Citation: Oliver J. Maclaren, Helen M. Byrne, Alexander G. Fletcher, Philip K. Maini. Models, measurement and inference in epithelial tissue dynamics[J]. Mathematical Biosciences and Engineering, 2015, 12(6): 1321-1340. doi: 10.3934/mbe.2015.12.1321
[1] | Mengshi Shu, Rui Fu, Wendi Wang . A bacteriophage model based on CRISPR/Cas immune system in a chemostat. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1361-1377. doi: 10.3934/mbe.2017070 |
[2] | Miller Cerón Gómez, Eduardo Ibarguen Mondragon, Eddy Lopez Molano, Arsenio Hidalgo-Troya, Maria A. Mármol-Martínez, Deisy Lorena Guerrero-Ceballos, Mario A. Pantoja, Camilo Paz-García, Jenny Gómez-Arrieta, Mariela Burbano-Rosero . Mathematical model of interaction Escherichia coli and Coliphages. Mathematical Biosciences and Engineering, 2023, 20(6): 9712-9727. doi: 10.3934/mbe.2023426 |
[3] | Frédéric Mazenc, Gonzalo Robledo, Daniel Sepúlveda . A stability analysis of a time-varying chemostat with pointwise delay. Mathematical Biosciences and Engineering, 2024, 21(2): 2691-2728. doi: 10.3934/mbe.2024119 |
[4] | Gonzalo Robledo . Feedback stabilization for a chemostat with delayed output. Mathematical Biosciences and Engineering, 2009, 6(3): 629-647. doi: 10.3934/mbe.2009.6.629 |
[5] | Harry J. Dudley, Zhiyong Jason Ren, David M. Bortz . Competitive exclusion in a DAE model for microbial electrolysis cells. Mathematical Biosciences and Engineering, 2020, 17(5): 6217-6239. doi: 10.3934/mbe.2020329 |
[6] | Xiaomeng Ma, Zhanbing Bai, Sujing Sun . Stability and bifurcation control for a fractional-order chemostat model with time delays and incommensurate orders. Mathematical Biosciences and Engineering, 2023, 20(1): 437-455. doi: 10.3934/mbe.2023020 |
[7] | Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer . On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences and Engineering, 2007, 4(2): 319-338. doi: 10.3934/mbe.2007.4.319 |
[8] | Manel Dali Youcef, Alain Rapaport, Tewfik Sari . Study of performance criteria of serial configuration of two chemostats. Mathematical Biosciences and Engineering, 2020, 17(6): 6278-6309. doi: 10.3934/mbe.2020332 |
[9] | Alain Rapaport, Jérôme Harmand . Biological control of the chemostat with nonmonotonic response and different removal rates. Mathematical Biosciences and Engineering, 2008, 5(3): 539-547. doi: 10.3934/mbe.2008.5.539 |
[10] | Alexis Erich S. Almocera, Sze-Bi Hsu, Polly W. Sy . Extinction and uniform persistence in a microbial food web with mycoloop: limiting behavior of a population model with parasitic fungi. Mathematical Biosciences and Engineering, 2019, 16(1): 516-537. doi: 10.3934/mbe.2019024 |
[1] | J. Mech. Phys. Solids, 59 (2011), 863-883. |
[2] | Cell Rep., 8 (2014), 940-947. |
[3] | J. Am. Statist. Assoc., 95 (2000), 1269-1276. |
[4] | Curr. Opin. Genet. Dev., 21 (2011), 653-663. |
[5] | Nat. Methods, 6 (2009), 458-464. |
[6] | Phys. Rev. Lett., 99 (2007), 248101. |
[7] | J. R. Soc. Interface, 9 (2012), 20120263. |
[8] | J. Theor. Biol., 98 (1982), 531-541. |
[9] | PLoS Comput. Biol., 7 (2011), e1001045. |
[10] | Integr. Biol., 6 (2014), 243-257. |
[11] | Biophy. J., 99 (2010), 3145-3154. |
[12] | BMC Sys. Biol., 4 (2010), p107. |
[13] | arXiv:1302.6989v3 |
[14] | J. Math. Biol., 66 (2013), 1409-1462. |
[15] | J. R. Soc. Interface, 11 (2014), 20140631. |
[16] | Springer, 2005. |
[17] | SIAM J. Appl. Math., 73 (2013), 1164-1182. |
[18] | In Multiscale Cancer Modeling, Editor: TS Deisboeck, 6 (2010), 111-134. |
[19] | J. Theor. Biol., 300 (2012), 118-133. |
[20] | Prog. Biophys. Mol. Bio., 113 (2013), 299-326. |
[21] | Math. Med. Biol., 27 (2010), 39-74. |
[22] | Springer, New York, 2008. |
[23] | Appl. Mech. Rev., 62 (2009), 030801. |
[24] | Brit. J. Cancer, BJC, 97 (2007), 646-653. |
[25] | CRC press, 2013. |
[26] | Br. J. Math. Stat. Psychol., 66 (2013), 8-38. |
[27] | Phys. Rev. E, 47 (1993), p2128. |
[28] | In Single-Cell-Based Models in Biology and Medicine, pages 79-106. Springer, 2007. |
[29] | Phys. Rev. Lett., 69 (1992), p2013. |
[30] | Eur. Phys. J. E Soft Matter, 25 (2008), 349-369. |
[31] | Springer, 2000. |
[32] | Cambridge University Press, 2010. |
[33] | J. Math. Biol., 67 (2013), 1457-1485. |
[34] | Springer, 2007. |
[35] | In SIAM News, volume July/August, 2014. |
[36] | Springer, 1989. |
[37] | Cambridge University Press, 2003. |
[38] | Cell Cycle, 6 (2007), 2106-2112. |
[39] | Proc. Natl. Acad. Sci. USA, 104 (2007), 4008-4013. |
[40] | SIAM Rev., 54 (2012), 52-118. |
[41] | IET Syst. Biol., 7 (2013), p57. |
[42] | PLoS Biol., 7 (2009), e1000015. |
[43] | Biophys. J., 69 (1995), 1284-1298. |
[44] | Math. Biosci. Eng.: MBE, 6 (2009), 59-82. |
[45] | Cell Prolif., 19 (1986), 627-645. |
[46] | Phys Rev. E, 78 (2008), 061904. |
[47] | Annu. Rev. Pathol. - Mech., 5 (2010), 119-144. |
[48] | Disc. Cont. Dyn. Syst., 34 (2014), 5123-5133. |
[49] | Eur. Phys. J.E, 25 (2008), 371-384. |
[50] | World Scientific, 1999. |
[51] | Cell Prolif., 34 (2001), 253-266. |
[52] | Mech. Res. Commun., 42 (2012), 1-14. |
[53] | J. Theor. Biol., 359 (2014), 220-232. |
[54] | J. Theor. Biol., 312 (2012), 143-156. |
[55] | PLoS Comput. Biol., 9 (2013), e1002970, 8pp. |
[56] | Int. Geophys. Series, 81 (2002), 237-265. |
[57] | Phys. Rev. E, 80 (2009), 031912. |
[58] | Phys. Rev. E, 85 (2012), 021921. |
[59] | Phys. Biol., 8 (2011), 026011. |
[60] | Phys. Rev. E, 70 (2004), 051916. |
[61] | Math. Biosci. Eng.: MBE, 2 (2005), 613-624. |
[62] | Math. Mod. Meth. Appl. S., 20 (2010), 477-517. |
[63] | Math. Mod. Meth. Appl. S., 23 (2013), 1309-1338. |
[64] | Phil. Trans. R. Soc. A, 368 (2010), 5013-5028. |
[65] | Physica A, 329 (2003), 451-458. |
[66] | Biophys. J., 104 (2013), 237-246. |
[67] | Science, 307 (2005), 1904-1909. |
[68] | Phys. Rev. E, 81 (2010), 031404. |
[69] | Compr. Physiol., 2011. |
[70] | Phys. Biol., 8 (2011), 045008. |
[71] | Phys. Biol., 8 (2011), 045007. |
[72] | Phys. Biol., 5 (2008), 015002. |
[73] | Science, 137 (1962), 762-763. |
[74] | Proc. Natl. Acad. Sci. USA, 48 (1962), 1577-1582. |
[75] | Proc. Natl. Acad. Sci. USA, 48 (1962), 1769-1776. |
[76] | Science, 141 (1963), 401-408. |
[77] | Acta Numerica, 19 (2010), 451-559. |
[78] | SIAM, 2005. |
[79] | Cambridge University Press, Cambridge, 1942. |
[80] | J. Theor. Biol., 216 (2002), 85-100. |
[81] | Cell Prolif., 42 (2009), 617-636. |
[82] | PloS one, 7 (2012), e42852. |
[83] | PhD thesis, University of Nottingham, 2009. |
[84] | Clarendon Press Oxford, 1984. |
[85] | BMC Syst. Biol., 6 (2012), p93. |
[86] | Elsevier, 1983. |
1. | Xinzhi Ren, Xianning Liu, A competition un-stirred chemostat model with virus in an aquatic system, 2019, 98, 0003-6811, 2329, 10.1080/00036811.2018.1460811 | |
2. | Wendi Wang, Rui Fu, Mengshi Shu, A bacteriophage model based on CRISPR/Cas immune system in a chemostat, 2017, 14, 1551-0018, 1361, 10.3934/mbe.2017070 | |
3. | Saptarshi Sinha, Rajdeep K. Grewal, Soumen Roy, 2018, 103, 9780128151839, 103, 10.1016/bs.aambs.2018.01.005 | |
4. | Saptarshi Sinha, Rajdeep Kaur Grewal, Soumen Roy, 2020, Chapter 18, 978-1-0716-0388-8, 309, 10.1007/978-1-0716-0389-5_18 | |
5. | Sukhitha W. Vidurupola, Analysis of deterministic and stochastic mathematical models with resistant bacteria and bacteria debris for bacteriophage dynamics, 2018, 316, 00963003, 215, 10.1016/j.amc.2017.08.022 | |
6. | Daniel A. Korytowski, Hal L. Smith, How nested and monogamous infection networks in host-phage communities come to be, 2015, 8, 1874-1738, 111, 10.1007/s12080-014-0236-6 | |
7. | Saroj Kumar Sahani, Sunita Gakkhar, A Mathematical Model for Phage Therapy with Impulsive Phage Dose, 2020, 28, 0971-3514, 75, 10.1007/s12591-016-0303-0 | |
8. | Sukhitha W. Vidurupola, Linda J. S. Allen, Impact of Variability in Stochastic Models of Bacteria-Phage Dynamics Applicable to Phage Therapy, 2014, 32, 0736-2994, 427, 10.1080/07362994.2014.889922 | |
9. | WENDI WANG, DYNAMICS OF BACTERIA-PHAGE INTERACTIONS WITH IMMUNE RESPONSE IN A CHEMOSTAT, 2017, 25, 0218-3390, 697, 10.1142/S0218339017400010 | |
10. | Hayriye Gulbudak, Paul L. Salceanu, Gail S. K. Wolkowicz, A delay model for persistent viral infections in replicating cells, 2021, 82, 0303-6812, 10.1007/s00285-021-01612-3 | |
11. | Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Htoo Kyaw Hlaing, Stability analysis and persistence of a phage therapy model, 2021, 18, 1551-0018, 5552, 10.3934/mbe.2021280 | |
12. | Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Stability and Hopf Bifurcation Analysis for a Phage Therapy Model with and without Time Delay, 2023, 12, 2075-1680, 772, 10.3390/axioms12080772 | |
13. | Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Hopf bifurcation analysis of a phage therapy model, 2023, 18, 2157-5452, 87, 10.2140/camcos.2023.18.87 | |
14. | Zainab Dere, N.G. Cogan, Bhargav R. Karamched, Optimal control strategies for mitigating antibiotic resistance: Integrating virus dynamics for enhanced intervention design, 2025, 00255564, 109464, 10.1016/j.mbs.2025.109464 | |
15. | Carli Peterson, Darsh Gandhi, Austin Carlson, Aaron Lubkemann, Emma Richardson, John Serralta, Michael S. Allen, Souvik Roy, Christopher M. Kribs, Hristo V. Kojouharov, A SIMPL Model of Phage-Bacteria Interactions Accounting for Mutation and Competition, 2025, 87, 0092-8240, 10.1007/s11538-025-01478-2 |