An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems

  • Received: 01 July 2005 Accepted: 29 June 2018 Published: 01 February 2007
  • MSC : 65N06, 65N12, 65N55, 92-08.

  • Reaction-diffusion-chemotaxis systems have proven to be fairly accurate mathematical models for many pattern formation problems in chemistry and biology. These systems are important for computer simulations of patterns, parameter estimations as well as analysis of the biological systems. To solve reaction-diffusion-chemotaxis systems, efficient and reliable numerical algorithms are essential for pattern generations. In this paper, a general reaction-diffusion-chemotaxis system is considered for specific numerical issues of pattern simulations. We propose a fully explicit discretization combined with a variable optimal time step strategy for solving the reactiondiffusion- chemotaxis system. Theorems about stability and convergence of the algorithm are given to show that the algorithm is highly stable and efficient. Numerical experiment results on a model problem are given for comparison with other numerical methods. Simulations on two real biological experiments will also be shown.

    Citation: Chichia Chiu, Jui-Ling Yu. An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems[J]. Mathematical Biosciences and Engineering, 2007, 4(2): 187-203. doi: 10.3934/mbe.2007.4.187

    Related Papers:

    [1] Fabrizio Clarelli, Roberto Natalini . A pressure model of immune response to mycobacterium tuberculosis infection in several space dimensions. Mathematical Biosciences and Engineering, 2010, 7(2): 277-300. doi: 10.3934/mbe.2010.7.277
    [2] Changwook Yoon, Sewoong Kim, Hyung Ju Hwang . Global well-posedness and pattern formations of the immune system induced by chemotaxis. Mathematical Biosciences and Engineering, 2020, 17(4): 3426-3449. doi: 10.3934/mbe.2020194
    [3] Lin Zhang, Yongbin Ge, Xiaojia Yang . High-accuracy positivity-preserving numerical method for Keller-Segel model. Mathematical Biosciences and Engineering, 2023, 20(5): 8601-8631. doi: 10.3934/mbe.2023378
    [4] Raimund Bürger, Gerardo Chowell, Elvis Gavilán, Pep Mulet, Luis M. Villada . Numerical solution of a spatio-temporal predator-prey model with infected prey. Mathematical Biosciences and Engineering, 2019, 16(1): 438-473. doi: 10.3934/mbe.2019021
    [5] Fiona R. Macfarlane, Mark A. J. Chaplain, Tommaso Lorenzi . A hybrid discrete-continuum approach to model Turing pattern formation. Mathematical Biosciences and Engineering, 2020, 17(6): 7442-7479. doi: 10.3934/mbe.2020381
    [6] Ali Moussaoui, Vitaly Volpert . The impact of immune cell interactions on virus quasi-species formation. Mathematical Biosciences and Engineering, 2024, 21(11): 7530-7553. doi: 10.3934/mbe.2024331
    [7] Lin Zhang, Yongbin Ge, Zhi Wang . Positivity-preserving high-order compact difference method for the Keller-Segel chemotaxis model. Mathematical Biosciences and Engineering, 2022, 19(7): 6764-6794. doi: 10.3934/mbe.2022319
    [8] Xiaomei Bao, Canrong Tian . Turing patterns in a networked vegetation model. Mathematical Biosciences and Engineering, 2024, 21(11): 7601-7620. doi: 10.3934/mbe.2024334
    [9] M. B. A. Mansour . Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences and Engineering, 2009, 6(1): 83-91. doi: 10.3934/mbe.2009.6.83
    [10] Benedetto Bozzini, Deborah Lacitignola, Ivonne Sgura . Morphological spatial patterns in a reaction diffusion model for metal growth. Mathematical Biosciences and Engineering, 2010, 7(2): 237-258. doi: 10.3934/mbe.2010.7.237
  • Reaction-diffusion-chemotaxis systems have proven to be fairly accurate mathematical models for many pattern formation problems in chemistry and biology. These systems are important for computer simulations of patterns, parameter estimations as well as analysis of the biological systems. To solve reaction-diffusion-chemotaxis systems, efficient and reliable numerical algorithms are essential for pattern generations. In this paper, a general reaction-diffusion-chemotaxis system is considered for specific numerical issues of pattern simulations. We propose a fully explicit discretization combined with a variable optimal time step strategy for solving the reactiondiffusion- chemotaxis system. Theorems about stability and convergence of the algorithm are given to show that the algorithm is highly stable and efficient. Numerical experiment results on a model problem are given for comparison with other numerical methods. Simulations on two real biological experiments will also be shown.


  • This article has been cited by:

    1. Anderson L.A. de Araujo, Paulo M.D. de Magalhães, Existence of solutions and optimal control for a model of tissue invasion by solid tumours, 2015, 421, 0022247X, 842, 10.1016/j.jmaa.2014.07.038
    2. P. T. Sowndarrajan, L. Shangerganesh, Optimal control problem for cancer invasion parabolic system with nonlinear diffusion, 2018, 67, 0233-1934, 1819, 10.1080/02331934.2018.1486404
    3. Jui-Ling Yu, Adaptive Optimal -Stage Runge-Kutta Methods for Solving Reaction-Diffusion-Chemotaxis Systems, 2011, 2011, 1110-757X, 1, 10.1155/2011/389207
    4. Mehdi Dehghan, Niusha Narimani, Approximation of continuous surface differential operators with the generalized moving least-squares (GMLS) method for solving reaction–diffusion equation, 2018, 37, 0101-8205, 6955, 10.1007/s40314-018-0716-1
    5. Scott A. Sarra, A local radial basis function method for advection–diffusion–reaction equations on complexly shaped domains, 2012, 218, 00963003, 9853, 10.1016/j.amc.2012.03.062
    6. Mostafa Bendahmane, Raimund Bürger, Ricardo Ruiz-Baier, Kai Schneider, Adaptive multiresolution schemes with local time stepping for two-dimensional degenerate reaction–diffusion systems, 2009, 59, 01689274, 1668, 10.1016/j.apnum.2008.12.001
    7. Mehdi Dehghan, Vahid Mohammadi, The boundary knot method for the solution of two-dimensional advection reaction-diffusion and Brusselator equations, 2020, 31, 0961-5539, 106, 10.1108/HFF-10-2019-0731
    8. Yao-Hsin Hwang, Jui-Ling Yu, Chin-Kun Hu, A Method to Solve the Reaction-Diffusion-Chemotaxis System, 2019, 20, 2191-0294, 633, 10.1515/ijnsns-2018-0061
    9. A Kundu, H S Mahato, Existence of solution for an optimal control problem in a heterogeneous porous medium, 2024, 0265-0754, 10.1093/imamci/dnae011
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2679) PDF downloads(531) Cited by(9)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog