Prisoner's Dilemma on real social networks: Revisited

  • Received: 01 August 2012 Accepted: 29 June 2018 Published: 01 August 2013
  • MSC : Primary: 91A40; Secondary: 91D30.

  • Prisoner's Dilemma is a game theory model used to describe altruistic behavior seen in various populations. Thistheoretical game is important in understanding why a seemingly selfish strategy does persist and spread throughout apopulation that is mixing homogeneously at random. For a population with structuredetermined by social interactions,Prisoner's Dilemma brings to light certain requirements for the altruistic strategy to become established.Monte Carlo simulations of Prisoner's Dilemma are carried out using both simulated social networks and a datasetof a real social network. In both scenarios we confirm the requirements for the persistenceof altruism in a population.

    Citation: Sharon M. Cameron, Ariel Cintrón-Arias. Prisoner's Dilemma on real social networks: Revisited[J]. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1381-1398. doi: 10.3934/mbe.2013.10.1381

    Related Papers:

    [1] Yifei Wang, Xinzhu Meng . Evolutionary game dynamics of cooperation in prisoner's dilemma with time delay. Mathematical Biosciences and Engineering, 2023, 20(3): 5024-5042. doi: 10.3934/mbe.2023233
    [2] Zhiyan Xing, Yanlong Yang, Zuopeng Hu . Nash equilibrium realization of population games based on social learning processes. Mathematical Biosciences and Engineering, 2023, 20(9): 17116-17137. doi: 10.3934/mbe.2023763
    [3] A. Newton Licciardi Jr., L.H.A. Monteiro . A network model of social contacts with small-world and scale-free features, tunable connectivity, and geographic restrictions. Mathematical Biosciences and Engineering, 2024, 21(4): 4801-4813. doi: 10.3934/mbe.2024211
    [4] Hong Wu, Zhijian Zhang, Yabo Fang, Shaotang Zhang, Zuo Jiang, Jian Huang, Ping Li . Containment of rumor spread by selecting immune nodes in social networks. Mathematical Biosciences and Engineering, 2021, 18(3): 2614-2631. doi: 10.3934/mbe.2021133
    [5] José F. Fontanari . Cooperation in the face of crisis: effect of demographic noise in collective-risk social dilemmas. Mathematical Biosciences and Engineering, 2024, 21(11): 7480-7500. doi: 10.3934/mbe.2024329
    [6] Heman Shakeri, Faryad Darabi Sahneh, Caterina Scoglio, Pietro Poggi-Corradini, Victor M. Preciado . Optimal information dissemination strategy to promote preventivebehaviors in multilayer epidemic networks. Mathematical Biosciences and Engineering, 2015, 12(3): 609-623. doi: 10.3934/mbe.2015.12.609
    [7] Bernhard Voelkl . Quantitative characterization of animal social organization: Applications for epidemiological modelling. Mathematical Biosciences and Engineering, 2020, 17(5): 5005-5026. doi: 10.3934/mbe.2020271
    [8] Bing Wang, Fu Tan, Jia Zhu, Daijun Wei . A new structure entropy of complex networks based on nonextensive statistical mechanics and similarity of nodes. Mathematical Biosciences and Engineering, 2021, 18(4): 3718-3732. doi: 10.3934/mbe.2021187
    [9] Meili Tang, Qian Pan, Yurong Qian, Yuan Tian, Najla Al-Nabhan, Xin Wang . Parallel label propagation algorithm based on weight and random walk. Mathematical Biosciences and Engineering, 2021, 18(2): 1609-1628. doi: 10.3934/mbe.2021083
    [10] Hacı İsmail Aslan, Hoon Ko, Chang Choi . Classification of vertices on social networks by multiple approaches. Mathematical Biosciences and Engineering, 2022, 19(12): 12146-12159. doi: 10.3934/mbe.2022565
  • Prisoner's Dilemma is a game theory model used to describe altruistic behavior seen in various populations. Thistheoretical game is important in understanding why a seemingly selfish strategy does persist and spread throughout apopulation that is mixing homogeneously at random. For a population with structuredetermined by social interactions,Prisoner's Dilemma brings to light certain requirements for the altruistic strategy to become established.Monte Carlo simulations of Prisoner's Dilemma are carried out using both simulated social networks and a datasetof a real social network. In both scenarios we confirm the requirements for the persistenceof altruism in a population.


    [1] Phys. Rev. E, 63 (2001), 030901.
    [2] Int. J. Mod. Phys. C, 11 (2000), 1539-1544.
    [3] Revised Edition, Basic Books, New York, 2006.
    [4] P. Natl. Acad. Sci. USA, 100 (2003), 10564-10567.
    [5] J. Computer-Mediated Comm., 13 (2008), 210-230.
    [6] Game Econ. Behav., 58 (2007), 209-230.
    [7] Phys. Rev. E, 77 (2008), 032103.
    [8] Phys. Rev. E, 77 (2008), 017103.
    [9] J. Theor. Biol., 302 (2012), 18-28.
    [10] Physica A, 389 (2010), 5173-5181.
    [11] Commun. Theor. Phys., 54 (2010), 578-582.
    [12] Chinese Phys. Lett., 26 (2009), 058701.
    [13] Cambridge University Press, Cambridge, 2007.
    [14] Cambridge University Press, New York, 2010.
    [15] Am. J. Sociol., 110 (2005), 977-1008.
    [16] Eur. Phys. J. B, 56 (2007), 367-372.
    [17] Am. J. Sociol., 78 (1973), 1360-1380.
    [18] Chinese Phys. Lett., 23 (2006), 2874-2877.
    [19] Am. J. Phys., 73 (2005), 405-414.
    [20] J. Theor. Biol., 299 (2012), 106-112.
    [21] Phys. Rev. E, 66 (2002), 021907.
    [22] Social Networks, 30 (2008), 330-342.
    [23] P. Natl. Acad. Sci. USA, 109 (2006), 3490-3494.
    [24] Phys. Lett. A, 313 (2003), 55-61.
    [25] J. Public Econom., 92 (2008), 328-347.
    [26] Cambridge University Press, Cambridge, 1982.
    [27] Psychol. Today, 2 (1967), 60-67.
    [28] Proc. Natl. Acad. Sci. USA, 36 (1950), 48-49.
    [29] Oxford University Press, Oxford, 2010.
    [30] Nature, 359 (1992), 826-829.
    [31] Harvard University Press, Cambridge, 2006.
    [32] Free Press, New York, 2012.
    [33] Nature, 441 (2006), 502-505.
    [34] New J. Phys., 8 (2006), 183.
    [35] BMC Public Health, 11, Suppl. 1, 25 February, 2011.
    [36] Phys. Rev. E, 69 (2004), 036107.
    [37] Eur. Phys. J. B, 53 (2006), 411-415.
    [38] Soc. Networks, 26 (2004), 309-321.
    [39] Complexity, 12 (2007), 22-36.
    [40] SIAM Rev., 53 (2011), 526-543.
    [41] Physica A, 391 (2012), 4165-4180.
    [42] Princeton University Press, Princeton, NJ, 1944.
    [43] Nature, 393 (1998), 440-442.
    [44] Princeton University Press, Princeton, NJ, 1999.
    [45] Nature, 308 (1984), 181-184.
    [46] Phys. Rev. E, 71 (2005), 037103.
    [47] Chinese Phys. Lett., 23 (2006), 531-534.
    [48] EPL-Europhys. Lett., 92 (2010), 40009.
    [49] Europhys. Lett., 76 (2006), 724-730.
  • This article has been cited by:

    1. Garrison W. Greenwood, On the Study of Human Cooperation via Computer Simulation: Why Existing Computer Models Fail to Tell Us Much of Anything, 2019, 3, 2573-6485, 1, 10.2200/S00940ED1V01Y201907GCI004
    2. 2019, 978-3-031-00993-8, 10.1007/978-3-031-02121-3
    3. Shirsendu Podder, Simone Righi, Károly Takács, Local reputation, local selection, and the leading eight norms, 2021, 11, 2045-2322, 10.1038/s41598-021-95130-3
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2254) PDF downloads(438) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog