A stoichiometrically derived algal growth model and its global analysis

  • Received: 01 August 2010 Accepted: 29 June 2018 Published: 01 October 2010
  • MSC : Primary: 92B05, 34D23; Secondary: 34C60.

  • Organisms are composed of multiple chemical elements such as carbon, nitrogen, and phosphorus. The scarcity of any of these elements can severely restrict organismal and population growth. However, many trophic interaction models only consider carbon limitation via energy flow. In this paper, we construct an algal growth model with the explicit incorporation of light and nutrient availability to characterize both carbon and phosphorus limitations. We provide a global analysis of this model to illustrate how light and nutrient availability regulate algal dynamics.

    Citation: Xiong Li, Hao Wang. A stoichiometrically derived algal growth model and its global analysis[J]. Mathematical Biosciences and Engineering, 2010, 7(4): 825-836. doi: 10.3934/mbe.2010.7.825

    Related Papers:

    [1] Da Song, Meng Fan, Ming Chen, Hao Wang . Dynamics of a periodic stoichiometric model with application in predicting and controlling algal bloom in Bohai Sea off China. Mathematical Biosciences and Engineering, 2019, 16(1): 119-138. doi: 10.3934/mbe.2019006
    [2] Md Nazmul Hassan, Angela Peace . Mechanistically derived Toxicant-mediated predator-prey model under Stoichiometric constraints. Mathematical Biosciences and Engineering, 2020, 17(1): 349-365. doi: 10.3934/mbe.2020019
    [3] Md Nazmul Hassan, Kelsey Thompson, Gregory Mayer, Angela Peace . Effect of Excess Food Nutrient on Producer-Grazer Model under Stoichiometric and Toxicological Constraints. Mathematical Biosciences and Engineering, 2019, 16(1): 150-167. doi: 10.3934/mbe.2019008
    [4] Xuehui Ji, Sanling Yuan, Tonghua Zhang, Huaiping Zhu . Stochastic modeling of algal bloom dynamics with delayed nutrient recycling. Mathematical Biosciences and Engineering, 2019, 16(1): 1-24. doi: 10.3934/mbe.2019001
    [5] Yawen Yan, Hongyue Wang, Xiaoyuan Chang, Jimin Zhang . Asymmetrical resource competition in aquatic producers: Constant cell quota versus variable cell quota. Mathematical Biosciences and Engineering, 2023, 20(2): 3983-4005. doi: 10.3934/mbe.2023186
    [6] Wenjie Yang, Qianqian Zheng, Jianwei Shen, Linan Guan . Bifurcation and pattern dynamics in the nutrient-plankton network. Mathematical Biosciences and Engineering, 2023, 20(12): 21337-21358. doi: 10.3934/mbe.2023944
    [7] Yang Kuang, Jef Huisman, James J. Elser . Stoichiometric Plant-Herbivore Models and Their Interpretation. Mathematical Biosciences and Engineering, 2004, 1(2): 215-222. doi: 10.3934/mbe.2004.1.215
    [8] Ling Xue, Sitong Chen, Xinmiao Rong . Dynamics of competition model between two plants based on stoichiometry. Mathematical Biosciences and Engineering, 2023, 20(10): 18888-18915. doi: 10.3934/mbe.2023836
    [9] Xinru Zhou, Xinmiao Rong, Meng Fan, Josué-Antonio Nescolarde-Selvaa . Stoichiometric modeling of aboveground-belowground interaction of herbaceous plant. Mathematical Biosciences and Engineering, 2019, 16(1): 25-55. doi: 10.3934/mbe.2019002
    [10] Lina Hao, Meng Fan, Xin Wang . Effects of nutrient enrichment on coevolution of a stoichiometric producer-grazer system. Mathematical Biosciences and Engineering, 2014, 11(4): 841-875. doi: 10.3934/mbe.2014.11.841
  • Organisms are composed of multiple chemical elements such as carbon, nitrogen, and phosphorus. The scarcity of any of these elements can severely restrict organismal and population growth. However, many trophic interaction models only consider carbon limitation via energy flow. In this paper, we construct an algal growth model with the explicit incorporation of light and nutrient availability to characterize both carbon and phosphorus limitations. We provide a global analysis of this model to illustrate how light and nutrient availability regulate algal dynamics.


  • This article has been cited by:

    1. Ming Chen, Meng Fan, Yang Kuang, Global dynamics in a stoichiometric food chain model with two limiting nutrients, 2017, 289, 00255564, 9, 10.1016/j.mbs.2017.04.004
    2. Áron Anton, Gregorio De Julián, Agustín Delicado, Paula Sánchez, Daniel Valero, Lluís M. García Raffi, Enrique A. Sánchez Pérez, Ecoesferas: una propuesta de modelización en el ámbito de la escuela de Caminos, 2013, 6, 1988-3145, 21, 10.4995/msel.2013.1852
    3. Feng Feng, Yan Li, Benjamin Latimer, Chiqian Zhang, Satish S. Nair, Zhiqiang Hu, Prediction of maximum algal productivity in membrane bioreactors with a light-dependent growth model, 2021, 753, 00489697, 141922, 10.1016/j.scitotenv.2020.141922
    4. Suresh K. Jayaraman, R. Russell Rhinehart, Modeling and Optimization of Algae Growth, 2015, 54, 0888-5885, 8063, 10.1021/acs.iecr.5b01635
    5. Jack Wallace, Pascale Champagne, Geof Hall, Multivariate statistical analysis of water chemistry conditions in three wastewater stabilization ponds with algae blooms and pH fluctuations, 2016, 96, 00431354, 155, 10.1016/j.watres.2016.03.046
    6. Arthur R. Grossman, Munevver Aksoy, 2015, 9781118958841, 337, 10.1002/9781118958841.ch12
    7. Stan Pankratz, Adetoyese Olajire Oyedun, Amit Kumar, Novel satellite based analytical model developed to predict microalgae yields in open pond raceway systems and applied to Canadian sites, 2019, 39, 22119264, 101431, 10.1016/j.algal.2019.101431
    8. D. Jana, N. Bairagi, Habitat complexity, dispersal and metapopulations: Macroscopic study of a predator–prey system, 2014, 17, 1476945X, 131, 10.1016/j.ecocom.2013.11.006
    9. Song-Fang Han, Wen-Biao Jin, Ren-Jie Tu, Wei-Min Wu, Biofuel production from microalgae as feedstock: current status and potential, 2015, 35, 0738-8551, 255, 10.3109/07388551.2013.835301
    10. Xianshan Yang, Xiong Li, Hao Wang, Yang Kuang, Stability and Bifurcation in a Stoichiometric Producer-Grazer Model with Knife Edge, 2016, 15, 1536-0040, 2051, 10.1137/15M1023610
    11. Arthur R. Grossman, Munevver Aksoy, 2018, 9781119312994, 337, 10.1002/9781119312994.apr0527
    12. Shengnan Zhao, Sanling Yuan, Hao Wang, Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation, 2020, 268, 00220396, 5113, 10.1016/j.jde.2019.11.004
    13. Ling Xue, Jiayue Fu, Xinmiao Rong, Hongyu Zhang, Dynamics of a Stoichiometric Regrowth-Consumer Model, 2023, 33, 0218-1274, 10.1142/S0218127423500104
    14. Juping Ji, Hao Wang, Competitive Exclusion and Coexistence in a Stoichiometric Chemostat Model, 2022, 1040-7294, 10.1007/s10884-022-10188-5
    15. Juping Ji, Russell Milne, Hao Wang, Stoichiometry and environmental change drive dynamical complexity and unpredictable switches in an intraguild predation model, 2023, 86, 0303-6812, 10.1007/s00285-023-01866-z
    16. Yequan Liang, Xiuxiang Liu, Xiao Yu, Threshold dynamics of a periodic stoichiometric model, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023065
    17. Ling Xue, Sitong Chen, Xinmiao Rong, Dynamics of competition model between two plants based on stoichiometry, 2023, 20, 1551-0018, 18888, 10.3934/mbe.2023836
    18. Chaoqun Xu, Qiucun Chen, The effects of additional food and environmental stochasticity on the asymptotic properties of a nutrient–phytoplankton model, 2024, 183, 09600779, 114937, 10.1016/j.chaos.2024.114937
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3186) PDF downloads(551) Cited by(17)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog