Citation: Britnee Crawford, Christopher Kribs-Zaleta. A metapopulation model for sylvatic T. cruzi transmission with vector migration[J]. Mathematical Biosciences and Engineering, 2014, 11(3): 471-509. doi: 10.3934/mbe.2014.11.471
[1] | Christopher M. Kribs-Zaleta . Alternative transmission modes for Trypanosoma cruzi . Mathematical Biosciences and Engineering, 2010, 7(3): 657-673. doi: 10.3934/mbe.2010.7.657 |
[2] | Xing Zhang, Zhitao Li, Lixin Gao . Stability analysis of a SAIR epidemic model on scale-free community networks. Mathematical Biosciences and Engineering, 2024, 21(3): 4648-4668. doi: 10.3934/mbe.2024204 |
[3] | Ruixia Zhang, Shuping Li . Analysis of a two-patch SIS model with saturating contact rate and one- directing population dispersal. Mathematical Biosciences and Engineering, 2022, 19(11): 11217-11231. doi: 10.3934/mbe.2022523 |
[4] | Zhilan Feng, Robert Swihart, Yingfei Yi, Huaiping Zhu . Coexistence in a metapopulation model with explicit local dynamics. Mathematical Biosciences and Engineering, 2004, 1(1): 131-145. doi: 10.3934/mbe.2004.1.131 |
[5] | Jinliang Wang, Ran Zhang, Toshikazu Kuniya . A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2016, 13(1): 227-247. doi: 10.3934/mbe.2016.13.227 |
[6] | Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva . Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1159-1186. doi: 10.3934/mbe.2017060 |
[7] | Nariyuki Nakagiri, Hiroki Yokoi, Yukio Sakisaka, Kei-ichi Tainaka, Kazunori Sato . Influence of network structure on infectious disease control. Mathematical Biosciences and Engineering, 2025, 22(4): 943-961. doi: 10.3934/mbe.2025034 |
[8] | Karl Peter Hadeler . Structured populations with diffusion in state space. Mathematical Biosciences and Engineering, 2010, 7(1): 37-49. doi: 10.3934/mbe.2010.7.37 |
[9] | Xia Wang, Yuming Chen . An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences and Engineering, 2018, 15(5): 1099-1116. doi: 10.3934/mbe.2018049 |
[10] | Chandrani Banerjee, Linda J. S. Allen, Jorge Salazar-Bravo . Models for an arenavirus infection in a rodent population: consequences of horizontal, vertical and sexual transmission. Mathematical Biosciences and Engineering, 2008, 5(4): 617-645. doi: 10.3934/mbe.2008.5.617 |
[1] | (French) [Anosov flows with stable and unstable differentiable distributions], J. Amer. Math. Soc., 5 (1992), 33-74. |
[2] | Acta tropica, 41 (1984), 93-95. |
[3] | Journal of Theoretical Biology, 260 (2009), 510-522. |
[4] | Mathematical Medicine and Biology, 22 (2005), 129-142. |
[5] | Emerging Infectious Diseases, 9 (2003), 103-105. |
[6] | Clinical Infectious Diseases, 49 (2009), 52-54. |
[7] | Ecology, 40 (1959), 715-716. |
[8] | International Journal of Applied Science and Computation, 3 (1996), 78-90. |
[9] | Mammalian Species, 330 (1989), 1-9. |
[10] | Journal of Parasitology, 66 (1980), 305-311. |
[11] | Retrieved from http://www.cdc.gov/parasites/chagas |
[12] | MTBI Technical Report MTBI 05-05M. Arizona State University 2008. |
[13] | Molecular and Biochemical Parisitology, 66 (1994), 175-179. |
[14] | Am. Midl. Nat., 137 (1996), 290-297. |
[15] | Ecological Complexity, 14 (2013), 145-156. |
[16] | Social Science and Medicine, 40 (1995), 1437-1440. |
[17] | Infection, Genetics and Evolution, 7 (2007), 343-352. |
[18] | The Southwestern Naturalist, 8 (1963), 38-42. |
[19] | Mammalian Species, 189 (1982), 1-8. |
[20] | J. Mammalogy, 79 (1998), 859-872. |
[21] | American Journal of Tropical Medicine and Hygiene, 78 (2008), 133-139. |
[22] | Journal of Medical Entomology, 43 (2006), 143-150. |
[23] | Social Science and Medicine, 65 (2007), 60-79. |
[24] | The Lancet, 355 (2000), 236 pp. |
[25] | Journal of Economic Entomology, 77 (1984), 126-129. |
[26] | Vector-Borne and Zoonotic Diseases, 9 (2009), 41-50 |
[27] | Mathematical Population Studies, 13 (2006), 132-152. |
[28] | PLOS Neglected Tropical Diseases, 4 (2010), 1-14. |
[29] | Mathematical Bioscences and Engineering, 7 (2010), 657-673. |
[30] | Geospatial Health, 2 (2008), 227-239. |
[31] | Acta Tropica, 52 (1992), 27-38. |
[32] | Bulletin of Mathematical Biology, 68 (2006), 3-23. |
[33] | Oxford: Oxford University Press, 1957. |
[34] | Mathematical Biosciences, 215 (2008), 64-77. |
[35] | Mammalian Species, 162 (1982), 1-9. |
[36] | The Southwestern Naturalist, 47 (2002), 70-77. |
[37] | American Heart Journal, 159 (2009), 22-29. |
[38] | Investigación clínica (Maracaibo), 44 (2003). |
[39] | Precedings of the Royal Society of London, 229 (1986), 111-1150. |
[40] | Journal of Wildlife Diseases, 34 (1998), 132-136. |
[41] | Journal of Medical Entomology, 7 (1970), 30-45. |
[42] | Journal of Parasitology, 81 (1995), 583-587. |
[43] | Bull. Texas Mem. Mus., 11 (1966), 1-62. |
[44] | Mem. Inst. Oswaldo Cruz., 98 (2003), 171-180. |
[45] | Emerging Infectious Diseases, 14 (2008), 1123-1125. |
[46] | (2nd edition). London: Murray 1911. |
[47] | PLoS Neglected Tropical Diseases, 4 (2010), 1-14. |
[48] | Medical and Veterinary Entomology, 6 (1992), 51-56. |
[49] | Journal of Mathematical Biology, 30 (1992), 755-763. |
[50] | Rocky Mountain Journal of Mathematics, 24 (1994), 351-380. |
[51] | The Southwestern Naturalist, 41 (1996), 116-122. |
[52] | The Southwestern Naturalist, 36 (1991), 233-262. |
[53] | Mathematical Biosciences, 180 (2002), 29-48. |
[54] | Biosystems, 26 (1991), 127-134. |
[55] | The Royal Society of Tropical Medicine and Hygiene, 102 (2008), 833-838. |
[56] | 173 (1982), 1-7. |
[57] | Retrieved from http://www.who.int/mediacentre/factsheets/fs340/en |
[58] | Journal of Parasitology, 88 (2002), 1273-1276. |
[59] | Vector-Borne and Zoonotic Diseases, 13 (2012), 1-9. |
[60] | Annual Review of Entomology, 26 (1981), 101-133. |
[61] | Mem. Inst. Oswaldo Cruz., 104 (2009), 1051-1054. |
1. | Manuel Adrian Acuña-Zegarra, Daniel Olmos-Liceaga, Jorge X. Velasco-Hernández, The role of animal grazing in the spread of Chagas disease, 2018, 457, 00225193, 19, 10.1016/j.jtbi.2018.08.025 | |
2. | Lauren A. White, James D. Forester, Meggan E. Craft, Thierry Boulinier, Dynamic, spatial models of parasite transmission in wildlife: Their structure, applications and remaining challenges, 2018, 87, 00218790, 559, 10.1111/1365-2656.12761 | |
3. | Bruce Y. Lee, Sarah M. Bartsch, Laura Skrip, Daniel L. Hertenstein, Cameron M. Avelis, Martial Ndeffo-Mbah, Carla Tilchin, Eric O. Dumonteil, Alison Galvani, Ricardo E. Gürtler, Are the London Declaration’s 2020 goals sufficient to control Chagas disease?: Modeling scenarios for the Yucatan Peninsula, 2018, 12, 1935-2735, e0006337, 10.1371/journal.pntd.0006337 | |
4. | Vanessa Steindorf, Norberto Aníbal Maidana, Modeling the Spatial Spread of Chagas Disease, 2019, 81, 0092-8240, 1687, 10.1007/s11538-019-00581-5 | |
5. | Britnee A. Crawford, Christopher M. Kribs-Zaleta, Gaik Ambartsoumian, Invasion Speed in Cellular Automaton Models for T. cruzi Vector Migration, 2013, 75, 0092-8240, 1051, 10.1007/s11538-013-9840-7 | |
6. | Christopher M. Kribs, Christopher Mitchell, Host switching vs. host sharing in overlapping sylvaticTrypanosoma cruzitransmission cycles, 2015, 9, 1751-3758, 247, 10.1080/17513758.2015.1075611 | |
7. | N. El Saadi, A. Bah, T. Mahdjoub, C. Kribs, On the sylvatic transmission of T. cruzi, the parasite causing Chagas disease: a view from an agent-based model, 2020, 423, 03043800, 109001, 10.1016/j.ecolmodel.2020.109001 | |
8. | Cheol Yong Han, Habeeb Issa, Jan Rychtář, Dewey Taylor, Nancy Umana, Marc Choisy, A voluntary use of insecticide treated nets can stop the vector transmission of Chagas disease, 2020, 14, 1935-2735, e0008833, 10.1371/journal.pntd.0008833 | |
9. |
Daniel Olmos, Ignacio Barradas, David Baca-Carrasco,
On the Calculation of
R0
R
0
Using Submodels,
2017,
25,
0971-3514,
481,
10.1007/s12591-015-0257-7
|
|
10. | Md. Abdul Hye, M. A. Haider Ali Biswas, Mohammed Forhad Uddin, Mohammad Saifuddin, Mathematical Modeling of Covid-19 and Dengue Co-Infection Dynamics in Bangladesh: Optimal Control and Data-Driven Analysis, 2022, 33, 1046-283X, 173, 10.1007/s10598-023-09564-7 | |
11. | A. Omame, H. Rwezaura, M. L. Diagne, S. C. Inyama, J. M. Tchuenche, COVID-19 and dengue co-infection in Brazil: optimal control and cost-effectiveness analysis, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-02030-6 | |
12. | Edem Fiatsonu, Rachel E. Busselman, Gabriel L. Hamer, Sarah A. Hamer, Martial L. Ndeffo-Mbah, Luisa Magalhães, Effectiveness of fluralaner treatment regimens for the control of canine Chagas disease: A mathematical modeling study, 2023, 17, 1935-2735, e0011084, 10.1371/journal.pntd.0011084 | |
13. | H. Rwezaura, S.Y. Tchoumi, J.M. Tchuenche, Impact of environmental transmission and contact rates on Covid-19 dynamics: A simulation study, 2021, 27, 23529148, 100807, 10.1016/j.imu.2021.100807 | |
14. | Malicki Zorom, Babacar Leye, Mamadou Diop, Serigne M’backé Coly, Metapopulation Modeling of Socioeconomic Vulnerability of Sahelian Populations to Climate Variability: Case of Tougou, Village in Northern Burkina Faso, 2023, 11, 2227-7390, 4507, 10.3390/math11214507 | |
15. | Xuan Dai, Xiaotian Wu, Jiao Jiang, Libin Rong, Modeling the impact of non-human host predation on the transmission of Chagas disease, 2024, 00255564, 109230, 10.1016/j.mbs.2024.109230 | |
16. | M. Adrian Acuña-Zegarra, Mayra R. Tocto-Erazo, Claudio C. García-Mendoza, Daniel Olmos-Liceaga, Presence and infestation waves of hematophagous arthropod species, 2024, 376, 00255564, 109282, 10.1016/j.mbs.2024.109282 |