A mathematical model for M-phase specific chemotherapy including the G0-phase and immunoresponse

  • Received: 01 July 2006 Accepted: 29 June 2018 Published: 01 February 2007
  • MSC : 92B05.

  • In this paper we use a mathematical model to study the effect of an M-phase specific drug on the development of cancer, including the resting phase G0 and the immune response. The cell cycle of cancer cells is split into the mitotic phase (M-phase), the quiescent phase (G0-phase) and the interphase (G1, S, G2 phases). We include a time delay for the passage through the interphase, and we assume that the immune cells interact with all cancer cells. We study analytically and numerically the stability of the cancer-free equilibrium and its dependence on the model parameters. We find that quiescent cells can escape the M-phase drug. The dynamics of the G0 phase dictates the dynamics of cancer as a whole. Moreover, we find oscillations through a Hopf bifurcation. Finally, we use the model to discuss the efficiency of cell synchronization before treatment (synchronization method).

    Citation: Wenxiang Liu, Thomas Hillen, H. I. Freedman. A mathematical model for M-phase specific chemotherapy including the G0-phase and immunoresponse[J]. Mathematical Biosciences and Engineering, 2007, 4(2): 239-259. doi: 10.3934/mbe.2007.4.239

    Related Papers:

    [1] Maria Vittoria Barbarossa, Christina Kuttler, Jonathan Zinsl . Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells. Mathematical Biosciences and Engineering, 2012, 9(2): 241-257. doi: 10.3934/mbe.2012.9.241
    [2] Andrzej Swierniak, Jaroslaw Smieja . Analysis and Optimization of Drug Resistant an Phase-Specific Cancer. Mathematical Biosciences and Engineering, 2005, 2(3): 657-670. doi: 10.3934/mbe.2005.2.657
    [3] E.V. Presnov, Z. Agur . The Role Of Time Delays, Slow Processes And Chaos In Modulating The Cell-Cycle Clock. Mathematical Biosciences and Engineering, 2005, 2(3): 625-642. doi: 10.3934/mbe.2005.2.625
    [4] Sarita Bugalia, Jai Prakash Tripathi, Hao Wang . Mathematical modeling of intervention and low medical resource availability with delays: Applications to COVID-19 outbreaks in Spain and Italy. Mathematical Biosciences and Engineering, 2021, 18(5): 5865-5920. doi: 10.3934/mbe.2021295
    [5] Alexander S. Bratus, Svetlana Yu. Kovalenko, Elena Fimmel . On viable therapy strategy for a mathematical spatial cancer model describing the dynamics of malignant and healthy cells. Mathematical Biosciences and Engineering, 2015, 12(1): 163-183. doi: 10.3934/mbe.2015.12.163
    [6] Manoj K. Singh, Brajesh K. Singh, Poonam, Carlo Cattani . Under nonlinear prey-harvesting, effect of strong Allee effect on the dynamics of a modified Leslie-Gower predator-prey model. Mathematical Biosciences and Engineering, 2023, 20(6): 9625-9644. doi: 10.3934/mbe.2023422
    [7] Gunog Seo, Mark Kot . The dynamics of a simple Laissez-Faire model with two predators. Mathematical Biosciences and Engineering, 2009, 6(1): 145-172. doi: 10.3934/mbe.2009.6.145
    [8] Bertin Hoffmann, Udo Schumacher, Gero Wedemann . Absence of convection in solid tumors caused by raised interstitial fluid pressure severely limits success of chemotherapy—a numerical study in cancers. Mathematical Biosciences and Engineering, 2020, 17(5): 6128-6148. doi: 10.3934/mbe.2020325
    [9] Juenu Yang, Fang Yan, Haihong Liu . Dynamic behavior of the p53-Mdm2 core module under the action of drug Nutlin and dual delays. Mathematical Biosciences and Engineering, 2021, 18(4): 3448-3468. doi: 10.3934/mbe.2021173
    [10] Marek Bodnar, Monika Joanna Piotrowska, Urszula Foryś . Gompertz model with delays and treatment: Mathematical analysis. Mathematical Biosciences and Engineering, 2013, 10(3): 551-563. doi: 10.3934/mbe.2013.10.551
  • In this paper we use a mathematical model to study the effect of an M-phase specific drug on the development of cancer, including the resting phase G0 and the immune response. The cell cycle of cancer cells is split into the mitotic phase (M-phase), the quiescent phase (G0-phase) and the interphase (G1, S, G2 phases). We include a time delay for the passage through the interphase, and we assume that the immune cells interact with all cancer cells. We study analytically and numerically the stability of the cancer-free equilibrium and its dependence on the model parameters. We find that quiescent cells can escape the M-phase drug. The dynamics of the G0 phase dictates the dynamics of cancer as a whole. Moreover, we find oscillations through a Hopf bifurcation. Finally, we use the model to discuss the efficiency of cell synchronization before treatment (synchronization method).


  • This article has been cited by:

    1. D. Adongo, K.R. Fister, Delay Dynamics of Cancer and Immune Cell Model, 2012, 7, 0973-5348, 261, 10.1051/mmnp/20127112
    2. Najma Ahmed, Dumitru Vieru, F.D. Zaman, Memory effects on the proliferative function in the cycle-specific of chemotherapy, 2021, 16, 0973-5348, 14, 10.1051/mmnp/2021009
    3. Álvaro G. López, Kelly C. Iarosz, Antonio M. Batista, Jesús M. Seoane, Ricardo L. Viana, Miguel A.F. Sanjuán, Nonlinear cancer chemotherapy: Modelling the Norton-Simon hypothesis, 2019, 70, 10075704, 307, 10.1016/j.cnsns.2018.11.006
    4. Irina Bashkirtseva, Lev Ryashko, Álvaro G. López, Jesús M. Seoane, Miguel A.F. Sanjuán, The effect of time ordering and concurrency in a mathematical model of chemoradiotherapy, 2021, 96, 10075704, 105693, 10.1016/j.cnsns.2021.105693
    5. Ranadhir Roy, Daniel N. Riahi, Jorge Cisneros, Effect of Combined Anticancer Drugs Treatment on Heterogeneous Brain Tumors, 2017, 3, 2349-5103, 3877, 10.1007/s40819-017-0331-7
    6. Christophe Letellier, Sourav Kumar Sasmal, Clément Draghi, Fabrice Denis, Dibakar Ghosh, A chemotherapy combined with an anti-angiogenic drug applied to a cancer model including angiogenesis, 2017, 99, 09600779, 297, 10.1016/j.chaos.2017.04.013
    7. C. Collins, K.R. Fister, M. Williams, Optimal Control of a Cancer Cell Model with Delay, 2010, 5, 0973-5348, 63, 10.1051/mmnp/20105305
    8. Heiko Enderling, Mark A. J. Chaplain, Philip Hahnfeldt, Quantitative Modeling of Tumor Dynamics and Radiotherapy, 2010, 58, 0001-5342, 341, 10.1007/s10441-010-9111-z
    9. Thomas Hillen, Gerda de Vries, Jiafen Gong, Chris Finlay, From cell population models to tumor control probability: Including cell cycle effects, 2010, 49, 0284-186X, 1315, 10.3109/02841861003631487
    10. Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions, 2012, 9, 1551-0018, 347, 10.3934/mbe.2012.9.347
    11. Thomas Hillen, Heiko Enderling, Philip Hahnfeldt, The Tumor Growth Paradox and Immune System-Mediated Selection for Cancer Stem Cells, 2013, 75, 0092-8240, 161, 10.1007/s11538-012-9798-x
    12. Yazdan Batmani, Hamid Khaloozadeh, On the design of human immunodeficiency virus treatment based on a non‐linear time‐delay model, 2014, 8, 1751-8857, 13, 10.1049/iet-syb.2013.0012
    13. Tyler Cassidy, Antony R Humphries, A mathematical model of viral oncology as an immuno-oncology instigator, 2019, 1477-8599, 10.1093/imammb/dqz008
    14. Gibin G. Powathil, Douglas J. A. Adamson, Mark A. J. Chaplain, Vito Quaranta, Towards Predicting the Response of a Solid Tumour to Chemotherapy and Radiotherapy Treatments: Clinical Insights from a Computational Model, 2013, 9, 1553-7358, e1003120, 10.1371/journal.pcbi.1003120
    15. Abdessamad Tridane, Radouane Yafia, M.A. Aziz-Alaoui, Targeting the quiescent cells in cancer chemotherapy treatment: Is it enough?, 2016, 40, 0307904X, 4844, 10.1016/j.apm.2015.12.023
    16. Joanna R. Wares, Joseph J. Crivelli, Peter S. Kim, 2014, Chapter 10, 978-1-4939-1792-1, 253, 10.1007/978-1-4939-1793-8_10
    17. Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells, 2012, 9, 1551-0018, 241, 10.3934/mbe.2012.9.241
    18. Gibin Powathil, Mark A. J. Chaplain, 2014, Chapter 8, 978-1-4939-0457-0, 237, 10.1007/978-1-4939-0458-7_8
    19. Jerry J. Batzel, Franz Kappel, Time delay in physiological systems: Analyzing and modeling its impact, 2011, 234, 00255564, 61, 10.1016/j.mbs.2011.08.006
    20. Gibin G. Powathil, Maciej Swat, Mark A.J. Chaplain, Systems oncology: Towards patient-specific treatment regimes informed by multiscale mathematical modelling, 2015, 30, 1044579X, 13, 10.1016/j.semcancer.2014.02.003
    21. Nor Aziran Awang, Normah Maan, 2016, 1750, 0094-243X, 030049, 10.1063/1.4954585
    22. A. Aghaeeyan, M.J. Yazdanpanah, Self-triggered impulsive control of nonlinear time delay systems: Application to chemotherapeutic dose-regimen design, 2021, 41, 1751570X, 101047, 10.1016/j.nahs.2021.101047
    23. Irina Bashkirtseva, Lev Ryashko, Jorge Duarte, Jesús M. Seoane, Miguel A. F. Sanjuan, The role of noise in the tumor dynamics under chemotherapy treatment, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-02061-z
    24. O E Karyakina, L K Dobrodeeva, N A Martynova, S V Krasilnikov, T I Karyakina, USE OF MATHEMATICAL MODELS IN CLINICAL PRACTICE, 2012, 19, 1728-0869, 55, 10.17816/humeco17447
    25. Nor Aziran Awang, Normah Maan, Mohd Dasuki Sulain, Tumour-Natural Killer and CD8+ T Cells Interaction Model with Delay, 2022, 10, 2227-7390, 2193, 10.3390/math10132193
    26. Kosei Matsuo, Rena Hayashi, Yoh Iwasa, Multiple colonies of cancer involved in mutual suppression with the immune system, 2023, 00225193, 111577, 10.1016/j.jtbi.2023.111577
    27. Ritu Agarwal, Sunil Dutt Purohit, , 2024, Chapter 1, 978-981-97-1650-0, 1, 10.1007/978-981-97-1651-7_1
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3133) PDF downloads(575) Cited by(27)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog