Alternative models for cyclic lemming dynamics

  • Received: 01 March 2006 Accepted: 29 June 2018 Published: 01 November 2006
  • MSC : 92D40, 34K20.

  • Many natural population growths and interactions are affected by seasonal changes, suggesting that these natural population dynamics should be modeled by nonautonomous differential equations instead of autonomous differential equations. Through a series of carefully derived models of the well documented high-amplitude, large-period fluctuations of lemming populations, we argue that when appropriately formulated, autonomous differential equations may capture much of the desirable rich dynamics, such as the existence of a periodic solution with period and amplitude close to that of approximately periodic solutions produced by the more natural but mathematically daunting nonautonomous models. We start this series of models from the Barrow model, a well formulated model for the dynamics of food-lemming interaction at Point Barrow (Alaska, USA) with sufficient experimental data. Our work suggests that an autonomous system can indeed be a good approximation to the moss-lemming dynamics at Point Barrow. This, together with our bifurcation analysis, indicates that neither seasonal factors (expressed by time-dependent moss growth rate and lemming death rate in the Barrow model) nor the moss growth rate and lemming death rate are the main culprits of the observed multi-year lemming cycles. We suspect that the main culprits may include high lemming predation rate, high lemming birth rate, and low lemming self-limitation rate.

    Citation: Hao Wang, Yang Kuang. Alternative models for cyclic lemming dynamics[J]. Mathematical Biosciences and Engineering, 2007, 4(1): 85-99. doi: 10.3934/mbe.2007.4.85

    Related Papers:

    [1] Gunog Seo, Mark Kot . The dynamics of a simple Laissez-Faire model with two predators. Mathematical Biosciences and Engineering, 2009, 6(1): 145-172. doi: 10.3934/mbe.2009.6.145
    [2] Christian Cortés García . Bifurcations in a discontinuous Leslie-Gower model with harvesting and alternative food for predators and constant prey refuge at low density. Mathematical Biosciences and Engineering, 2022, 19(12): 14029-14055. doi: 10.3934/mbe.2022653
    [3] Claudio Arancibia–Ibarra, José Flores . Modelling and analysis of a modified May-Holling-Tanner predator-prey model with Allee effect in the prey and an alternative food source for the predator. Mathematical Biosciences and Engineering, 2020, 17(6): 8052-8073. doi: 10.3934/mbe.2020408
    [4] Xiao Wu, Shuying Lu, Feng Xie . Relaxation oscillations of a piecewise-smooth slow-fast Bazykin's model with Holling type Ⅰ functional response. Mathematical Biosciences and Engineering, 2023, 20(10): 17608-17624. doi: 10.3934/mbe.2023782
    [5] Xiaoying Wang, Xingfu Zou . Pattern formation of a predator-prey model with the cost of anti-predator behaviors. Mathematical Biosciences and Engineering, 2018, 15(3): 775-805. doi: 10.3934/mbe.2018035
    [6] Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri . Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences and Engineering, 2012, 9(1): 75-96. doi: 10.3934/mbe.2012.9.75
    [7] Maoxiang Wang, Fenglan Hu, Meng Xu, Zhipeng Qiu . Keep, break and breakout in food chains with two and three species. Mathematical Biosciences and Engineering, 2021, 18(1): 817-836. doi: 10.3934/mbe.2021043
    [8] Peter A. Braza . A dominant predator, a predator, and a prey. Mathematical Biosciences and Engineering, 2008, 5(1): 61-73. doi: 10.3934/mbe.2008.5.61
    [9] Lazarus Kalvein Beay, Agus Suryanto, Isnani Darti, Trisilowati . Hopf bifurcation and stability analysis of the Rosenzweig-MacArthur predator-prey model with stage-structure in prey. Mathematical Biosciences and Engineering, 2020, 17(4): 4080-4097. doi: 10.3934/mbe.2020226
    [10] Feng Rao, Carlos Castillo-Chavez, Yun Kang . Dynamics of a stochastic delayed Harrison-type predation model: Effects of delay and stochastic components. Mathematical Biosciences and Engineering, 2018, 15(6): 1401-1423. doi: 10.3934/mbe.2018064
  • Many natural population growths and interactions are affected by seasonal changes, suggesting that these natural population dynamics should be modeled by nonautonomous differential equations instead of autonomous differential equations. Through a series of carefully derived models of the well documented high-amplitude, large-period fluctuations of lemming populations, we argue that when appropriately formulated, autonomous differential equations may capture much of the desirable rich dynamics, such as the existence of a periodic solution with period and amplitude close to that of approximately periodic solutions produced by the more natural but mathematically daunting nonautonomous models. We start this series of models from the Barrow model, a well formulated model for the dynamics of food-lemming interaction at Point Barrow (Alaska, USA) with sufficient experimental data. Our work suggests that an autonomous system can indeed be a good approximation to the moss-lemming dynamics at Point Barrow. This, together with our bifurcation analysis, indicates that neither seasonal factors (expressed by time-dependent moss growth rate and lemming death rate in the Barrow model) nor the moss growth rate and lemming death rate are the main culprits of the observed multi-year lemming cycles. We suspect that the main culprits may include high lemming predation rate, high lemming birth rate, and low lemming self-limitation rate.


  • This article has been cited by:

    1. Hao Wang, John D. Nagy, Olivier Gilg, Yang Kuang, The roles of predator maturation delay and functional response in determining the periodicity of predator–prey cycles, 2009, 221, 00255564, 1, 10.1016/j.mbs.2009.06.004
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2346) PDF downloads(456) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog