The Role of Vaccination in the Control of SARS

  • Received: 01 June 2005 Accepted: 29 June 2018 Published: 01 October 2005
  • MSC : 92D30.

  • We assess pre-outbreak and during-outbreak vaccination as control strategies for SARS epidemics using a mathematical model that includes susceptible, latent (traced and untraced), infectious, isolated and recovered individuals. Scenarios focusing on policies that include contact tracing and levels of self-isolation among untraced infected individuals are explored. Bounds on the proportion of pre-outbreak successfully vaccinated individuals are provided using the the basic reproductive number. Uncertainty and sensitivity analyses on the reproductive number are carried out. The final epidemic size under different vaccination scenarios is computed.

    Citation: Julijana Gjorgjieva, Kelly Smith, Gerardo Chowell, Fabio Sánchez, Jessica Snyder, Carlos Castillo-Chavez. The Role of Vaccination in the Control of SARS[J]. Mathematical Biosciences and Engineering, 2005, 2(4): 753-769. doi: 10.3934/mbe.2005.2.753

    Related Papers:

    [1] Hamed Karami, Pejman Sanaei, Alexandra Smirnova . Balancing mitigation strategies for viral outbreaks. Mathematical Biosciences and Engineering, 2024, 21(12): 7650-7687. doi: 10.3934/mbe.2024337
    [2] Pannathon Kreabkhontho, Watchara Teparos, Thitiya Theparod . Potential for eliminating COVID-19 in Thailand through third-dose vaccination: A modeling approach. Mathematical Biosciences and Engineering, 2024, 21(8): 6807-6828. doi: 10.3934/mbe.2024298
    [3] Holly Gaff, Elsa Schaefer . Optimal control applied to vaccination and treatment strategies for various epidemiological models. Mathematical Biosciences and Engineering, 2009, 6(3): 469-492. doi: 10.3934/mbe.2009.6.469
    [4] Stefanie Fuderer, Christina Kuttler, Michael Hoelscher, Ludwig Christian Hinske, Noemi Castelletti . Data suggested hospitalization as critical indicator of the severity of the COVID-19 pandemic, even at its early stages. Mathematical Biosciences and Engineering, 2023, 20(6): 10304-10338. doi: 10.3934/mbe.2023452
    [5] Vinicius Piccirillo . COVID-19 pandemic control using restrictions and vaccination. Mathematical Biosciences and Engineering, 2022, 19(2): 1355-1372. doi: 10.3934/mbe.2022062
    [6] ZongWang, Qimin Zhang, Xining Li . Markovian switching for near-optimal control of a stochastic SIV epidemic model. Mathematical Biosciences and Engineering, 2019, 16(3): 1348-1375. doi: 10.3934/mbe.2019066
    [7] Zi Sang, Zhipeng Qiu, Xiefei Yan, Yun Zou . Assessing the effect of non-pharmaceutical interventions on containing an emerging disease. Mathematical Biosciences and Engineering, 2012, 9(1): 147-164. doi: 10.3934/mbe.2012.9.147
    [8] Majid Jaberi-Douraki, Seyed M. Moghadas . Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences and Engineering, 2014, 11(5): 1045-1063. doi: 10.3934/mbe.2014.11.1045
    [9] Lili Liu, Xi Wang, Yazhi Li . Mathematical analysis and optimal control of an epidemic model with vaccination and different infectivity. Mathematical Biosciences and Engineering, 2023, 20(12): 20914-20938. doi: 10.3934/mbe.2023925
    [10] Eunha Shim . Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1615-1634. doi: 10.3934/mbe.2013.10.1615
  • We assess pre-outbreak and during-outbreak vaccination as control strategies for SARS epidemics using a mathematical model that includes susceptible, latent (traced and untraced), infectious, isolated and recovered individuals. Scenarios focusing on policies that include contact tracing and levels of self-isolation among untraced infected individuals are explored. Bounds on the proportion of pre-outbreak successfully vaccinated individuals are provided using the the basic reproductive number. Uncertainty and sensitivity analyses on the reproductive number are carried out. The final epidemic size under different vaccination scenarios is computed.


  • This article has been cited by:

    1. Inkyung Ahn, Seongman Heo, Seunghyun Ji, Kyung Hyun Kim, Taehwan Kim, Eun Joo Lee, Jooyoung Park, Keehoon Sung, Investigation of nonlinear epidemiological models for analyzing and controlling the MERS outbreak in Korea, 2018, 437, 00225193, 17, 10.1016/j.jtbi.2017.10.004
    2. Carl-Etienne Juneau, Tomas Pueyo, Matt Bell, Genevieve Gee, Pablo Collazzo, Louise Potvin, Lessons from past pandemics: a systematic review of evidence-based, cost-effective interventions to suppress COVID-19, 2022, 11, 2046-4053, 10.1186/s13643-022-01958-9
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3432) PDF downloads(540) Cited by(20)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog