Global stability of an SIR epidemic model with delay and general nonlinear incidence

  • Received: 01 March 2010 Accepted: 29 June 2018 Published: 01 October 2010
  • MSC : Primary: 34K20, 92D30.

  • An SIR model with distributed delay and a general incidence function is studied. Conditions are given under which the system exhibits threshold behaviour: the disease-free equilibrium is globally asymptotically stable if R0<1 and globally attracting if R0=1; if R0>1, then the unique endemic equilibrium is globally asymptotically stable. The global stability proofs use a Lyapunov functional and do not require uniform persistence to be shown a priori. It is shown that the given conditions are satisfied by several common forms of the incidence function.

    Citation: C. Connell McCluskey. Global stability of an SIR epidemic model with delay and general nonlinear incidence[J]. Mathematical Biosciences and Engineering, 2010, 7(4): 837-850. doi: 10.3934/mbe.2010.7.837

    Related Papers:

    [1] Andrei Korobeinikov, Philip K. Maini . A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences and Engineering, 2004, 1(1): 57-60. doi: 10.3934/mbe.2004.1.57
    [2] Ke Guo, Wanbiao Ma . Global dynamics of an SI epidemic model with nonlinear incidence rate, feedback controls and time delays. Mathematical Biosciences and Engineering, 2021, 18(1): 643-672. doi: 10.3934/mbe.2021035
    [3] Yoichi Enatsu, Yukihiko Nakata . Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences and Engineering, 2014, 11(4): 785-805. doi: 10.3934/mbe.2014.11.785
    [4] Ardak Kashkynbayev, Daiana Koptleuova . Global dynamics of tick-borne diseases. Mathematical Biosciences and Engineering, 2020, 17(4): 4064-4079. doi: 10.3934/mbe.2020225
    [5] Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya . Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences and Engineering, 2010, 7(2): 347-361. doi: 10.3934/mbe.2010.7.347
    [6] Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
    [7] Jinliang Wang, Hongying Shu . Global analysis on a class of multi-group SEIR model with latency and relapse. Mathematical Biosciences and Engineering, 2016, 13(1): 209-225. doi: 10.3934/mbe.2016.13.209
    [8] Yu Ji . Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences and Engineering, 2015, 12(3): 525-536. doi: 10.3934/mbe.2015.12.525
    [9] Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067
    [10] Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297
  • An SIR model with distributed delay and a general incidence function is studied. Conditions are given under which the system exhibits threshold behaviour: the disease-free equilibrium is globally asymptotically stable if R0<1 and globally attracting if R0=1; if R0>1, then the unique endemic equilibrium is globally asymptotically stable. The global stability proofs use a Lyapunov functional and do not require uniform persistence to be shown a priori. It is shown that the given conditions are satisfied by several common forms of the incidence function.


  • This article has been cited by:

    1. Songbai Guo, Wanbiao Ma, Global behavior of delay differential equations model of HIV infection with apoptosis, 2015, 21, 1531-3492, 103, 10.3934/dcdsb.2016.21.103
    2. Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya, Global stability of sirs epidemic models with a class of nonlinear incidence rates and distributed delays, 2012, 32, 02529602, 851, 10.1016/S0252-9602(12)60066-6
    3. Bentout Soufiane, Tarik Mohammed Touaoula, Global analysis of an infection age model with a class of nonlinear incidence rates, 2016, 434, 0022247X, 1211, 10.1016/j.jmaa.2015.09.066
    4. Jinliang Wang, Jingmei Pang, Xianning Liu, Modelling diseases with relapse and nonlinear incidence of infection: a multi-group epidemic model, 2014, 8, 1751-3758, 99, 10.1080/17513758.2014.912682
    5. C. Connell McCluskey, Yu Yang, Global stability of a diffusive virus dynamics model with general incidence function and time delay, 2015, 25, 14681218, 64, 10.1016/j.nonrwa.2015.03.002
    6. Jinliang Wang, Jingmei Pang, Toshikazu Kuniya, Yoichi Enatsu, Global threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays, 2014, 241, 00963003, 298, 10.1016/j.amc.2014.05.015
    7. Haitao Song, Shengqiang Liu, Weihua Jiang, Global dynamics of a multistage SIR model with distributed delays and nonlinear incidence rate, 2016, 01704214, 10.1002/mma.4130
    8. Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, 2012, 9, 1551-0018, 819, 10.3934/mbe.2012.9.819
    9. Divine Wanduku, The stationary distribution and stochastic persistence for a class of disease models: Case study of malaria, 2020, 13, 1793-5245, 2050024, 10.1142/S1793524520500242
    10. Tsuyoshi Kajiwara, Toru Sasaki, Yasuhiro Takeuchi, Construction of Lyapunov functionals for delay differential equations in virology and epidemiology, 2012, 13, 14681218, 1802, 10.1016/j.nonrwa.2011.12.011
    11. Horst R. Thieme, Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators, 2011, 250, 00220396, 3772, 10.1016/j.jde.2011.01.007
    12. Sean T. Vittadello, Scott W. McCue, Gency Gunasingh, Nikolas K. Haass, Matthew J. Simpson, A novel mathematical model of heterogeneous cell proliferation, 2021, 82, 0303-6812, 10.1007/s00285-021-01580-8
    13. Manuel De la Sen, Asier Ibeas, Ravi P. Agarwal, On Confinement and Quarantine Concerns on an SEIAR Epidemic Model with Simulated Parameterizations for the COVID-19 Pandemic, 2020, 12, 2073-8994, 1646, 10.3390/sym12101646
    14. Jinliang Wang, Jiying Lang, Xianning Liu, Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells, 2015, 20, 1531-3492, 3215, 10.3934/dcdsb.2015.20.3215
    15. Kanica Goel, , Stability behavior of a nonlinear mathematical epidemic transmission model with time delay, 2019, 98, 0924-090X, 1501, 10.1007/s11071-019-05276-z
    16. Horst R. Thieme, Hal L. Smith, Chemostats and epidemics: Competition for nutrients/hosts, 2013, 10, 1551-0018, 1635, 10.3934/mbe.2013.10.1635
    17. Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya, Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model, 2012, 13, 14681218, 2120, 10.1016/j.nonrwa.2012.01.007
    18. C. Connell McCluskey, Using Lyapunov Functions to Construct Lyapunov Functionals for Delay Differential Equations, 2015, 14, 1536-0040, 1, 10.1137/140971683
    19. Hongying Shu, Xiang-Sheng Wang, Global dynamics of a coupled epidemic model, 2017, 22, 1553-524X, 1575, 10.3934/dcdsb.2017076
    20. Global properties of a delayed SIR epidemic model with multiple parallel infectious stages, 2012, 9, 1551-0018, 685, 10.3934/mbe.2012.9.685
    21. Yoichi Enatsu, Yukihiko Nakata, Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate, 2014, 11, 1551-0018, 785, 10.3934/mbe.2014.11.785
    22. Chao Liu, Wenquan Yue, Peiyong Liu, Dynamical Behavior and Stability Analysis in a Hybrid Epidemiological-Economic Model with Incubation, 2014, 2014, 1085-3375, 1, 10.1155/2014/639405
    23. G. Neofytou, Y.N. Kyrychko, K.B. Blyuss, Time-delayed model of immune response in plants, 2016, 389, 00225193, 28, 10.1016/j.jtbi.2015.10.020
    24. Xun-Yang Wang, Khalid Hattaf, Hai-Feng Huo, Hong Xiang, Stability analysis of a delayed social epidemics model with general contact rate and its optimal control, 2016, 12, 1547-5816, 1267, 10.3934/jimo.2016.12.1267
    25. Xia Wang, Yuefen Chen, Shengqiang Liu, Xinyu Song, A class of delayed virus dynamics models with multiple target cells, 2013, 32, 0101-8205, 211, 10.1007/s40314-013-0004-z
    26. Yoichi Enatsu, Eleonora Messina, Yoshiaki Muroya, Yukihiko Nakata, Elvira Russo, Antonia Vecchio, Stability analysis of delayed SIR epidemic models with a class of nonlinear incidence rates, 2012, 218, 00963003, 5327, 10.1016/j.amc.2011.11.016
    27. Aboudramane Guiro, Dramane Ouedraogo, Harouna Ouedraogo, Stability Analysis for a Discrete SIR Epidemic Model with Delay and General Nonlinear Incidence Function, 2018, 09, 2152-7385, 1039, 10.4236/am.2018.99070
    28. Manuel De la Sen, Asier Ibeas, Leonid Shaikhet, On a Sir Epidemic Model for the COVID-19 Pandemic and the Logistic Equation, 2020, 2020, 1607-887X, 1, 10.1155/2020/1382870
    29. Global stability for epidemic model with constant latency and infectious periods, 2012, 9, 1551-0018, 297, 10.3934/mbe.2012.9.297
    30. Xiaojuan Li, Shengmao Fu, Global stability of a virus dynamics model with intracellular delay and CTL immune response, 2015, 38, 01704214, 420, 10.1002/mma.3078
    31. Luju Liu, A delayed SIR model with general nonlinear incidence rate, 2015, 2015, 1687-1847, 10.1186/s13662-015-0619-z
    32. Jinliang Wang, Ran Zhang, Toshikazu Kuniya, The dynamics of an SVIR epidemiological model with infection age: Table 1., 2016, 81, 0272-4960, 321, 10.1093/imamat/hxv039
    33. Yoichi Enatsu, Eleonora Messina, Yukihiko Nakata, Yoshiaki Muroya, Elvira Russo, Antonia Vecchio, Global dynamics of a delayed SIRS epidemic model with a wide class of nonlinear incidence rates, 2012, 39, 1598-5865, 15, 10.1007/s12190-011-0507-y
    34. Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya, Giuseppe Izzo, Antonia Vecchio, Global dynamics of difference equations for SIR epidemic models with a class of nonlinear incidence rates, 2012, 18, 1023-6198, 1163, 10.1080/10236198.2011.555405
    35. Ousmane Koutou, Bakary Traoré, Boureima Sangaré, Yuriy Rogovchenko, Mathematical model of malaria transmission dynamics with distributed delay and a wide class of nonlinear incidence rates, 2018, 5, 2574-2558, 1564531, 10.1080/25742558.2018.1564531
    36. Chuangxia Huang, Jie Cao, Fenghua Wen, Xiaoguang Yang, Wei-Xing Zhou, Stability Analysis of SIR Model with Distributed Delay on Complex Networks, 2016, 11, 1932-6203, e0158813, 10.1371/journal.pone.0158813
    37. Salih Djilali, Tarik Mohammed Touaoula, Sofiane El-Hadi Miri, A Heroin Epidemic Model: Very General Non Linear Incidence, Treat-Age, and Global Stability, 2017, 152, 0167-8019, 171, 10.1007/s10440-017-0117-2
    38. Tayebeh Waezizadeh, Seir epidemic model with two time delays, 2016, 14, 1726-037X, 189, 10.1080/1726037X.2016.1250503
    39. Cuicui Jiang, Wendi Wang, Complete classification of global dynamics of a virus model with immune responses, 2014, 19, 1553-524X, 1087, 10.3934/dcdsb.2014.19.1087
    40. Tianhu Yu, Dengqing Cao, Shengqiang Liu, Epidemic model with group mixing: Stability and optimal control based on limited vaccination resources, 2018, 61, 10075704, 54, 10.1016/j.cnsns.2018.01.011
    41. SALIH DJILALI, ANWAR ZEB, TAREQ SAEED, EFFECT OF OCCASIONAL HEROIN CONSUMERS ON THE SPREAD OF HEROIN ADDICTION, 2022, 30, 0218-348X, 10.1142/S0218348X22401648
    42. Dandan Sun, Yingke Li, Zhidong Teng, Tailei Zhang, Jingjing Lu, Dynamical properties in an SVEIR epidemic model with age‐dependent vaccination, latency, infection, and relapse, 2021, 44, 0170-4214, 12810, 10.1002/mma.7583
    43. Lingmin Dong, Shuai Hou, Chengxia Lei, Global attractivity of the equilibria of the diffusive SIR and SEIR epidemic models with multiple parallel infectious stages and nonlinear incidence mechanism, 2022, 134, 08939659, 108352, 10.1016/j.aml.2022.108352
    44. Divine Wanduku, ESTIMATING WHITE NOISE INTENSITY REGIONS FOR COMPARABLE PROPERTIES OF A CLASS OF SEIRS STOCHASTIC AND DETERMINISTIC EPIDEMIC MODELS, 2021, 11, 2156-907X, 1095, 10.11948/20190372
    45. Mostafa Adimy, Abdennasser Chekroun, Toshikazu Kuniya, Global asymptotic stability for a distributed delay differential–difference system of a Kermack–McKendrick SIR model, 2022, 0003-6811, 1, 10.1080/00036811.2022.2075352
    46. Ousmane Koutou, Bakary Traoré, Boureima Sangaré, Analysis of Schistosomiasis Global Dynamics with General Incidence Functions and Two Delays, 2021, 7, 2349-5103, 10.1007/s40819-021-01188-y
    47. Fatima Zohra Hathout, Tarik Mohammed Touaoula, Salih Djilali, Mathematical analysis of a triple age dependent epidemiological model with including a protection strategy, 2022, 27, 1531-3492, 7409, 10.3934/dcdsb.2022048
    48. Manuel De la Sen, Asier Ibeas, Aitor Garrido, On a new SEIRDE o I o epidemic model eventually initiated from outside with delayed re-susceptibility and vaccination and treatment feedback controls, 2021, 96, 0031-8949, 095002, 10.1088/1402-4896/ac018c
    49. Zareen A. Khan, Abdesslem Lamrani Alaoui, Anwar Zeb, Mouhcine Tilioua, Salih Djilali, Global dynamics of a SEI epidemic model with immigration and generalized nonlinear incidence functional, 2021, 27, 22113797, 104477, 10.1016/j.rinp.2021.104477
    50. Soufiane Bentout, Salih Djilali, Sunil Kumar, Tarik Mohammed Touaoula, Threshold dynamics of difference equations for SEIR model with nonlinear incidence function and infinite delay, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-01466-0
    51. Ousmane Koutou, Abou Bakari Diabaté, Boureima Sangaré, Mathematical analysis of the impact of the media coverage in mitigating the outbreak of COVID-19, 2023, 205, 03784754, 600, 10.1016/j.matcom.2022.10.017
    52. Salih Djilali, Yuming Chen, Soufiane Bentout, Asymptotic analysis of SIR epidemic model with nonlocal diffusion and generalized nonlinear incidence functional, 2022, 0170-4214, 10.1002/mma.8903
    53. Abdesslem Lamrani Alaoui, Moulay Rchid Sidi Ammi, Mouhcine Tilioua, Delfim F.M. Torres, 2022, 9780323905046, 191, 10.1016/B978-0-32-390504-6.00016-4
    54. Yukihiko Nakata, Yoichi Enatsu, Hisashi Inaba, Toshikazu Kuniya, Yoshiaki Muroya, Yasuhiro Takeuchi, Stability of epidemic models with waning immunity, 2014, 50, 0916-5746, 10.55937/sut/1424972727
    55. Salih Djilali, Soufiane Bentout, Tarik Mohamed Touaoula, Abdon Atangana, Threshold dynamics for an age‐structured heroin epidemic model with distributed delays, 2023, 0170-4214, 10.1002/mma.9275
    56. Abou Bakari Diabaté, Boureima Sangaré, Ousmane Koutou, Optimal control analysis of a COVID-19 and Tuberculosis (TB) co-infection model with an imperfect vaccine for COVID-19, 2023, 2254-3902, 10.1007/s40324-023-00330-8
    57. Mostafa Adimy, Abdennasser Chekroun, Toshikazu Kuniya, Hanene Meghelli, Global stability of a SEIR discrete delay differential‐difference system with protection phase, 2023, 0170-4214, 10.1002/mma.9533
    58. Jiapu Zhang, 2023, Chapter 28, 978-3-031-36772-4, 897, 10.1007/978-3-031-36773-1_28
    59. Mostafa Adimy, Abdennasser Chekroun, Charlotte Dugourd-Camus, Hanene Meghelli, Global Asymptotic Stability of a Hybrid Differential–Difference System Describing SIR and SIS Epidemic Models with a Protection Phase and a Nonlinear Force of Infection, 2024, 23, 1575-5460, 10.1007/s12346-023-00891-z
    60. Esra KARAOĞLU, On the stability analysis of a fractional order epidemic model including the most general forms of nonlinear incidence and treatment function, 2023, 73, 1303-5991, 285, 10.31801/cfsuasmas.1258454
    61. Nursanti Anggriani, Lazarus Kalvein Beay, Meksianis Z. Ndii, Fatuh Inayaturohmat, Sanubari Tansah Tresna, A mathematical model for a disease outbreak considering waning-immunity class with nonlinear incidence and recovery rates, 2024, 25889338, 10.1016/j.jobb.2024.05.005
    62. Adama Kiemtore, Wenddabo Olivier Sawadogo, Pegdwindé Ousséni Fabrice Ouédraogo, Fatima Aqel, Hamza Alaa, Kounpielime Sosthène Somda, Abdel Karim Serme, Mathematical modelling of the impact of vaccination, treatment and media awareness on the hepatitis B epidemic in Burkina Faso, 2024, 4, 2791-8564, 139, 10.53391/mmnsa.1528691
    63. Thabet Abdeljawad, Nadeem Khan, Bahaaeldin Abdalla, Asma Al-Jaser, Manar Alqudah, Kamal Shah, A mathematical analysis of human papilloma virus (HPV) disease with new perspectives of fractional calculus, 2025, 125, 11100168, 575, 10.1016/j.aej.2025.03.136
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3640) PDF downloads(820) Cited by(63)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog