Erratum to: Investigating the steady state of multicellular sheroids by revisiting the two-fluid model

  • Received: 01 July 2012 Accepted: 29 June 2018 Published: 01 July 2012
  • In our paper [1], equation (45) has been reported incorrectly. Its actual form is as follows: 2γR=1ν(1ν)χR23K{RρD[1(ρPR)3]32[1(ρPR)2]}+43ηCχ(RρD)3[1(ρPR)3]+23τ0[lnρPρD+13ln2(RρP)3+1+2(RρP)62+3].
    The comments that followed Eq. (45) then change accordingly. It is immediate to realize that the presence of $\tau_0$ has two effects: it increases the minimal value of the surface tension needed for the existence of the steady state, and, given $\gamma$, if (45) has a solution this solution is greater than the solution of (35). However, since it is possible that the surface tension $\gamma$ has a monotone dependence on the yield stress $\tau_0$ (both these quantity have their physical origin in the intercellular adhesion bonds), a partial compensation of the effect of the yield stress on the determination of $R$ can be expected.

    For more information please click the "Full Text" above.

    Citation: Antonio Fasano, Marco Gabrielli, Alberto Gandolfi. Erratum to: Investigating the steady state ofmulticellular sheroids by revisiting the two-fluid model[J]. Mathematical Biosciences and Engineering, 2012, 9(3): 697-697. doi: 10.3934/mbe.2012.9.697

    Related Papers:

    [1] Antonio Fasano, Marco Gabrielli, Alberto Gandolfi . Investigating the steady state of multicellular spheroids by revisiting the two-fluid model. Mathematical Biosciences and Engineering, 2011, 8(2): 239-252. doi: 10.3934/mbe.2011.8.239
    [2] Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067
    [3] Alessandro Bertuzzi, Antonio Fasano, Alberto Gandolfi, Carmela Sinisgalli . Interstitial Pressure And Fluid Motion In Tumor Cords. Mathematical Biosciences and Engineering, 2005, 2(3): 445-460. doi: 10.3934/mbe.2005.2.445
    [4] Xichao Duan, Sanling Yuan, Kaifa Wang . Dynamics of a diffusive age-structured HBV model with saturating incidence. Mathematical Biosciences and Engineering, 2016, 13(5): 935-968. doi: 10.3934/mbe.2016024
    [5] Hussein Obeid, Alan D. Rendall . The minimal model of Hahn for the Calvin cycle. Mathematical Biosciences and Engineering, 2019, 16(4): 2353-2370. doi: 10.3934/mbe.2019118
    [6] Hongyun Peng, Kun Zhao . On a hyperbolic-parabolic chemotaxis system. Mathematical Biosciences and Engineering, 2023, 20(5): 7802-7827. doi: 10.3934/mbe.2023337
    [7] Zamra Sajid, Morten Andersen, Johnny T. Ottesen . Mathematical analysis of the Cancitis model and the role of inflammation in blood cancer progression. Mathematical Biosciences and Engineering, 2019, 16(6): 8268-8289. doi: 10.3934/mbe.2019418
    [8] Xue Xu, Yibo Wang, Yuwen Wang . Local bifurcation of a Ronsenzwing-MacArthur predator prey model with two prey-taxis. Mathematical Biosciences and Engineering, 2019, 16(4): 1786-1797. doi: 10.3934/mbe.2019086
    [9] Dong Liang, Jianhong Wu, Fan Zhang . Modelling Population Growth with Delayed Nonlocal Reaction in 2-Dimensions. Mathematical Biosciences and Engineering, 2005, 2(1): 111-132. doi: 10.3934/mbe.2005.2.111
    [10] Amer Hassan Albargi, Miled El Hajji . Mathematical analysis of a two-tiered microbial food-web model for the anaerobic digestion process. Mathematical Biosciences and Engineering, 2023, 20(4): 6591-6611. doi: 10.3934/mbe.2023283
  • In our paper [1], equation (45) has been reported incorrectly. Its actual form is as follows: \begin{align}\label{stresscont3}
    \frac{2\gamma}{R}=&\frac{1}{\nu(1-\nu)}\frac{\chi R^2}{3K}\left\{\frac{R}
    {\rho_D^{}}
    \left[1-\left(\frac{\rho_P^{}}{R}\right)^3\right]-\frac{3}{2}\left[1-\left(
    \frac{\rho_P^{}}{R}\right)^2\right]\right\}
    \nonumber\\
    +&\frac{4}{3}\eta_C\chi\left(\frac{R}{\rho_D^{}}\right)^3\left[1-\left(
    \frac{\rho_P^{}}{R}\right)^3\right]
    \nonumber\\
    +&2\sqrt{3}\tau_0\left[\ln\frac{\rho_P^{}}{\rho_D^{}}+\frac{1}{3}\ln
    \frac{\sqrt{2}(\frac{R}{\rho_P^{}})^3 + \sqrt{1+2(\frac{R}{\rho_P^{}})^6}}
    {\sqrt{2}+\sqrt{3}}\right].
    \end{align}
    The comments that followed Eq. (45) then change accordingly. It is immediate to realize that the presence of $\tau_0$ has two effects: it increases the minimal value of the surface tension needed for the existence of the steady state, and, given $\gamma$, if (45) has a solution this solution is greater than the solution of (35). However, since it is possible that the surface tension $\gamma$ has a monotone dependence on the yield stress $\tau_0$ (both these quantity have their physical origin in the intercellular adhesion bonds), a partial compensation of the effect of the yield stress on the determination of $R$ can be expected.

    For more information please click the "Full Text" above.


  • This article has been cited by:

    1. Antonio Fasano, Alessandro Bertuzzi, Carmela Sinisgalli, 2014, Chapter 2, 978-1-4939-0457-0, 27, 10.1007/978-1-4939-0458-7_2
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2125) PDF downloads(317) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog