}^{\frac{p}{2}}\right|^{2} d x \\&\ &+C(p,\chi)(k+1)\left\|v_{t} \right\|_{L^{2}}^2 \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x+ C(M,p,\chi)k\left\|v_{t} \right\|_{L^{2}} \\&\ &+(2p-1)k\chi\int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x+pk^2\chi\int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1} d x \end{eqnarray} (3.31)

    by setting \varepsilon = 4\chi . According to the equation of w and v and (3.8), one obtains for all t\in(0, T)

    \begin{align} -\Delta w(x, t) = & -\Delta w_{0}(x) \mathrm{e}^{-\int_{0}^{t} v(x, s) \mathrm{d} s}+2 \mathrm{e}^{-\int_{0}^{t} v(x, s) \mathrm{d} s} \nabla w_{0}(x) \cdot \int_{0}^{t} \nabla v(x, s) \mathrm{d} s \\&-w_{0}(x) \mathrm{e}^{-\int_{0}^{t} v(x, s) \mathrm{d} s} \left|\int_{0}^{t} \nabla v(x, s) \mathrm{d} s\right|^{2}+w_{0}(x) \mathrm{e}^{-\int_{0}^{t} v(x, s) \mathrm{d} s} \int_{0}^{t} \Delta v(x, s) \mathrm{d} s \\ \leq&\|\Delta w_{0}\|_{L^{\infty}}-\mathrm{e}^{-\int_{0}^{t} v(x, s) \mathrm{d} s}\left(\sqrt{w_0}\int_{0}^{t} \nabla v(x, s) \mathrm{d} s-\frac{\nabla w_{0}}{\sqrt{w_0}} \right)^2+\mathrm{e}^{-\int_{0}^{t} v(x, s)ds}\frac{\left|\nabla w_{0}\right|^2}{w_0} \\&+w_{0}(x) \mathrm{e}^{-\int_{0}^{t} v(x, s) \mathrm{d} s} \int_{0}^{t} \left(v_s(x,s)+v-u\right) \mathrm{d} s. \end{align} (3.32)

    Here to estimate the last integral of the right side of (3.32) we first note (1.7) guarantees that

    \begin{aligned} w_{0}(x) \mathrm{e}^{-\int_{0}^{t} v(x, s) \mathrm{d} s} \int_{0}^{t} \left(v_s(x,s)+v-u\right) \mathrm{d}s&\leq \|w_{0}\|_{L^{\infty}}\mathrm{e}^{-\int_{0}^{t} v(x, s) \mathrm{d} s}\left[v(x,t)-v_0+\int_{0}^{t} v(x, s)\mathrm{d} s\right]\\&\leq \|w_{0}\|_{L^{\infty}}v+\frac{\|w_{0}\|_{L^{\infty}}}{\mathrm{e}}, \quad \forall t \in\left(0, T\right) \end{aligned}

    by the nonnegativity of w_0 and v_0 and the fact \mathrm{e}^{-x}x\leq\frac{1}{\mathrm{e}} for all x > 0 . Substituting (3.8) and (3.32) into (3.26), we have

    \begin{align*} I_4+I_5 = &-(p-1)\xi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} \Delta w d x-p k\xi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1} \Delta w d x\nonumber\\ \leq&(p-1)K\xi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p}v d x+ (p-1)K_1 \xi\int_{\mathbb{R}^{2}}(u-k)_{+}^{p} dx\nonumber\\&+p k K\xi\int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1}v d x+p k K_1 \xi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1}d x, \end{align*}

    where K_1 = \|\Delta w_{0}\|_{L^{\infty}}+4\|\nabla \sqrt{w_{0}}\|_{L^{\infty}}^2+\frac{K}{\mathrm{e}} . Applying similar procedure as (3.29) and (3.30) to \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} vdx and \int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1} vdx , this yields

    \begin{align} I_4+I_5\leq&\frac{(p-1)}{p} \int_{\mathbb{R}^{2}}\left|\nabla(u-k)_{+}^{\frac{p}{2}}\right|^{2} d x+C(p,K,\xi)k\left\| v\right\|_{L^{2}}^{2} \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x+ C(M, p,K,\xi)k\left\| v\right\|_{L^{2}}\\&+(p-1)K_1 \xi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} dx+p k K_1\xi\int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1}d x \end{align} (3.33)

    by setting \varepsilon = 2K\xi . Combining (3.26), (3.31) and (3.33), we have for all t\in(0, T)

    \begin{align} &\frac{d}{d t} \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x\\ \leq&-2\frac{(p-1)}{p} \int_{\mathbb{R}^{2}}\left|\nabla(u-k)_{+}^{\frac{p}{2}}\right|^{2} d x+(p-1) \int_{\mathbb{R}^{2}}(u-k)_{+}^{p+1} dx \\&+[(2p-1)k\chi+(p-1)K_1\xi]\int_{\mathbb{R}^{2}}(u-k)_{+}^{p} dx+(pk^2\chi+pkK_1\xi)\int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1} dx \\&+C(p,K,\chi,\xi)(k+1)\left(\left\|\partial_{t} v\right\|_{L^{2}}^2+\left\| v\right\|_{L^{2}}^2\right) \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x+ C(M,p,K,\chi,\xi)k\left(\left\|\partial_{t} v\right\|_{L^{2}}+\left\| v\right\|_{L^{2}}\right). \end{align} (3.34)

    Next, we estimate the nonlinear and negative contribution -2\frac{(p-1)}{p} \int_{\mathbb{R}^{2}}|\nabla(u-k)_{+}^{\frac{p}{2}}|^{2} d x in terms of \int_{\mathbb{R}^{2}}(u-k)_{+}^{p+1} dx , with the help of the Sobolev's inequality \|f\|_{L^2}^2\leq c_1 \|\nabla f\|_{L^1}^2 . Indeed, by (3.24),

    \begin{align} \int_{\mathbb{R}^{2}}(u-k)_{+}^{p+1} d x & = \int_{\mathbb{R}^{2}}\left((u-k)_{+}^{\frac{(p+1)}{2}}\right)^{2} d x \leq c_1\left(\int_{\mathbb{R}^{2}}\left|\nabla(u-k)_{+}^{\frac{(p+1)}{2}}\right| d x\right)^{2} \\ & = C(p)\left(\int_{\mathbb{R}^{2}}(u-k)_{+}^{\frac{1}{2}}\left|\nabla(u-k)_{+}^{\frac{p}{2}}\right| d x\right)^{2} \\ & \leq C(p) \int_{\mathbb{R}^{2}}(u-k)_{+} d x \int_{\mathbb{R}^{2}}\left|\nabla(u-k)_{+}^{p / 2}\right|^{2} d x \\ & \leq C(p) \frac{C e^{\frac{\xi K}{\gamma} T}}{\ln k} \int_{\mathbb{R}^{2}}\left|\nabla(u-k)_{+}^{p / 2}\right|^{2} d x, \quad \forall 0 < t \leq T. \end{align} (3.35)

    Moreover, since for p \geq 2 it holds true that

    \begin{equation} \int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1} d x \leq \int_{\mathbb{R}^{2}}(u-k)_{+} d x+\int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x. \end{equation} (3.36)

    Inserting (3.35) and (3.36) into (3.34) gives for p \geq 2 and 0 < t \leq T that

    \begin{equation*} \begin{aligned} &\frac{d}{d t} \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x \\& \leq(p-1)\left(1-\frac{2\ln k}{p C(p)C e^{\frac{\xi K}{\gamma} T}}\right) \int_{\mathbb{R}^{2}}(u-k)_{+}^{p+1} d x \\ &\quad+C(p,K,\chi,\xi)k\left(1+\left\|\partial_{t} v\right\|_{L^{2}}^2+\left\| v\right\|_{L^{2}}^2\right) \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x+ C(M,p,K,\chi,\xi)k\left(\left\|\partial_{t} v\right\|_{L^{2}}+\left\| v\right\|_{L^{2}}+1\right). \end{aligned} \end{equation*}

    For any fixed p we can choose k = k(p, T) sufficiently large such that

    \begin{equation} \delta: = \frac{2\ln k}{p C(p)C e^{\frac{\xi K}{\gamma} T}}-1 > 0, \end{equation} (3.37)

    namely, k = \exp\left(\frac{(1+\delta)p C(p)C e^{\frac{\xi K}{\gamma} T}}{2}\right) . For such a k , using the interpolation

    \begin{aligned} \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x & \leq\left(\int_{\mathbb{R}^{2}}(u-k)_{+} d x\right)^{\frac{1}{p}}\left(\int_{\mathbb{R}^{2}}(u-k)_{+}^{p+1} d x\right)^{\left(1-\frac{1}{p}\right)} \\ & \leq M^{\frac{1}{p}}\left(\int_{\mathbb{R}^{2}}(u-k)_{+}^{p+1} d x\right)^{\left(1-\frac{1}{p}\right)}, \end{aligned}

    we end up with the following differential inequality for Y_{p}(t) , p\geq2 fixed and 0 < t \leq T

    \begin{align} \frac{d}{d t} Y_{p}(t)& \leq-(p-1) M^{-\frac{1}{p-1}} \delta Y_{p}^{\beta}(t)+c_{2}(p,K,\chi,\xi)k\left(1+\left\|\partial_{t} v\right\|_{L^{2}}^2+\left\| v\right\|_{L^{2}}^2\right) Y_{p}(t) \\&\quad+c_{3}(M,p,K,\chi,\xi)k\left(1+\left\|\partial_{t} v\right\|_{L^{2}}^2+\left\| v\right\|_{L^{2}}^2\right), \end{align} (3.38)

    where \beta = \frac{p}{p-1} > 1 . Let us write the differential inequality (3.38) as follows for simplicity:

    \begin{equation} \frac{d}{d t} Y_{p}(t) \leq-\tilde{C} Y_{p}^{\beta}(t)+g(t) Y_{p}(t)+g(t), \quad 0 < t \leq T, \end{equation} (3.39)

    where g(t) = \bar{C}(M, p, K, \chi, \xi)k\left(1+\left\|\partial_{t} v\right\|_{L^{2}}^2+\left\| v\right\|_{L^{2}}^2\right) and \tilde{C} = (p-1) M^{-\frac{1}{p-1}} \delta > 0 . According to (3.7), (3.9) and (3.20), we can see that g(t)\leq \bar{C}(M, p, K, \chi, \xi)ke^{\frac{\xi Kt}{\gamma}} . Then by comparison inequality, we show that there exists a constant \bar{C}(T) such that for all t\in(0, T)

    \begin{align} Y_{p}(t) &\leq Y_{p}(0)\exp\left(\int_0^t g(s)ds\right)+\int_0^tg(\tau)\exp\left(\int_\tau^t g(s)ds\right)d\tau \\&\leq Y_{p}(0)\bar{C}(M, p, K,\chi,\xi) k e^{\frac{\xi K T}{\gamma}}T+\bar{C}(M, p, K,\chi,\xi) k e^{\frac{\xi K T}{\gamma}} e^{\bar{C}(M, p, K,\chi,\xi) k e^{\frac{\xi K T}{\gamma}}} T: = \bar{C}(T). \end{align} (3.40)

    It is sufficient to observe that for any k > 0

    \begin{align} \int_{\mathbb{R}^{2}} u^{p}(x, t) d x & = \int_{\{u \leq 2 k\}} u^{p}(x, t) d x+\int_{\{u > 2 k\}} u^{p}(x, t) d x \\ & \leq(2 k)^{p-1} M+2^{p} \int_{\{u > 2 k\}}(u(x, t)-k)^{p} d x \\ & \leq(2 k)^{p-1} M+2^{p} \int_{\mathbb{R}^{2}}(u(x, t)-k)_{+}^{p} d x, \end{align} (3.41)

    where the inequality x^{p} \leq 2^{p}(x-k)^{p} , for x \geq 2 k , has been used. Therefore, (3.25) follows for any p \geq 2 by (3.40) and (3.41) choosing k = k(p, T) sufficiently large such that (3.37) holds true.

    Proof of Theorem 1.1. According to the local L^p- boundedness of Lemma 3.7 and Lemma 2.2 we must have the local H^2\times H^3\times H^3 -boundedness of (u, v, w) , which contracts the extensibility criteria in (2.35). Then we must obtain that T_{\max} = \infty , that is, the strong solution (u, v, w) of (1.3) exists globally in time and is locally bounded as in (2.2).

    The authors convey sincere gratitude to the anonymous referees for their careful reading of this manuscript and valuable comments which greatly improved the exposition of the paper. The authors are supported in part by National Natural Science Foundation of China (No. 12271092, No. 11671079).

    The authors declare there is no conflict of interest.



    [1] K. Takahashi and Y. Konishi, Non-linear vibrations of cables in three dimensions, Part II: out-of-plane vibrations under in-plane sinusoidally time-varying load, J. Sound Vib., 118 (1987), 85–97.
    [2] J. L. Lilien and A. P. Da Costa, Vibration amplitudes caused by parametric excitation of cable stayed structures, J. Sound Vib., 174 (1994), 69–90.
    [3] H. N. Arafat and A. H. Nayfeh, Non-linear responses of suspended cables to primary resonance excitations, J. Sound Vib., 266 (2003), 325–354.
    [4] H. Wang, T. Y. Tao, R. Zhou, et al., Parameter sensitivity study on flutter stability of a long-span triple-tower suspension bridge, J. Wind Eng. Ind. Aerod., 128 (2014), 12–21.
    [5] T. Grigorjeva and Z. Kamaitis, Numerical analysis of the effects of the bending stiffness of the cable and the mass of structural members on free vibrations of suspension bridges, J. Civ. Eng. Manag., 21 (2015), 948–957.
    [6] C. G. Koh and Y. Rong, Dynamic analysis of large displacement cable motion with experimental verification, J. Sound Vib., 272 (2004), 183–206.
    [7] M. H. EI Ouni and N. B. Kahla, Nonlinear dynamic analysis of a cable under first and second order parametric excitations, J. Civ. Eng. Manag., 18 (2012), 557–567.
    [8] D. Xue, Y. Liu, J. He, et al., Experimental study and numerical analysis of a composite truss joint, J. Constr Steel Res., 67 (2011), 957–964.
    [9] K. Takahashi, Dynamic stability of cables subjected to an axial periodic load, J. Sound Vib., 144 (1991), 323–330.
    [10] A. P. Da Costa and J. A. C. Martins, Oscillations of bridge stay cables induced by periodic motions of deck and/or towers, J. Eng. Mech., 122 (1996), 613–622.
    [11] H. Chen, D. Zuo, Z. Zhang, et al., Bifurcations and chaotic dynamics in suspended cables under simultaneous parametric and external excitations, Nonlinear Dyn., 62 (2010), 623–646.
    [12] D. Zulli and A. Luongo, Nonlinear energy sink to control vibrations of an internally nonresonant elastic string, Meccanica, 50 (2014), 781–794.
    [13] B. N. Sun and Z. G. Wang, Cable oscillation induced by parametric excitation in cable-stayed bridges, J. Zhejiang Univ-sc A, 4 (2003), 13–20.
    [14] Y. Fujino and P. Warnitchai, An experimental and analytical study of auto parametric resonance in a 3-DOF model of cable-stayed-beam, Nonlinear Dyn., 4 (1993), 111–138.
    [15] Y. Xia and Y. Fujino, Auto-parametric vibration of a cable-stayed-beam structure under random excitation, J. Eng. Mech., 132 (2006), 279–286.
    [16] Y. Xia, Q. X. Wu, Y. L. Xu, et al., Verification of a cable element for cable parametric vibration of one-cable-beam system subject to harmonic excitation and random excitation, Adv. Struct. Eng., 14 (2011), 589–595.
    [17] V. Gattulli and M. Lepidi, Nonlinear interactions in the planar dynamics of cable-stayed beam, Int J. Solids Struct., 40 (2003), 4729–4748.
    [18] V. Gattulli and M. Morandini, A parametric analytical model for non‐linear dynamics in cable-stayed beam, Earthq. Eng. Struct. D., 31 (2002), 1281–1300.
    [19] V. Gattulli and M. Lepidi, One-to-two global-local interaction in a cable-stayed beam observed through analytical, finite element and experimental models, Int. J. Nonlin Mech., 40 ( 2005), 571–588.
    [20] Z. Wang, C. Sun, Y. Zhao, et. al., Modeling and nonlinear modal characteristics of the cable-stayed beam, Eur. J. Mech- A-Solid, 47 (2014), 58–69.
    [21] M. H. Wei, K. Lin, L. Jin, et. al., Nonlinear dynamics of a cable-stayed beam driven by sub-harmonic and principal parametric resonance, Int. J. Mech. Sci., 110 (2016), 78–93.
    [22] Z. W. Wang and T. J. Li, Nonlinear dynamic analysis of parametrically excited space cable-beam structures due to thermal loads, Eng. Struct., 83 (2015), 50–61.
    [23] H. J. Kang, H. P. Zhu, Y. Y. Zhao, et al., In-plane non-linear dynamics of the stay cables, Nonlinear Dyn., 73 (20136), 54–59.
    [24] Y. Y. Zhao and H. J. Kang, In-plane free vibration analysis of cable-arch structure, J. Sound Vib., 312 (2008), 363–379.
    [25] H. J. Kang, Y. Y. Zhao and H. P. Zhu, Out-of-plane free vibration analysis of a cable-arch structure, J. Sound Vib., 332 (2013), 907–921.
    [26] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, John Wiley & Sons, (1979), 71–79.
    [27] J. R. Zhao, Y. G. Tang and L. Q. Liu, Study on the sum type combination resonance responses of a classic Spar platform, Ocean Eng., 27 (2009), 23–30.
    [28] L. Q. Chen, J. W. Zu and J. Wu, Steady-state response of the parametrically excited axially moving string constituted by the Boltzmann superposition principle, Acta Mech., 162 (2003), 143–155.
    [29] Q. X. Wu, L. Liu and B. C. Chen, Theoretical equations of in-plane natural vibration for cables considering bending stiffness, Eng. Mech., 27 (2010), 9–27.
    [30] M. Irvine, Cable Structures, The MIT Series in Structural Mechanics, (1981).
    [31] Japan Society of Civil Engineers, Basic and application of cable and space structures, Maruzen, Japan: JSCE, (1999).
    [32] G. H. Li, H. F. Xiang and Z. Y. Shen, Stability and vibration of bridge structures, China Railway Publishing House, (2010), 132–134.
    [33] N. J. Gimsing and C. T. Georgakis, Cable supported bridges: concept and design. 3th ed, John Wiley & Sons, (2011), 220–225.
    [34] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillation, John Wiley & Sons, (1979).
    [35] M. Al-Qassab and S. Nair, Wavelet-Galerkin method for the free vibrations of an elastic cable carrying an attached mass, J. Sound Vib., 270 (2004), 191–206.
    [36] S. H. Zhou, G. Q. Song, Z. H. Ren, et al., Nonlinear analysis of a parametrically excited beam with intermediate support by using Multi-dimensional incremental harmonic balance method, Chaos, Solitons & Fractals, 93 (2016), 207–222.
    [37] P. J. Li, R. H. Wang and N. J. Ma, Analytic algorithm of transverse vibration frequency of cables with intermediate flexible supports, J. South China Univ T., 40 (2012), 7–18.
  • This article has been cited by:

    1. Xiaojun Yang, Huoxing Li, Ying Sun, Yijie Cai, Hongdi Zhou, Fei Zhong, Research on the Design Method of Cushioning Packaging for Products with Unbalanced Mass, 2023, 13, 2076-3417, 8632, 10.3390/app13158632
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4212) PDF downloads(361) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog