Loading [Contrib]/a11y/accessibility-menu.js

Theoretical models for chronotherapy: Periodic perturbations in funnel chaos type

  • Received: 01 April 2006 Accepted: 29 June 2018 Published: 01 February 2007
  • MSC : 92C50.

  • In this work, the Räossler system is used as a model for chrono- therapy. We applied a periodic perturbation to the y variable to take the Rössler system from a chaotic behavior to a simple periodic one, varying the period and amplitude of forcing. Two types of chaos were considered, spiral and funnel chaos. As a result, the periodical windows reduced their areas as the funnel chaos character increased in the system. Funnel chaos, in this chrono- therapy model, could be considered as a later state of a dynamical disease, more irregular and difficult to suppress.

    Citation: Juvencio Alberto Betancourt-Mar, José Manuel Nieto-Villar. Theoretical models for chronotherapy: Periodic perturbations in funnel chaos type[J]. Mathematical Biosciences and Engineering, 2007, 4(2): 177-186. doi: 10.3934/mbe.2007.4.177

    Related Papers:

    [1] Juvencio Alberto Betancourt-Mar, Víctor Alfonso Méndez-Guerrero, Carlos Hernández-Rodríguez, José Manuel Nieto-Villar . Theoretical models for chronotherapy: Periodic perturbations in hyperchaos. Mathematical Biosciences and Engineering, 2010, 7(3): 553-560. doi: 10.3934/mbe.2010.7.553
    [2] Zigen Song, Jian Xu, Bin Zhen . Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function. Mathematical Biosciences and Engineering, 2019, 16(6): 6406-6425. doi: 10.3934/mbe.2019320
    [3] Jorge Duarte, Cristina Januário, Nuno Martins . A chaotic bursting-spiking transition in a pancreatic beta-cells system: observation of an interior glucose-induced crisis. Mathematical Biosciences and Engineering, 2017, 14(4): 821-842. doi: 10.3934/mbe.2017045
    [4] A. Q. Khan, I. Ahmad, H. S. Alayachi, M. S. M. Noorani, A. Khaliq . Discrete-time predator-prey model with flip bifurcation and chaos control. Mathematical Biosciences and Engineering, 2020, 17(5): 5944-5960. doi: 10.3934/mbe.2020317
    [5] Xiaoling Han, Xiongxiong Du . Dynamics study of nonlinear discrete predator-prey system with Michaelis-Menten type harvesting. Mathematical Biosciences and Engineering, 2023, 20(9): 16939-16961. doi: 10.3934/mbe.2023755
    [6] Jie Lou, Tommaso Ruggeri, Claudio Tebaldi . Modeling Cancer in HIV-1 Infected Individuals: Equilibria, Cycles and Chaotic Behavior. Mathematical Biosciences and Engineering, 2006, 3(2): 313-324. doi: 10.3934/mbe.2006.3.313
    [7] John E. Franke, Abdul-Aziz Yakubu . Periodically forced discrete-time SIS epidemic model with disease induced mortality. Mathematical Biosciences and Engineering, 2011, 8(2): 385-408. doi: 10.3934/mbe.2011.8.385
    [8] Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov . Statistical properties of dynamical chaos. Mathematical Biosciences and Engineering, 2004, 1(1): 161-184. doi: 10.3934/mbe.2004.1.161
    [9] Jifa Jiang, Qiang Liu, Lei Niu . Theoretical investigation on models of circadian rhythms based on dimerization and proteolysis of PER and TIM. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1247-1259. doi: 10.3934/mbe.2017064
    [10] Zongcheng Li, Jin Li . Chaos criteria and chaotification schemes on a class of first-order partial difference equations. Mathematical Biosciences and Engineering, 2023, 20(2): 3425-3454. doi: 10.3934/mbe.2023161
  • In this work, the Räossler system is used as a model for chrono- therapy. We applied a periodic perturbation to the y variable to take the Rössler system from a chaotic behavior to a simple periodic one, varying the period and amplitude of forcing. Two types of chaos were considered, spiral and funnel chaos. As a result, the periodical windows reduced their areas as the funnel chaos character increased in the system. Funnel chaos, in this chrono- therapy model, could be considered as a later state of a dynamical disease, more irregular and difficult to suppress.


  • This article has been cited by:

    1. J. C. Jaime, M. D. Mesa-Álvarez, R. R. Martin, J. A. Betancourt-Mar, G. Cocho, R. Mansilla, J. M. Nieto-Villar, Chronotherapy of cancer: periodic perturbations in vascular growth and metastasis, 2019, 50, 0929-1016, 495, 10.1080/09291016.2018.1465698
    2. Mariano Bizzarri, Oleg Naimark, José Nieto-Villar, Valeria Fedeli, Alessandro Giuliani, Complexity in Biological Organization: Deconstruction (and Subsequent Restating) of Key Concepts, 2020, 22, 1099-4300, 885, 10.3390/e22080885
    3. E. Izquierdo-Kulich, J. M. Nieto-Villar, 2013, Chapter 48, 978-3-642-34069-7, 657, 10.1007/978-3-642-34070-3_48
    4. J.A. Llanos-Pérez, J.A. Betancourt-Mar, G. Cocho, R. Mansilla, José Manuel Nieto-Villar, Phase transitions in tumor growth: III vascular and metastasis behavior, 2016, 462, 03784371, 560, 10.1016/j.physa.2016.06.086
    5. Sheyla Montero, Reynaldo Martin, Ricardo Mansilla, Germinal Cocho, José Manuel Nieto-Villar, 2018, Chapter 8, 978-1-4939-7455-9, 125, 10.1007/978-1-4939-7456-6_8
    6. A. Guerra, D.J. Rodriguez, S. Montero, J.A. Betancourt-Mar, R.R. Martin, E. Silva, M. Bizzarri, G. Cocho, R. Mansilla, J.M. Nieto-Villar, Phase transitions in tumor growth VI: Epithelial–Mesenchymal transition, 2018, 499, 03784371, 208, 10.1016/j.physa.2018.01.040
    7. Mounira Kesmia, Soraya Boughaba, Sabir Jacquir, Control of continuous dynamical systems modeling physiological states, 2020, 136, 09600779, 109805, 10.1016/j.chaos.2020.109805
    8. J. M. Nieto-Villar, R. Mansilla, Longevity, Aging and Cancer: Thermodynamics and Complexity, 2022, 2, 2673-9321, 664, 10.3390/foundations2030045
    9. H. Suárez, A. Guerra, R. Mansilla, J.M. Nieto-Villar, Ferroptosis as a biological Phase transition II: Chronotherapy of avascular and vascular tumor growth, 2023, 0929-1016, 1, 10.1080/09291016.2023.2256522
    10. A. Guerra, J. A. Betancourt-Mar, J. A. Llanos-Pérez, R. Mansilla, J. M. Nieto-Villar, 2024, Chapter 4, 978-1-0716-3576-6, 45, 10.1007/978-1-0716-3577-3_4
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2699) PDF downloads(587) Cited by(10)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog