Low viral persistence of an immunological model

  • Received: 01 July 2011 Accepted: 29 June 2018 Published: 01 October 2012
  • MSC : Primary: 34K20, 92C50; Secondary: 92D25.

  • Hepatitis B virus can persist at very low levels in the body in the face of host immunity, and reactive during immunosuppression and sustain the immunological memory to lead to the possible state of 'infection immunity'. To analyze this phenomena quantitatively, a mathematical model which is described by DDEs with relative to cytotoxic T lymphocyte (CTL) response to Hepatitis B virus is used. Using the knowledge of DDEs and the numerical bifurcation analysis techniques, the dynamical behavior of Hopf bifurcation which may lead to the periodic oscillation of populations is analyzed. Domains of low level viral persistence which is possible, either as a stable equilibrium or a stable oscillatory pattern, are identified in parameter space. The virus replication rate appears to have influence to the amplitude of the persisting oscillatory population densities.

    Citation: Suqi Ma. Low viral persistence of an immunological model[J]. Mathematical Biosciences and Engineering, 2012, 9(4): 809-817. doi: 10.3934/mbe.2012.9.809

    Related Papers:

    [1] Pensiri Yosyingyong, Ratchada Viriyapong . Global dynamics of multiple delays within-host model for a hepatitis B virus infection of hepatocytes with immune response and drug therapy. Mathematical Biosciences and Engineering, 2023, 20(4): 7349-7386. doi: 10.3934/mbe.2023319
    [2] Xuejuan Lu, Lulu Hui, Shengqiang Liu, Jia Li . A mathematical model of HTLV-I infection with two time delays. Mathematical Biosciences and Engineering, 2015, 12(3): 431-449. doi: 10.3934/mbe.2015.12.431
    [3] Bing Li, Yuming Chen, Xuejuan Lu, Shengqiang Liu . A delayed HIV-1 model with virus waning term. Mathematical Biosciences and Engineering, 2016, 13(1): 135-157. doi: 10.3934/mbe.2016.13.135
    [4] Ning Bai, Rui Xu . Mathematical analysis of an HIV model with latent reservoir, delayed CTL immune response and immune impairment. Mathematical Biosciences and Engineering, 2021, 18(2): 1689-1707. doi: 10.3934/mbe.2021087
    [5] Jiawei Deng, Ping Jiang, Hongying Shu . Viral infection dynamics with mitosis, intracellular delays and immune response. Mathematical Biosciences and Engineering, 2023, 20(2): 2937-2963. doi: 10.3934/mbe.2023139
    [6] Shengqiang Liu, Lin Wang . Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences and Engineering, 2010, 7(3): 675-685. doi: 10.3934/mbe.2010.7.675
    [7] Cuicui Jiang, Kaifa Wang, Lijuan Song . Global dynamics of a delay virus model with recruitment and saturation effects of immune responses. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1233-1246. doi: 10.3934/mbe.2017063
    [8] Ali Moussaoui, Vitaly Volpert . The impact of immune cell interactions on virus quasi-species formation. Mathematical Biosciences and Engineering, 2024, 21(11): 7530-7553. doi: 10.3934/mbe.2024331
    [9] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
    [10] Sophia Y. Rong, Ting Guo, J. Tyler Smith, Xia Wang . The role of cell-to-cell transmission in HIV infection: insights from a mathematical modeling approach. Mathematical Biosciences and Engineering, 2023, 20(7): 12093-12117. doi: 10.3934/mbe.2023538
  • Hepatitis B virus can persist at very low levels in the body in the face of host immunity, and reactive during immunosuppression and sustain the immunological memory to lead to the possible state of 'infection immunity'. To analyze this phenomena quantitatively, a mathematical model which is described by DDEs with relative to cytotoxic T lymphocyte (CTL) response to Hepatitis B virus is used. Using the knowledge of DDEs and the numerical bifurcation analysis techniques, the dynamical behavior of Hopf bifurcation which may lead to the periodic oscillation of populations is analyzed. Domains of low level viral persistence which is possible, either as a stable equilibrium or a stable oscillatory pattern, are identified in parameter space. The virus replication rate appears to have influence to the amplitude of the persisting oscillatory population densities.


  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2754) PDF downloads(477) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog