Typesetting math: 100%

A metapopulation model for sylvatic T. cruzi transmission with vector migration

  • Received: 01 May 2012 Accepted: 29 June 2018 Published: 01 January 2014
  • MSC : Primary: 92D30, 92D40; Secondary: 37N25.

  • This study presents a metapopulation model for the sylvatic transmission of Trypanosoma cruzi, the etiological agent of Chagas' disease, across multiple geographical regions and multiple overlapping host-vector transmission cycles.Classical qualitative analysis of the model and several submodels focuses on the parasite's basic reproductive number, illustrating how vector migration across patches and multiple transmission routes to hosts (including vertical transmission) determine the infection's persistence in each cycle.Numerical results focus on trends in endemic [equilibrium] persistence levels as functions of vector migration rates, and highlight the significance of the different epidemiological characteristics of transmission in each of the three regions.

    Citation: Britnee Crawford, Christopher Kribs-Zaleta. A metapopulation model for sylvatic T. cruzi transmission with vector migration[J]. Mathematical Biosciences and Engineering, 2014, 11(3): 471-509. doi: 10.3934/mbe.2014.11.471

    Related Papers:

    [1] Christopher M. Kribs-Zaleta . Alternative transmission modes for Trypanosoma cruzi . Mathematical Biosciences and Engineering, 2010, 7(3): 657-673. doi: 10.3934/mbe.2010.7.657
    [2] Xing Zhang, Zhitao Li, Lixin Gao . Stability analysis of a SAIR epidemic model on scale-free community networks. Mathematical Biosciences and Engineering, 2024, 21(3): 4648-4668. doi: 10.3934/mbe.2024204
    [3] Ruixia Zhang, Shuping Li . Analysis of a two-patch SIS model with saturating contact rate and one- directing population dispersal. Mathematical Biosciences and Engineering, 2022, 19(11): 11217-11231. doi: 10.3934/mbe.2022523
    [4] Zhilan Feng, Robert Swihart, Yingfei Yi, Huaiping Zhu . Coexistence in a metapopulation model with explicit local dynamics. Mathematical Biosciences and Engineering, 2004, 1(1): 131-145. doi: 10.3934/mbe.2004.1.131
    [5] Jinliang Wang, Ran Zhang, Toshikazu Kuniya . A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2016, 13(1): 227-247. doi: 10.3934/mbe.2016.13.227
    [6] Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva . Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1159-1186. doi: 10.3934/mbe.2017060
    [7] Nariyuki Nakagiri, Hiroki Yokoi, Yukio Sakisaka, Kei-ichi Tainaka, Kazunori Sato . Influence of network structure on infectious disease control. Mathematical Biosciences and Engineering, 2025, 22(4): 943-961. doi: 10.3934/mbe.2025034
    [8] Karl Peter Hadeler . Structured populations with diffusion in state space. Mathematical Biosciences and Engineering, 2010, 7(1): 37-49. doi: 10.3934/mbe.2010.7.37
    [9] Xia Wang, Yuming Chen . An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences and Engineering, 2018, 15(5): 1099-1116. doi: 10.3934/mbe.2018049
    [10] Chandrani Banerjee, Linda J. S. Allen, Jorge Salazar-Bravo . Models for an arenavirus infection in a rodent population: consequences of horizontal, vertical and sexual transmission. Mathematical Biosciences and Engineering, 2008, 5(4): 617-645. doi: 10.3934/mbe.2008.5.617
  • This study presents a metapopulation model for the sylvatic transmission of Trypanosoma cruzi, the etiological agent of Chagas' disease, across multiple geographical regions and multiple overlapping host-vector transmission cycles.Classical qualitative analysis of the model and several submodels focuses on the parasite's basic reproductive number, illustrating how vector migration across patches and multiple transmission routes to hosts (including vertical transmission) determine the infection's persistence in each cycle.Numerical results focus on trends in endemic [equilibrium] persistence levels as functions of vector migration rates, and highlight the significance of the different epidemiological characteristics of transmission in each of the three regions.


    [1] (French) [Anosov flows with stable and unstable differentiable distributions], J. Amer. Math. Soc., 5 (1992), 33-74.
    [2] Acta tropica, 41 (1984), 93-95.
    [3] Journal of Theoretical Biology, 260 (2009), 510-522.
    [4] Mathematical Medicine and Biology, 22 (2005), 129-142.
    [5] Emerging Infectious Diseases, 9 (2003), 103-105.
    [6] Clinical Infectious Diseases, 49 (2009), 52-54.
    [7] Ecology, 40 (1959), 715-716.
    [8] International Journal of Applied Science and Computation, 3 (1996), 78-90.
    [9] Mammalian Species, 330 (1989), 1-9.
    [10] Journal of Parasitology, 66 (1980), 305-311.
    [11] Retrieved from http://www.cdc.gov/parasites/chagas
    [12] MTBI Technical Report MTBI 05-05M. Arizona State University 2008.
    [13] Molecular and Biochemical Parisitology, 66 (1994), 175-179.
    [14] Am. Midl. Nat., 137 (1996), 290-297.
    [15] Ecological Complexity, 14 (2013), 145-156.
    [16] Social Science and Medicine, 40 (1995), 1437-1440.
    [17] Infection, Genetics and Evolution, 7 (2007), 343-352.
    [18] The Southwestern Naturalist, 8 (1963), 38-42.
    [19] Mammalian Species, 189 (1982), 1-8.
    [20] J. Mammalogy, 79 (1998), 859-872.
    [21] American Journal of Tropical Medicine and Hygiene, 78 (2008), 133-139.
    [22] Journal of Medical Entomology, 43 (2006), 143-150.
    [23] Social Science and Medicine, 65 (2007), 60-79.
    [24] The Lancet, 355 (2000), 236 pp.
    [25] Journal of Economic Entomology, 77 (1984), 126-129.
    [26] Vector-Borne and Zoonotic Diseases, 9 (2009), 41-50
    [27] Mathematical Population Studies, 13 (2006), 132-152.
    [28] PLOS Neglected Tropical Diseases, 4 (2010), 1-14.
    [29] Mathematical Bioscences and Engineering, 7 (2010), 657-673.
    [30] Geospatial Health, 2 (2008), 227-239.
    [31] Acta Tropica, 52 (1992), 27-38.
    [32] Bulletin of Mathematical Biology, 68 (2006), 3-23.
    [33] Oxford: Oxford University Press, 1957.
    [34] Mathematical Biosciences, 215 (2008), 64-77.
    [35] Mammalian Species, 162 (1982), 1-9.
    [36] The Southwestern Naturalist, 47 (2002), 70-77.
    [37] American Heart Journal, 159 (2009), 22-29.
    [38] Investigación clínica (Maracaibo), 44 (2003).
    [39] Precedings of the Royal Society of London, 229 (1986), 111-1150.
    [40] Journal of Wildlife Diseases, 34 (1998), 132-136.
    [41] Journal of Medical Entomology, 7 (1970), 30-45.
    [42] Journal of Parasitology, 81 (1995), 583-587.
    [43] Bull. Texas Mem. Mus., 11 (1966), 1-62.
    [44] Mem. Inst. Oswaldo Cruz., 98 (2003), 171-180.
    [45] Emerging Infectious Diseases, 14 (2008), 1123-1125.
    [46] (2nd edition). London: Murray 1911.
    [47] PLoS Neglected Tropical Diseases, 4 (2010), 1-14.
    [48] Medical and Veterinary Entomology, 6 (1992), 51-56.
    [49] Journal of Mathematical Biology, 30 (1992), 755-763.
    [50] Rocky Mountain Journal of Mathematics, 24 (1994), 351-380.
    [51] The Southwestern Naturalist, 41 (1996), 116-122.
    [52] The Southwestern Naturalist, 36 (1991), 233-262.
    [53] Mathematical Biosciences, 180 (2002), 29-48.
    [54] Biosystems, 26 (1991), 127-134.
    [55] The Royal Society of Tropical Medicine and Hygiene, 102 (2008), 833-838.
    [56] 173 (1982), 1-7.
    [57] Retrieved from http://www.who.int/mediacentre/factsheets/fs340/en
    [58] Journal of Parasitology, 88 (2002), 1273-1276.
    [59] Vector-Borne and Zoonotic Diseases, 13 (2012), 1-9.
    [60] Annual Review of Entomology, 26 (1981), 101-133.
    [61] Mem. Inst. Oswaldo Cruz., 104 (2009), 1051-1054.
  • This article has been cited by:

    1. Manuel Adrian Acuña-Zegarra, Daniel Olmos-Liceaga, Jorge X. Velasco-Hernández, The role of animal grazing in the spread of Chagas disease, 2018, 457, 00225193, 19, 10.1016/j.jtbi.2018.08.025
    2. Lauren A. White, James D. Forester, Meggan E. Craft, Thierry Boulinier, Dynamic, spatial models of parasite transmission in wildlife: Their structure, applications and remaining challenges, 2018, 87, 00218790, 559, 10.1111/1365-2656.12761
    3. Bruce Y. Lee, Sarah M. Bartsch, Laura Skrip, Daniel L. Hertenstein, Cameron M. Avelis, Martial Ndeffo-Mbah, Carla Tilchin, Eric O. Dumonteil, Alison Galvani, Ricardo E. Gürtler, Are the London Declaration’s 2020 goals sufficient to control Chagas disease?: Modeling scenarios for the Yucatan Peninsula, 2018, 12, 1935-2735, e0006337, 10.1371/journal.pntd.0006337
    4. Vanessa Steindorf, Norberto Aníbal Maidana, Modeling the Spatial Spread of Chagas Disease, 2019, 81, 0092-8240, 1687, 10.1007/s11538-019-00581-5
    5. Britnee A. Crawford, Christopher M. Kribs-Zaleta, Gaik Ambartsoumian, Invasion Speed in Cellular Automaton Models for T. cruzi Vector Migration, 2013, 75, 0092-8240, 1051, 10.1007/s11538-013-9840-7
    6. Christopher M. Kribs, Christopher Mitchell, Host switching vs. host sharing in overlapping sylvaticTrypanosoma cruzitransmission cycles, 2015, 9, 1751-3758, 247, 10.1080/17513758.2015.1075611
    7. N. El Saadi, A. Bah, T. Mahdjoub, C. Kribs, On the sylvatic transmission of T. cruzi, the parasite causing Chagas disease: a view from an agent-based model, 2020, 423, 03043800, 109001, 10.1016/j.ecolmodel.2020.109001
    8. Cheol Yong Han, Habeeb Issa, Jan Rychtář, Dewey Taylor, Nancy Umana, Marc Choisy, A voluntary use of insecticide treated nets can stop the vector transmission of Chagas disease, 2020, 14, 1935-2735, e0008833, 10.1371/journal.pntd.0008833
    9. Daniel Olmos, Ignacio Barradas, David Baca-Carrasco, On the Calculation of
    R0
    R 0 Using Submodels, 2017, 25, 0971-3514, 481, 10.1007/s12591-015-0257-7
    10. Md. Abdul Hye, M. A. Haider Ali Biswas, Mohammed Forhad Uddin, Mohammad Saifuddin, Mathematical Modeling of Covid-19 and Dengue Co-Infection Dynamics in Bangladesh: Optimal Control and Data-Driven Analysis, 2022, 33, 1046-283X, 173, 10.1007/s10598-023-09564-7
    11. A. Omame, H. Rwezaura, M. L. Diagne, S. C. Inyama, J. M. Tchuenche, COVID-19 and dengue co-infection in Brazil: optimal control and cost-effectiveness analysis, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-02030-6
    12. Edem Fiatsonu, Rachel E. Busselman, Gabriel L. Hamer, Sarah A. Hamer, Martial L. Ndeffo-Mbah, Luisa Magalhães, Effectiveness of fluralaner treatment regimens for the control of canine Chagas disease: A mathematical modeling study, 2023, 17, 1935-2735, e0011084, 10.1371/journal.pntd.0011084
    13. H. Rwezaura, S.Y. Tchoumi, J.M. Tchuenche, Impact of environmental transmission and contact rates on Covid-19 dynamics: A simulation study, 2021, 27, 23529148, 100807, 10.1016/j.imu.2021.100807
    14. Malicki Zorom, Babacar Leye, Mamadou Diop, Serigne M’backé Coly, Metapopulation Modeling of Socioeconomic Vulnerability of Sahelian Populations to Climate Variability: Case of Tougou, Village in Northern Burkina Faso, 2023, 11, 2227-7390, 4507, 10.3390/math11214507
    15. Xuan Dai, Xiaotian Wu, Jiao Jiang, Libin Rong, Modeling the impact of non-human host predation on the transmission of Chagas disease, 2024, 00255564, 109230, 10.1016/j.mbs.2024.109230
    16. M. Adrian Acuña-Zegarra, Mayra R. Tocto-Erazo, Claudio C. García-Mendoza, Daniel Olmos-Liceaga, Presence and infestation waves of hematophagous arthropod species, 2024, 376, 00255564, 109282, 10.1016/j.mbs.2024.109282
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3384) PDF downloads(651) Cited by(16)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog