Citation: Hui Cao, Yicang Zhou, Zhien Ma. Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection[J]. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1399-1417. doi: 10.3934/mbe.2013.10.1399
[1] | Xiaoli Wang, Junping Shi, Guohong Zhang . Bifurcation analysis of a wild and sterile mosquito model. Mathematical Biosciences and Engineering, 2019, 16(5): 3215-3234. doi: 10.3934/mbe.2019160 |
[2] | Fang Zhang, Wenzhe Cui, Yanfei Dai, Yulin Zhao . Bifurcations of an SIRS epidemic model with a general saturated incidence rate. Mathematical Biosciences and Engineering, 2022, 19(11): 10710-10730. doi: 10.3934/mbe.2022501 |
[3] | Chunhua Shan, Hongjun Gao, Huaiping Zhu . Dynamics of a delay Schistosomiasis model in snail infections. Mathematical Biosciences and Engineering, 2011, 8(4): 1099-1115. doi: 10.3934/mbe.2011.8.1099 |
[4] | Zhenliang Zhu, Yuming Chen, Zhong Li, Fengde Chen . Dynamic behaviors of a Leslie-Gower model with strong Allee effect and fear effect in prey. Mathematical Biosciences and Engineering, 2023, 20(6): 10977-10999. doi: 10.3934/mbe.2023486 |
[5] | A. Q. Khan, M. Tasneem, M. B. Almatrafi . Discrete-time COVID-19 epidemic model with bifurcation and control. Mathematical Biosciences and Engineering, 2022, 19(2): 1944-1969. doi: 10.3934/mbe.2022092 |
[6] | Jinna Lu, Xiaoguang Zhang . Bifurcation analysis of a pair-wise epidemic model on adaptive networks. Mathematical Biosciences and Engineering, 2019, 16(4): 2973-2989. doi: 10.3934/mbe.2019147 |
[7] | Mengyun Xing, Mengxin He, Zhong Li . Dynamics of a modified Leslie-Gower predator-prey model with double Allee effects. Mathematical Biosciences and Engineering, 2024, 21(1): 792-831. doi: 10.3934/mbe.2024034 |
[8] | Yangyang Li, Fengxue Zhang, Xianglai Zhuo . Flip bifurcation of a discrete predator-prey model with modified Leslie-Gower and Holling-type III schemes. Mathematical Biosciences and Engineering, 2020, 17(3): 2003-2015. doi: 10.3934/mbe.2020106 |
[9] | Aili Wang, Yanni Xiao, Huaiping Zhu . Dynamics of a Filippov epidemic model with limited hospital beds. Mathematical Biosciences and Engineering, 2018, 15(3): 739-764. doi: 10.3934/mbe.2018033 |
[10] | Kunlun Huang, Xintian Jia, Cuiping Li . Analysis of modified Holling-Tanner model with strong Allee effect. Mathematical Biosciences and Engineering, 2023, 20(8): 15524-15543. doi: 10.3934/mbe.2023693 |
[1] | Math. Biosci., 124 (1994), 83-105. |
[2] | Math. Biosci., 163 (2000), 1-33. |
[3] | J. Differ. Equ. Appl., 14 (2008), 1127-1147. |
[4] | Available from: http://mtbi.asu.edu/files/Discrete_time_SEIS_Models_with_Exogenous_Reinfection_and_Dispersal_between_Two_Patches.pdf. |
[5] | Numer. Funct. Anal. Optimiz., 9 (1987), 381-414. |
[6] | Math. Model. Appl., 1 (2012), 33-37. |
[7] | INT. J. Bio., 5 (2012), 61-76. |
[8] | Math. Comput. Model., 55 (2012), 385-395. |
[9] | Discrete Cont. Dyn. Sys. B, 18 (2013), 37-56. |
[10] | Discrete Dyn. Nat. Soc., (2011), Art. ID 653937, 21 pp. |
[11] | Nonliear Anal. TMA, 47 (2001), 4753-4762. |
[12] | in "Mathematical Approaches for Emerging and Reemerging Infectious Diseases: A introduction" (eds. C. Castillo-Chavez with S. Blower, P. van den Driessche, D. Kirschner and A. A. Yakubu), Springer-Verlag, New York, (2002), 153-163. |
[13] | Chaos Soliton. Fract., 40 (2009), 1956-1962. |
[14] | SIAM J. Appl. Math., 66 (2006), 1563-1587. |
[15] | MTBI technical Report, 2000. |
[16] | Research in Economics, 62 (2008), 120-177. |
[17] | Springer, New York, 1983. |
[18] | J. Anim. Ecol., 44 (1975), 283-289. |
[19] | Nonlinear Anal. RWA, 13 (2012), 2017-2033. |
[20] | Nonlinear Anal. RWA, 12 (2011), 2356-2377. |
[21] | Appl. Math. Comput., 216 (2010), 1226-1234. |
[22] | Chaos Solution. Fract., 26 (2005), 947-958. |
[23] | J. Theor. Biol., 51 (1975), 511-524. |
[24] | Nature, 256 (1975), 165-166. |
[25] | Nature, 261 (1976), 459-467. |
[26] | J. Math. Biol., 30 (1992), 755-763. |
[27] | Comm. Appl. Nonl. Anal., 3 (1996), 43-66. |
[28] | in "A Survey of Mathematical Biology, Fields Communications Series" (ed. S. Sivaloganathan), 57, A co-publication of the AMS and Fields Institute, Canada, (2010), 83-112. |
[29] | J. Theor. Biol., 254 (2008), 215-228. |
[30] | Math. Biosci. Eng., 6 (2009), 409-425. |
[31] | Math. Comput. Model., 40 (2004), 1491-1506. |
[32] | Discrete Cont. Dyn. Sys. B, 4 (2004), 843-852. |
1. | Jianglin Zhao, Yong Yan, Stability and bifurcation analysis of a discrete predator–prey system with modified Holling–Tanner functional response, 2018, 2018, 1687-1847, 10.1186/s13662-018-1819-0 | |
2. | Yingying Zhang, Yicang Zhou, The Bifurcation of Two Invariant Closed Curves in a Discrete Model, 2018, 2018, 1026-0226, 1, 10.1155/2018/1613709 | |
3. | S.M. Salman, E. Ahmed, A mathematical model for Creutzfeldt Jacob Disease (CJD), 2018, 116, 09600779, 249, 10.1016/j.chaos.2018.09.041 | |
4. | Wei Tan, Jianguo Gao, Wenjun Fan, Bifurcation Analysis and Chaos Control in a Discrete Epidemic System, 2015, 2015, 1026-0226, 1, 10.1155/2015/974868 | |
5. | Yunhu Zhang, Yanni Xiao, Global dynamics for a Filippov epidemic system with imperfect vaccination, 2020, 38, 1751570X, 100932, 10.1016/j.nahs.2020.100932 | |
6. | Lei Xiang, Yuyue Zhang, Jicai Huang, Shigui Ruan, Complex dynamics in a discrete SIS epidemic model with Ricker-type recruitment and disease-induced death, 2021, 0924-090X, 10.1007/s11071-021-06444-w | |
7. | Noureddine Djenina, Adel Ouannas, Iqbal M. Batiha, Giuseppe Grassi, Taki-Eddine Oussaeif, Shaher Momani, A Novel Fractional-Order Discrete SIR Model for Predicting COVID-19 Behavior, 2022, 10, 2227-7390, 2224, 10.3390/math10132224 | |
8. | Zai-Yin He, Abderrahmane Abbes, Hadi Jahanshahi, Naif D. Alotaibi, Ye Wang, Fractional-Order Discrete-Time SIR Epidemic Model with Vaccination: Chaos and Complexity, 2022, 10, 2227-7390, 165, 10.3390/math10020165 | |
9. | Run Yang, Jianglin Zhao, Bifurcation and chaos in a discrete Holling–Tanner model with Beddington–DeAngelis functional response, 2023, 2023, 2731-4235, 10.1186/s13662-023-03788-y | |
10. | Ashraf Adnan Thirthar, Hamadjam Abboubakar, Abdesslem Lamrani Alaoui, Kottakkaran Sooppy Nisar, Dynamical behavior of a fractional-order epidemic model for investigating two fear effect functions, 2024, 26667207, 100474, 10.1016/j.rico.2024.100474 |