A Rao-Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator-prey system

  • Received: 01 September 2012 Accepted: 29 June 2018 Published: 01 January 2014
  • MSC : Primary: 62F15, 65C35, 92D25; Secondary: 65C30.

  • Functional response estimation and population tracking in predator-prey systems are critical problems in ecology. In this paper we consider a stochastic predator-prey system with a Lotka-Volterra functional response and propose a particle filtering method for: (a) estimating the behavioral parameter representing the rate of effective search per predator in the functional responseand (b) forecasting the population biomass using field data. In particular, the proposed technique combines a sequential Monte Carlo sampling scheme for tracking the time-varying biomass with the analytical integration of the unknown behavioral parameter. In order to assess the performance of the method, we show results for both synthetic and observed data collected in an acarine predator-prey system, namely the pest mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis.

    Citation: Laura Martín-Fernández, Gianni Gilioli, Ettore Lanzarone, Joaquín Míguez, Sara Pasquali, Fabrizio Ruggeri, Diego P. Ruiz. A Rao-Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator-prey system[J]. Mathematical Biosciences and Engineering, 2014, 11(3): 573-597. doi: 10.3934/mbe.2014.11.573

    Related Papers:

    [1] Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri . Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences and Engineering, 2012, 9(1): 75-96. doi: 10.3934/mbe.2012.9.75
    [2] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Amelia G. Nobile . A non-autonomous stochastic predator-prey model. Mathematical Biosciences and Engineering, 2014, 11(2): 167-188. doi: 10.3934/mbe.2014.11.167
    [3] Mengya Huang, Anji Yang, Sanling Yuan, Tonghua Zhang . Stochastic sensitivity analysis and feedback control of noise-induced transitions in a predator-prey model with anti-predator behavior. Mathematical Biosciences and Engineering, 2023, 20(2): 4219-4242. doi: 10.3934/mbe.2023197
    [4] Yuxuan Zhang, Xinmiao Rong, Jimin Zhang . A diffusive predator-prey system with prey refuge and predator cannibalism. Mathematical Biosciences and Engineering, 2019, 16(3): 1445-1470. doi: 10.3934/mbe.2019070
    [5] Kawkab Al Amri, Qamar J. A Khan, David Greenhalgh . Combined impact of fear and Allee effect in predator-prey interaction models on their growth. Mathematical Biosciences and Engineering, 2024, 21(10): 7211-7252. doi: 10.3934/mbe.2024319
    [6] William Wolesensky, J. David Logan . An individual, stochastic model of growth incorporating state-dependent risk and random foraging and climate. Mathematical Biosciences and Engineering, 2007, 4(1): 67-84. doi: 10.3934/mbe.2007.4.67
    [7] Saheb Pal, Nikhil Pal, Sudip Samanta, Joydev Chattopadhyay . Fear effect in prey and hunting cooperation among predators in a Leslie-Gower model. Mathematical Biosciences and Engineering, 2019, 16(5): 5146-5179. doi: 10.3934/mbe.2019258
    [8] Paulo Amorim, Bruno Telch, Luis M. Villada . A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing. Mathematical Biosciences and Engineering, 2019, 16(5): 5114-5145. doi: 10.3934/mbe.2019257
    [9] Dongmei Wu, Hao Wang, Sanling Yuan . Stochastic sensitivity analysis of noise-induced transitions in a predator-prey model with environmental toxins. Mathematical Biosciences and Engineering, 2019, 16(4): 2141-2153. doi: 10.3934/mbe.2019104
    [10] Kwadwo Antwi-Fordjour, Folashade B. Agusto, Isabella Kemajou-Brown . Modeling the effects of lethal and non-lethal predation on the dynamics of tick-borne disease. Mathematical Biosciences and Engineering, 2025, 22(6): 1428-1463. doi: 10.3934/mbe.2025054
  • Functional response estimation and population tracking in predator-prey systems are critical problems in ecology. In this paper we consider a stochastic predator-prey system with a Lotka-Volterra functional response and propose a particle filtering method for: (a) estimating the behavioral parameter representing the rate of effective search per predator in the functional responseand (b) forecasting the population biomass using field data. In particular, the proposed technique combines a sequential Monte Carlo sampling scheme for tracking the time-varying biomass with the analytical integration of the unknown behavioral parameter. In order to assess the performance of the method, we show results for both synthetic and observed data collected in an acarine predator-prey system, namely the pest mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis.


    [1] Econometrica, 70 (2002), 223-262.
    [2] Englewood Cliffs, 1979.
    [3] Journal of the Royal Statistical Society Series B-Statistical Methodology, 72 (2010), 269-342.
    [4] Proceedings of the IEEE, 92 (2004), 423-438.
    [5] Springer, 2008.
    [6] J. Roy. Stat. Soc. Ser. B, 68 (2006), 333-382.
    [7] Ecological Modelling, 170 (2003), 155-171.
    [8] Proceedings of the IEEE, 95 (2007), 899-924.
    [9] IEE Proceedings - Radar, Sonar and Navigation, 146 (1999), 2-7.
    [10] Ecology, 75 (1994), 1254-1264.
    [11] Journal of the Royal Statistics Society B, 62 (2000), 493-508.
    [12] Journal of the Royal Statistical Society: Series B (Statistical Methodology), (2012).
    [13] Academic Press, New York, 1999.
    [14] in ISPA 2005: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005, 64-69.
    [15] Springer, New York (USA), 2001.
    [16] Statistics and Computing, 10 (2000), 197-208.
    [17] Environmetrics, 17 (2006), 435-455.
    [18] Environmetrics, 22 (2011), 501-515.
    [19] Ecology, 92 (2011), 568-575.
    [20] J. Bus. Econ. Stat., 20 (2002), 297-316.
    [21] Econometrica, 69 (2001), 959-993.
    [22] J. Bus. Econ. Stat., 19 (2001), 177-191.
    [23] Bulletin of Mathematical Biology, 70 (2008), 358-381.
    [24] Mathematical Biosciences and Engineering, 9 (2012), 75-96.
    [25] in Atti del Convegno "La difesa delle colture in agricoltura biologica" - Notiziario sulla protezione delle piante, vol. 13, 2001.
    [26] Biometrics, 61 (2005), 781-788.
    [27] Interface Focus, 1 (2011), 807-820.
    [28] IEE Proceedings-F, 140 (1993), 107-113.
    [29] Proc. Roy. Soc. Lond. B, 267 (2000), 1611-1620.
    [30] Journal of Basic Engineering, 82 (1960), 35-45.
    [31] Ecology, 93 (2012), 256-263.
    [32] in Sequential Monte Carlo Methods in Practice (eds. A. Doucet, N. de Freitas and N. Gordon), chap. 10, Springer, 2001, 197-223.
    [33] Journal of the American Statistical Association, 93 (1998), 1032-1044.
    [34] Statistics and Computing.
    [35] Springer, 2004.
    [36] Ecology, 77 (1996), 337-349.
    [37] Scand. J. Stat., 22 (1995), 55-71.
    [38] Journal of the American statistical association, 94 (1999), 590-599.
    [39] Arnold, London, 1999.
    [40] Springer, 2004.
    [41] Ecological Applications, 12 (2002), 927-936.
    [42] Int. Stat. Rev., 72 (2004), 337-354.
    [43] J. Comput. Graph. Stat., 16 (2007).
    [44] Environmental Entomology, 32 (2003), 151-162.
  • This article has been cited by:

    1. E. Lanzarone, S. Pasquali, G. Gilioli, E. Marchesini, A Bayesian estimation approach for the mortality in a stage-structured demographic model, 2017, 75, 0303-6812, 759, 10.1007/s00285-017-1099-4
    2. Chiara Piazzola, Lorenzo Tamellini, Raúl Tempone, A note on tools for prediction under uncertainty and identifiability of SIR-like dynamical systems for epidemiology, 2021, 332, 00255564, 108514, 10.1016/j.mbs.2020.108514
    3. Laura Martín-Fernández, Ettore Lanzarone, A Particle-Filtering Approach for Real-Time Estimation of Thermal Conductivity and Temperature Tracking in Homogeneous Masses, 2015, 67, 1040-7790, 507, 10.1080/10407790.2014.992060
    4. Laura Martín-Fernández, Ettore Lanzarone, 2015, Chapter 13, 978-3-319-16237-9, 143, 10.1007/978-3-319-16238-6_13
    5. Vladimir Serebriakov, Mirko Dohnal, Trend prey predator model - Analysis of gause model, 2019, 18, 23519894, e00634, 10.1016/j.gecco.2019.e00634
    6. Marcin Jurek, Matthias Katzfuss, Multi-Resolution Filters for Massive Spatio-Temporal Data, 2021, 1061-8600, 1, 10.1080/10618600.2021.1886938
    7. Jacob D. Davis, Daniel V. Olivença, Sam P. Brown, Eberhard O. Voit, Methods of quantifying interactions among populations using Lotka-Volterra models, 2022, 2, 2674-0702, 10.3389/fsysb.2022.1021897
    8. R. Baatz, H. J. Hendricks Franssen, E. Euskirchen, D. Sihi, M. Dietze, S. Ciavatta, K. Fennel, H. Beck, G. De Lannoy, V. R. N. Pauwels, A. Raiho, C. Montzka, M. Williams, U. Mishra, C. Poppe, S. Zacharias, A. Lausch, L. Samaniego, K. Van Looy, H. Bogena, M. Adamescu, M. Mirtl, A. Fox, K. Goergen, B. S. Naz, Y. Zeng, H. Vereecken, Reanalysis in Earth System Science: Toward Terrestrial Ecosystem Reanalysis, 2021, 59, 8755-1209, 10.1029/2020RG000715
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3247) PDF downloads(560) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog