Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection

  • Received: 01 August 2012 Accepted: 29 June 2018 Published: 01 August 2013
  • MSC : Primary: 37N25, 37G10; Secondary: 92B05.

  • A discrete SIS epidemic model with the bilinear incidence depending on the new infection is formulated and studied.The condition for the global stability of the disease free equilibrium is obtained.The existence of the endemic equilibrium and its stability are investigated.More attention is paid to the existence of the saddle-node bifurcation, the flip bifurcation, and the Hopf bifurcation.Sufficient conditions for those bifurcations have been obtained.Numerical simulations are conducted to demonstrate our theoretical results and the complexity of the model.

    Citation: Hui Cao, Yicang Zhou, Zhien Ma. Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection[J]. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1399-1417. doi: 10.3934/mbe.2013.10.1399

    Related Papers:

    [1] Xiaoli Wang, Junping Shi, Guohong Zhang . Bifurcation analysis of a wild and sterile mosquito model. Mathematical Biosciences and Engineering, 2019, 16(5): 3215-3234. doi: 10.3934/mbe.2019160
    [2] Fang Zhang, Wenzhe Cui, Yanfei Dai, Yulin Zhao . Bifurcations of an SIRS epidemic model with a general saturated incidence rate. Mathematical Biosciences and Engineering, 2022, 19(11): 10710-10730. doi: 10.3934/mbe.2022501
    [3] Chunhua Shan, Hongjun Gao, Huaiping Zhu . Dynamics of a delay Schistosomiasis model in snail infections. Mathematical Biosciences and Engineering, 2011, 8(4): 1099-1115. doi: 10.3934/mbe.2011.8.1099
    [4] Zhenliang Zhu, Yuming Chen, Zhong Li, Fengde Chen . Dynamic behaviors of a Leslie-Gower model with strong Allee effect and fear effect in prey. Mathematical Biosciences and Engineering, 2023, 20(6): 10977-10999. doi: 10.3934/mbe.2023486
    [5] A. Q. Khan, M. Tasneem, M. B. Almatrafi . Discrete-time COVID-19 epidemic model with bifurcation and control. Mathematical Biosciences and Engineering, 2022, 19(2): 1944-1969. doi: 10.3934/mbe.2022092
    [6] Jinna Lu, Xiaoguang Zhang . Bifurcation analysis of a pair-wise epidemic model on adaptive networks. Mathematical Biosciences and Engineering, 2019, 16(4): 2973-2989. doi: 10.3934/mbe.2019147
    [7] Mengyun Xing, Mengxin He, Zhong Li . Dynamics of a modified Leslie-Gower predator-prey model with double Allee effects. Mathematical Biosciences and Engineering, 2024, 21(1): 792-831. doi: 10.3934/mbe.2024034
    [8] Yangyang Li, Fengxue Zhang, Xianglai Zhuo . Flip bifurcation of a discrete predator-prey model with modified Leslie-Gower and Holling-type III schemes. Mathematical Biosciences and Engineering, 2020, 17(3): 2003-2015. doi: 10.3934/mbe.2020106
    [9] Aili Wang, Yanni Xiao, Huaiping Zhu . Dynamics of a Filippov epidemic model with limited hospital beds. Mathematical Biosciences and Engineering, 2018, 15(3): 739-764. doi: 10.3934/mbe.2018033
    [10] Kunlun Huang, Xintian Jia, Cuiping Li . Analysis of modified Holling-Tanner model with strong Allee effect. Mathematical Biosciences and Engineering, 2023, 20(8): 15524-15543. doi: 10.3934/mbe.2023693
  • A discrete SIS epidemic model with the bilinear incidence depending on the new infection is formulated and studied.The condition for the global stability of the disease free equilibrium is obtained.The existence of the endemic equilibrium and its stability are investigated.More attention is paid to the existence of the saddle-node bifurcation, the flip bifurcation, and the Hopf bifurcation.Sufficient conditions for those bifurcations have been obtained.Numerical simulations are conducted to demonstrate our theoretical results and the complexity of the model.


    [1] Math. Biosci., 124 (1994), 83-105.
    [2] Math. Biosci., 163 (2000), 1-33.
    [3] J. Differ. Equ. Appl., 14 (2008), 1127-1147.
    [4] Available from: http://mtbi.asu.edu/files/Discrete_time_SEIS_Models_with_Exogenous_Reinfection_and_Dispersal_between_Two_Patches.pdf.
    [5] Numer. Funct. Anal. Optimiz., 9 (1987), 381-414.
    [6] Math. Model. Appl., 1 (2012), 33-37.
    [7] INT. J. Bio., 5 (2012), 61-76.
    [8] Math. Comput. Model., 55 (2012), 385-395.
    [9] Discrete Cont. Dyn. Sys. B, 18 (2013), 37-56.
    [10] Discrete Dyn. Nat. Soc., (2011), Art. ID 653937, 21 pp.
    [11] Nonliear Anal. TMA, 47 (2001), 4753-4762.
    [12] in "Mathematical Approaches for Emerging and Reemerging Infectious Diseases: A introduction" (eds. C. Castillo-Chavez with S. Blower, P. van den Driessche, D. Kirschner and A. A. Yakubu), Springer-Verlag, New York, (2002), 153-163.
    [13] Chaos Soliton. Fract., 40 (2009), 1956-1962.
    [14] SIAM J. Appl. Math., 66 (2006), 1563-1587.
    [15] MTBI technical Report, 2000.
    [16] Research in Economics, 62 (2008), 120-177.
    [17] Springer, New York, 1983.
    [18] J. Anim. Ecol., 44 (1975), 283-289.
    [19] Nonlinear Anal. RWA, 13 (2012), 2017-2033.
    [20] Nonlinear Anal. RWA, 12 (2011), 2356-2377.
    [21] Appl. Math. Comput., 216 (2010), 1226-1234.
    [22] Chaos Solution. Fract., 26 (2005), 947-958.
    [23] J. Theor. Biol., 51 (1975), 511-524.
    [24] Nature, 256 (1975), 165-166.
    [25] Nature, 261 (1976), 459-467.
    [26] J. Math. Biol., 30 (1992), 755-763.
    [27] Comm. Appl. Nonl. Anal., 3 (1996), 43-66.
    [28] in "A Survey of Mathematical Biology, Fields Communications Series" (ed. S. Sivaloganathan), 57, A co-publication of the AMS and Fields Institute, Canada, (2010), 83-112.
    [29] J. Theor. Biol., 254 (2008), 215-228.
    [30] Math. Biosci. Eng., 6 (2009), 409-425.
    [31] Math. Comput. Model., 40 (2004), 1491-1506.
    [32] Discrete Cont. Dyn. Sys. B, 4 (2004), 843-852.
  • This article has been cited by:

    1. Jianglin Zhao, Yong Yan, Stability and bifurcation analysis of a discrete predator–prey system with modified Holling–Tanner functional response, 2018, 2018, 1687-1847, 10.1186/s13662-018-1819-0
    2. Yingying Zhang, Yicang Zhou, The Bifurcation of Two Invariant Closed Curves in a Discrete Model, 2018, 2018, 1026-0226, 1, 10.1155/2018/1613709
    3. S.M. Salman, E. Ahmed, A mathematical model for Creutzfeldt Jacob Disease (CJD), 2018, 116, 09600779, 249, 10.1016/j.chaos.2018.09.041
    4. Wei Tan, Jianguo Gao, Wenjun Fan, Bifurcation Analysis and Chaos Control in a Discrete Epidemic System, 2015, 2015, 1026-0226, 1, 10.1155/2015/974868
    5. Yunhu Zhang, Yanni Xiao, Global dynamics for a Filippov epidemic system with imperfect vaccination, 2020, 38, 1751570X, 100932, 10.1016/j.nahs.2020.100932
    6. Lei Xiang, Yuyue Zhang, Jicai Huang, Shigui Ruan, Complex dynamics in a discrete SIS epidemic model with Ricker-type recruitment and disease-induced death, 2021, 0924-090X, 10.1007/s11071-021-06444-w
    7. Noureddine Djenina, Adel Ouannas, Iqbal M. Batiha, Giuseppe Grassi, Taki-Eddine Oussaeif, Shaher Momani, A Novel Fractional-Order Discrete SIR Model for Predicting COVID-19 Behavior, 2022, 10, 2227-7390, 2224, 10.3390/math10132224
    8. Zai-Yin He, Abderrahmane Abbes, Hadi Jahanshahi, Naif D. Alotaibi, Ye Wang, Fractional-Order Discrete-Time SIR Epidemic Model with Vaccination: Chaos and Complexity, 2022, 10, 2227-7390, 165, 10.3390/math10020165
    9. Run Yang, Jianglin Zhao, Bifurcation and chaos in a discrete Holling–Tanner model with Beddington–DeAngelis functional response, 2023, 2023, 2731-4235, 10.1186/s13662-023-03788-y
    10. Ashraf Adnan Thirthar, Hamadjam Abboubakar, Abdesslem Lamrani Alaoui, Kottakkaran Sooppy Nisar, Dynamical behavior of a fractional-order epidemic model for investigating two fear effect functions, 2024, 26667207, 100474, 10.1016/j.rico.2024.100474
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2373) PDF downloads(550) Cited by(10)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog