A mathematical model for within-host Toxoplasma gondii invasion dynamics

  • Received: 01 July 2011 Accepted: 29 June 2018 Published: 01 July 2012
  • MSC : Primary: 37N25, 92B05; Secondary: 93A30.

  • Toxoplasma gondii (T. gondii) is a protozoan parasite that infects a wide range of intermediate hosts, including all mammals and birds. Up to 20% of the human population in the US and 30% in the world are chronically infected. This paper presents a mathematical model to describe intra-host dynamics of T. gondii infection. The model considers the invasion process, egress kinetics, interconversion between fast-replicating tachyzoite stage and slowly replicating bradyzoite stage, as well as the host's immune response. Analytical and numerical studies of the model can help to understand the influences of various parameters to the transient and steady-state dynamics of the disease infection.

    Citation: Adam Sullivan, Folashade Agusto, Sharon Bewick, Chunlei Su, Suzanne Lenhart, Xiaopeng Zhao. A mathematical model for within-host Toxoplasma gondii invasion dynamics[J]. Mathematical Biosciences and Engineering, 2012, 9(3): 647-662. doi: 10.3934/mbe.2012.9.647

    Related Papers:

    [1] Sharmin Sultana, Gilberto González-Parra, Abraham J. Arenas . Dynamics of toxoplasmosis in the cat's population with an exposed stage and a time delay. Mathematical Biosciences and Engineering, 2022, 19(12): 12655-12676. doi: 10.3934/mbe.2022591
    [2] Derdei Bichara, Nathalie Cozic, Abderrahman Iggidr . On the estimation of sequestered infected erythrocytes in Plasmodium falciparum malaria patients. Mathematical Biosciences and Engineering, 2014, 11(4): 741-759. doi: 10.3934/mbe.2014.11.741
    [3] Churni Gupta, Necibe Tuncer, Maia Martcheva . Immuno-epidemiological co-affection model of HIV infection and opioid addiction. Mathematical Biosciences and Engineering, 2022, 19(4): 3636-3672. doi: 10.3934/mbe.2022168
    [4] Tianqi Song, Chuncheng Wang, Boping Tian . Mathematical models for within-host competition of malaria parasites. Mathematical Biosciences and Engineering, 2019, 16(6): 6623-6653. doi: 10.3934/mbe.2019330
    [5] Mayra Núñez-López, Jocelyn A. Castro-Echeverría, Jorge X. Velasco-Hernández . Dynamic interaction between transmission, within-host dynamics and mosquito density. Mathematical Biosciences and Engineering, 2025, 22(6): 1364-1381. doi: 10.3934/mbe.2025051
    [6] Jianquan Li, Yanni Xiao, Yali Yang . Global analysis of a simple parasite-host model with homoclinic orbits. Mathematical Biosciences and Engineering, 2012, 9(4): 767-784. doi: 10.3934/mbe.2012.9.767
    [7] Chang Gong, Jennifer J. Linderman, Denise Kirschner . A population model capturing dynamics of tuberculosis granulomas predicts host infection outcomes. Mathematical Biosciences and Engineering, 2015, 12(3): 625-642. doi: 10.3934/mbe.2015.12.625
    [8] Yilong Li, Shigui Ruan, Dongmei Xiao . The Within-Host dynamics of malaria infection with immune response. Mathematical Biosciences and Engineering, 2011, 8(4): 999-1018. doi: 10.3934/mbe.2011.8.999
    [9] Beryl Musundi . An immuno-epidemiological model linking between-host and within-host dynamics of cholera. Mathematical Biosciences and Engineering, 2023, 20(9): 16015-16032. doi: 10.3934/mbe.2023714
    [10] Sukhitha W. Vidurupola, Linda J. S. Allen . Basic stochastic models for viral infection within a host. Mathematical Biosciences and Engineering, 2012, 9(4): 915-935. doi: 10.3934/mbe.2012.9.915
  • Toxoplasma gondii (T. gondii) is a protozoan parasite that infects a wide range of intermediate hosts, including all mammals and birds. Up to 20% of the human population in the US and 30% in the world are chronically infected. This paper presents a mathematical model to describe intra-host dynamics of T. gondii infection. The model considers the invasion process, egress kinetics, interconversion between fast-replicating tachyzoite stage and slowly replicating bradyzoite stage, as well as the host's immune response. Analytical and numerical studies of the model can help to understand the influences of various parameters to the transient and steady-state dynamics of the disease infection.


  • This article has been cited by:

    1. Xiuli Cen, Zhilan Feng, Yulin Zhao, Emerging disease dynamics in a model coupling within-host and between-host systems, 2014, 361, 00225193, 141, 10.1016/j.jtbi.2014.07.030
    2. Avinita Gautam, Anupam Priyadarshi, 2018, 1975, 0094-243X, 030002, 10.1063/1.5042172
    3. Matthew Turner, Suzanne Lenhart, Benjamin Rosenthal, Xiaopeng Zhao, Modeling effective transmission pathways and control of the world’s most successful parasite, 2013, 86, 00405809, 50, 10.1016/j.tpb.2013.04.001
    4. Adam M. Sullivan, Xiaopeng Zhao, Yasuhiro Suzuki, Eri Ochiai, Stephen Crutcher, Michael A. Gilchrist, Christian von Mering, Evidence for Finely-Regulated Asynchronous Growth of Toxoplasma gondii Cysts Based on Data-Driven Model Selection, 2013, 9, 1553-7358, e1003283, 10.1371/journal.pcbi.1003283
    5. Oluwatayo M. Ogunmiloro, Mathematical Modeling of the Coinfection Dynamics of Malaria-Toxoplasmosis in the Tropics, 2019, 56, 1896-3811, 139, 10.2478/bile-2019-0013
    6. Zain Ul Abadin Zafar, Cemil Tunç, Nigar Ali, Gul Zaman, Phatiphat Thounthong, Dynamics of an arbitrary order model of toxoplasmosis ailment in human and cat inhabitants, 2021, 15, 1658-3655, 882, 10.1080/16583655.2021.1990603
    7. Sharmin Sultana, Gilberto González-Parra, Abraham J. Arenas, Dynamics of toxoplasmosis in the cat's population with an exposed stage and a time delay, 2022, 19, 1551-0018, 12655, 10.3934/mbe.2022591
    8. Afshin Farhadi, Emmanuel Hanert, D. Baleanu, D. Kumar, J. Hristov, A fractional diffusion model of CD8+T cells response to parasitic infection in the brain, 2022, 17, 0973-5348, 3, 10.1051/mmnp/2022003
    9. Sharmin Sultana, Gilberto González-Parra, Abraham J. Arenas, A Generalized Mathematical Model of Toxoplasmosis with an Intermediate Host and the Definitive Cat Host, 2023, 11, 2227-7390, 1642, 10.3390/math11071642
    10. Sharmin Sultana, Gilberto González-Parra, Abraham J. Arenas, Mathematical Modeling of Toxoplasmosis in Cats with Two Time Delays under Environmental Effects, 2023, 11, 2227-7390, 3463, 10.3390/math11163463
    11. Sharmin Sultana, Gilberto González-Parra, Abraham J. Arenas, Analysis of Within-Host Mathematical Models of Toxoplasmosis That Consider Time Delays, 2023, 11, 2227-7390, 4469, 10.3390/math11214469
    12. Anqi Wang, Dandan Xue, Zhanyu Wang, Jian Zhao, Feng Rao, Dynamics of a stochastic tumor–immune interaction system, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05898-2
    13. Julia N. Eberhard, Lindsey A. Shallberg, Aaron Winn, Sambamurthy Chandrasekaran, Christopher J. Giuliano, Emily F. Merritt, Elinor Willis, Christoph Konradt, David A. Christian, Daniel L. Aldridge, Molly E. Bunkofske, Maxime Jacquet, Florence Dzierszinski, Eleni Katifori, Sebastian Lourido, Anita A. Koshy, Christopher A. Hunter, Immune targeting and host-protective effects of the latent stage of Toxoplasma gondii, 2025, 2058-5276, 10.1038/s41564-025-01967-z
    14. Sharmin Sultana, Luis Fernando Chaves, Gilberto González-Parra, Analysis of within-host mathematical models of toxoplasmosis in the presence of free parasites, 2025, 13, 2195-268X, 10.1007/s40435-025-01697-4
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3241) PDF downloads(644) Cited by(14)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog