Models, measurement and inference in epithelial tissue dynamics

  • Received: 01 October 2014 Accepted: 29 June 2018 Published: 01 August 2015
  • MSC : Primary: 92CXX; Secondary: 92BXX, 92D25.

  • The majority of solid tumours arise in epithelia and therefore much research effort has gone into investigating the growth, renewal and regulation of these tissues. Here we review different mathematical and computational approaches that have been used to model epithelia. We compare different models and describe future challenges that need to be overcome in order to fully exploit new data which present, for the first time, the real possibility for detailed model validation and comparison.

    Citation: Oliver J. Maclaren, Helen M. Byrne, Alexander G. Fletcher, Philip K. Maini. Models, measurement and inference in epithelial tissue dynamics[J]. Mathematical Biosciences and Engineering, 2015, 12(6): 1321-1340. doi: 10.3934/mbe.2015.12.1321

    Related Papers:

    [1] Mengshi Shu, Rui Fu, Wendi Wang . A bacteriophage model based on CRISPR/Cas immune system in a chemostat. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1361-1377. doi: 10.3934/mbe.2017070
    [2] Miller Cerón Gómez, Eduardo Ibarguen Mondragon, Eddy Lopez Molano, Arsenio Hidalgo-Troya, Maria A. Mármol-Martínez, Deisy Lorena Guerrero-Ceballos, Mario A. Pantoja, Camilo Paz-García, Jenny Gómez-Arrieta, Mariela Burbano-Rosero . Mathematical model of interaction Escherichia coli and Coliphages. Mathematical Biosciences and Engineering, 2023, 20(6): 9712-9727. doi: 10.3934/mbe.2023426
    [3] Frédéric Mazenc, Gonzalo Robledo, Daniel Sepúlveda . A stability analysis of a time-varying chemostat with pointwise delay. Mathematical Biosciences and Engineering, 2024, 21(2): 2691-2728. doi: 10.3934/mbe.2024119
    [4] Gonzalo Robledo . Feedback stabilization for a chemostat with delayed output. Mathematical Biosciences and Engineering, 2009, 6(3): 629-647. doi: 10.3934/mbe.2009.6.629
    [5] Harry J. Dudley, Zhiyong Jason Ren, David M. Bortz . Competitive exclusion in a DAE model for microbial electrolysis cells. Mathematical Biosciences and Engineering, 2020, 17(5): 6217-6239. doi: 10.3934/mbe.2020329
    [6] Xiaomeng Ma, Zhanbing Bai, Sujing Sun . Stability and bifurcation control for a fractional-order chemostat model with time delays and incommensurate orders. Mathematical Biosciences and Engineering, 2023, 20(1): 437-455. doi: 10.3934/mbe.2023020
    [7] Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer . On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences and Engineering, 2007, 4(2): 319-338. doi: 10.3934/mbe.2007.4.319
    [8] Manel Dali Youcef, Alain Rapaport, Tewfik Sari . Study of performance criteria of serial configuration of two chemostats. Mathematical Biosciences and Engineering, 2020, 17(6): 6278-6309. doi: 10.3934/mbe.2020332
    [9] Alain Rapaport, Jérôme Harmand . Biological control of the chemostat with nonmonotonic response and different removal rates. Mathematical Biosciences and Engineering, 2008, 5(3): 539-547. doi: 10.3934/mbe.2008.5.539
    [10] Alexis Erich S. Almocera, Sze-Bi Hsu, Polly W. Sy . Extinction and uniform persistence in a microbial food web with mycoloop: limiting behavior of a population model with parasitic fungi. Mathematical Biosciences and Engineering, 2019, 16(1): 516-537. doi: 10.3934/mbe.2019024
  • The majority of solid tumours arise in epithelia and therefore much research effort has gone into investigating the growth, renewal and regulation of these tissues. Here we review different mathematical and computational approaches that have been used to model epithelia. We compare different models and describe future challenges that need to be overcome in order to fully exploit new data which present, for the first time, the real possibility for detailed model validation and comparison.


    [1] J. Mech. Phys. Solids, 59 (2011), 863-883.
    [2] Cell Rep., 8 (2014), 940-947.
    [3] J. Am. Statist. Assoc., 95 (2000), 1269-1276.
    [4] Curr. Opin. Genet. Dev., 21 (2011), 653-663.
    [5] Nat. Methods, 6 (2009), 458-464.
    [6] Phys. Rev. Lett., 99 (2007), 248101.
    [7] J. R. Soc. Interface, 9 (2012), 20120263.
    [8] J. Theor. Biol., 98 (1982), 531-541.
    [9] PLoS Comput. Biol., 7 (2011), e1001045.
    [10] Integr. Biol., 6 (2014), 243-257.
    [11] Biophy. J., 99 (2010), 3145-3154.
    [12] BMC Sys. Biol., 4 (2010), p107.
    [13] arXiv:1302.6989v3
    [14] J. Math. Biol., 66 (2013), 1409-1462.
    [15] J. R. Soc. Interface, 11 (2014), 20140631.
    [16] Springer, 2005.
    [17] SIAM J. Appl. Math., 73 (2013), 1164-1182.
    [18] In Multiscale Cancer Modeling, Editor: TS Deisboeck, 6 (2010), 111-134.
    [19] J. Theor. Biol., 300 (2012), 118-133.
    [20] Prog. Biophys. Mol. Bio., 113 (2013), 299-326.
    [21] Math. Med. Biol., 27 (2010), 39-74.
    [22] Springer, New York, 2008.
    [23] Appl. Mech. Rev., 62 (2009), 030801.
    [24] Brit. J. Cancer, BJC, 97 (2007), 646-653.
    [25] CRC press, 2013.
    [26] Br. J. Math. Stat. Psychol., 66 (2013), 8-38.
    [27] Phys. Rev. E, 47 (1993), p2128.
    [28] In Single-Cell-Based Models in Biology and Medicine, pages 79-106. Springer, 2007.
    [29] Phys. Rev. Lett., 69 (1992), p2013.
    [30] Eur. Phys. J. E Soft Matter, 25 (2008), 349-369.
    [31] Springer, 2000.
    [32] Cambridge University Press, 2010.
    [33] J. Math. Biol., 67 (2013), 1457-1485.
    [34] Springer, 2007.
    [35] In SIAM News, volume July/August, 2014.
    [36] Springer, 1989.
    [37] Cambridge University Press, 2003.
    [38] Cell Cycle, 6 (2007), 2106-2112.
    [39] Proc. Natl. Acad. Sci. USA, 104 (2007), 4008-4013.
    [40] SIAM Rev., 54 (2012), 52-118.
    [41] IET Syst. Biol., 7 (2013), p57.
    [42] PLoS Biol., 7 (2009), e1000015.
    [43] Biophys. J., 69 (1995), 1284-1298.
    [44] Math. Biosci. Eng.: MBE, 6 (2009), 59-82.
    [45] Cell Prolif., 19 (1986), 627-645.
    [46] Phys Rev. E, 78 (2008), 061904.
    [47] Annu. Rev. Pathol. - Mech., 5 (2010), 119-144.
    [48] Disc. Cont. Dyn. Syst., 34 (2014), 5123-5133.
    [49] Eur. Phys. J.E, 25 (2008), 371-384.
    [50] World Scientific, 1999.
    [51] Cell Prolif., 34 (2001), 253-266.
    [52] Mech. Res. Commun., 42 (2012), 1-14.
    [53] J. Theor. Biol., 359 (2014), 220-232.
    [54] J. Theor. Biol., 312 (2012), 143-156.
    [55] PLoS Comput. Biol., 9 (2013), e1002970, 8pp.
    [56] Int. Geophys. Series, 81 (2002), 237-265.
    [57] Phys. Rev. E, 80 (2009), 031912.
    [58] Phys. Rev. E, 85 (2012), 021921.
    [59] Phys. Biol., 8 (2011), 026011.
    [60] Phys. Rev. E, 70 (2004), 051916.
    [61] Math. Biosci. Eng.: MBE, 2 (2005), 613-624.
    [62] Math. Mod. Meth. Appl. S., 20 (2010), 477-517.
    [63] Math. Mod. Meth. Appl. S., 23 (2013), 1309-1338.
    [64] Phil. Trans. R. Soc. A, 368 (2010), 5013-5028.
    [65] Physica A, 329 (2003), 451-458.
    [66] Biophys. J., 104 (2013), 237-246.
    [67] Science, 307 (2005), 1904-1909.
    [68] Phys. Rev. E, 81 (2010), 031404.
    [69] Compr. Physiol., 2011.
    [70] Phys. Biol., 8 (2011), 045008.
    [71] Phys. Biol., 8 (2011), 045007.
    [72] Phys. Biol., 5 (2008), 015002.
    [73] Science, 137 (1962), 762-763.
    [74] Proc. Natl. Acad. Sci. USA, 48 (1962), 1577-1582.
    [75] Proc. Natl. Acad. Sci. USA, 48 (1962), 1769-1776.
    [76] Science, 141 (1963), 401-408.
    [77] Acta Numerica, 19 (2010), 451-559.
    [78] SIAM, 2005.
    [79] Cambridge University Press, Cambridge, 1942.
    [80] J. Theor. Biol., 216 (2002), 85-100.
    [81] Cell Prolif., 42 (2009), 617-636.
    [82] PloS one, 7 (2012), e42852.
    [83] PhD thesis, University of Nottingham, 2009.
    [84] Clarendon Press Oxford, 1984.
    [85] BMC Syst. Biol., 6 (2012), p93.
    [86] Elsevier, 1983.
  • This article has been cited by:

    1. Xinzhi Ren, Xianning Liu, A competition un-stirred chemostat model with virus in an aquatic system, 2019, 98, 0003-6811, 2329, 10.1080/00036811.2018.1460811
    2. Wendi Wang, Rui Fu, Mengshi Shu, A bacteriophage model based on CRISPR/Cas immune system in a chemostat, 2017, 14, 1551-0018, 1361, 10.3934/mbe.2017070
    3. Saptarshi Sinha, Rajdeep K. Grewal, Soumen Roy, 2018, 103, 9780128151839, 103, 10.1016/bs.aambs.2018.01.005
    4. Saptarshi Sinha, Rajdeep Kaur Grewal, Soumen Roy, 2020, Chapter 18, 978-1-0716-0388-8, 309, 10.1007/978-1-0716-0389-5_18
    5. Sukhitha W. Vidurupola, Analysis of deterministic and stochastic mathematical models with resistant bacteria and bacteria debris for bacteriophage dynamics, 2018, 316, 00963003, 215, 10.1016/j.amc.2017.08.022
    6. Daniel A. Korytowski, Hal L. Smith, How nested and monogamous infection networks in host-phage communities come to be, 2015, 8, 1874-1738, 111, 10.1007/s12080-014-0236-6
    7. Saroj Kumar Sahani, Sunita Gakkhar, A Mathematical Model for Phage Therapy with Impulsive Phage Dose, 2020, 28, 0971-3514, 75, 10.1007/s12591-016-0303-0
    8. Sukhitha W. Vidurupola, Linda J. S. Allen, Impact of Variability in Stochastic Models of Bacteria-Phage Dynamics Applicable to Phage Therapy, 2014, 32, 0736-2994, 427, 10.1080/07362994.2014.889922
    9. WENDI WANG, DYNAMICS OF BACTERIA-PHAGE INTERACTIONS WITH IMMUNE RESPONSE IN A CHEMOSTAT, 2017, 25, 0218-3390, 697, 10.1142/S0218339017400010
    10. Hayriye Gulbudak, Paul L. Salceanu, Gail S. K. Wolkowicz, A delay model for persistent viral infections in replicating cells, 2021, 82, 0303-6812, 10.1007/s00285-021-01612-3
    11. Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Htoo Kyaw Hlaing, Stability analysis and persistence of a phage therapy model, 2021, 18, 1551-0018, 5552, 10.3934/mbe.2021280
    12. Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Stability and Hopf Bifurcation Analysis for a Phage Therapy Model with and without Time Delay, 2023, 12, 2075-1680, 772, 10.3390/axioms12080772
    13. Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Hopf bifurcation analysis of a phage therapy model, 2023, 18, 2157-5452, 87, 10.2140/camcos.2023.18.87
    14. Zainab Dere, N.G. Cogan, Bhargav R. Karamched, Optimal control strategies for mitigating antibiotic resistance: Integrating virus dynamics for enhanced intervention design, 2025, 00255564, 109464, 10.1016/j.mbs.2025.109464
    15. Carli Peterson, Darsh Gandhi, Austin Carlson, Aaron Lubkemann, Emma Richardson, John Serralta, Michael S. Allen, Souvik Roy, Christopher M. Kribs, Hristo V. Kojouharov, A SIMPL Model of Phage-Bacteria Interactions Accounting for Mutation and Competition, 2025, 87, 0092-8240, 10.1007/s11538-025-01478-2
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2509) PDF downloads(528) Cited by(11)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog