A Mathematical Model for Fibroblast Growth Factor Competition Based on Enzyme

  • Received: 01 August 2005 Accepted: 29 June 2018 Published: 01 October 2005
  • MSC : 92C45.

  • In this paper, we develop a mathematical model for the competition of two species of fibroblast growth factor, FGF-1 and FGF-2, for the same cell surface receptor. We provide pathways for this interaction using experimental data obtained by Neufeld and Gospodarowicz reported in 1986 [9]. These pathways demonstrate how the interaction of two fibroblast growth factors affects cell proliferation. Upon development of these pathways, we use simulations in MATLAB and optimization to extrapolate the values of a variety of biochemical parameters imbedded within the model. Furthermore, it should be possible to use the model as the basis for a testable hypothesis. We explore this predictive ability with further simulations in MATLAB.

    Citation: Justin P. Peters, Khalid Boushaba, Marit Nilsen-Hamilton. A Mathematical Model for Fibroblast Growth Factor Competition Based on Enzyme[J]. Mathematical Biosciences and Engineering, 2005, 2(4): 789-810. doi: 10.3934/mbe.2005.2.789

    Related Papers:

    [1] Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert . Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences and Engineering, 2013, 10(1): 1-17. doi: 10.3934/mbe.2013.10.1
    [2] Adélia Sequeira, Rafael F. Santos, Tomáš Bodnár . Blood coagulation dynamics: mathematical modeling and stability results. Mathematical Biosciences and Engineering, 2011, 8(2): 425-443. doi: 10.3934/mbe.2011.8.425
    [3] Evans K. Afenya . Using Mathematical Modeling as a Resource in Clinical Trials. Mathematical Biosciences and Engineering, 2005, 2(3): 421-436. doi: 10.3934/mbe.2005.2.421
    [4] Shinji Nakaoka, Hisashi Inaba . Demographic modeling of transient amplifying cell population growth. Mathematical Biosciences and Engineering, 2014, 11(2): 363-384. doi: 10.3934/mbe.2014.11.363
    [5] Jun Chen, Gloria DeGrandi-Hoffman, Vardayani Ratti, Yun Kang . Review on mathematical modeling of honeybee population dynamics. Mathematical Biosciences and Engineering, 2021, 18(6): 9606-9650. doi: 10.3934/mbe.2021471
    [6] Andrzej Swierniak, Michal Krzeslak . Application of evolutionary games to modeling carcinogenesis. Mathematical Biosciences and Engineering, 2013, 10(3): 873-911. doi: 10.3934/mbe.2013.10.873
    [7] Amer Hassan Albargi, Miled El Hajji . Mathematical analysis of a two-tiered microbial food-web model for the anaerobic digestion process. Mathematical Biosciences and Engineering, 2023, 20(4): 6591-6611. doi: 10.3934/mbe.2023283
    [8] Raghu Raghavan . Growth and form, Lie algebras and special functions. Mathematical Biosciences and Engineering, 2021, 18(4): 3598-3645. doi: 10.3934/mbe.2021181
    [9] Lifeng Han, Steffen Eikenberry, Changhan He, Lauren Johnson, Mark C. Preul, Eric J. Kostelich, Yang Kuang . Patient-specific parameter estimates of glioblastoma multiforme growth dynamics from a model with explicit birth and death rates. Mathematical Biosciences and Engineering, 2019, 16(5): 5307-5323. doi: 10.3934/mbe.2019265
    [10] Qinghua Liu, Siyu Yuan, Xinsheng Wang . A SEIARQ model combine with Logistic to predict COVID-19 within small-world networks. Mathematical Biosciences and Engineering, 2023, 20(2): 4006-4017. doi: 10.3934/mbe.2023187
  • In this paper, we develop a mathematical model for the competition of two species of fibroblast growth factor, FGF-1 and FGF-2, for the same cell surface receptor. We provide pathways for this interaction using experimental data obtained by Neufeld and Gospodarowicz reported in 1986 [9]. These pathways demonstrate how the interaction of two fibroblast growth factors affects cell proliferation. Upon development of these pathways, we use simulations in MATLAB and optimization to extrapolate the values of a variety of biochemical parameters imbedded within the model. Furthermore, it should be possible to use the model as the basis for a testable hypothesis. We explore this predictive ability with further simulations in MATLAB.


  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2625) PDF downloads(526) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog