In this research, we present a novel discrete fractional-order model designed to simulate computer virus propagation. We performed a thorough dynamical analysis, encompassing phase portrait visualization, bifurcation diagram construction, maximal Lyapunov exponent computation, and equilibrium point stability assessment using the basic reproduction number ($ R_0 $). To characterize system complexity and validate chaotic dynamics, we employed Approximate Entropy, $ C_0 $ Complexity, and Permutation Entropy. Furthermore, control and synchronization methodologies were developed to mitigate chaotic behavior and achieve coordinated system dynamics. The findings proved the efficacy of the proposed fractional model in accurately simulating viral spread and illustrated the considerable implications of fractional-order parameters on system dynamics. In order to validate the results, MATLAB simulations were run.
Citation: Omar Kahouli, Imane Zouak, Ma'mon Abu Hammad, Adel Ouannas. Chaos, control and synchronization in discrete time computer virus system with fractional orders[J]. AIMS Mathematics, 2025, 10(6): 13594-13621. doi: 10.3934/math.2025612
In this research, we present a novel discrete fractional-order model designed to simulate computer virus propagation. We performed a thorough dynamical analysis, encompassing phase portrait visualization, bifurcation diagram construction, maximal Lyapunov exponent computation, and equilibrium point stability assessment using the basic reproduction number ($ R_0 $). To characterize system complexity and validate chaotic dynamics, we employed Approximate Entropy, $ C_0 $ Complexity, and Permutation Entropy. Furthermore, control and synchronization methodologies were developed to mitigate chaotic behavior and achieve coordinated system dynamics. The findings proved the efficacy of the proposed fractional model in accurately simulating viral spread and illustrated the considerable implications of fractional-order parameters on system dynamics. In order to validate the results, MATLAB simulations were run.
| [1] | P. Szor, The art of computer virus research and defense, Boston: Addison-Wesley Professional, 2005. |
| [2] |
F. Cohen, Computer viruses: theory and experiments, Comput. Secur., 6 (1987), 22–35. https://doi.org/10.1016/0167-4048(87)90122-2 doi: 10.1016/0167-4048(87)90122-2
|
| [3] |
L.-X. Yang, X. F. Yang, The spread of computer viruses under the influence of removable storage devices, Appl. Math. Comput., 219 (2012), 3914–3922. https://doi.org/10.1016/j.amc.2012.10.027 doi: 10.1016/j.amc.2012.10.027
|
| [4] | J. O. Kephart, S. R. White, Directed-graph epidemiological models of computer viruses, The 1991 IEEE Computer Society Symposium on Research in Security and Privacy, Oakland, CA, USA, 1991,343–359. https://doi.org/10.1109/RISP.1991.130801 |
| [5] |
W. H. Murray, The application of epidemiology to computer viruses, Comput. Secur., 7 (1988), 139–145. https://doi.org/10.1016/0167-4048(88)90327-6 doi: 10.1016/0167-4048(88)90327-6
|
| [6] |
X. F. Yang, L.-X. Yang, Towards the epidemiological modeling of computer viruses, Discrete Dyn. Nat. Soc., 2012 (2012), 259671. https://doi.org/10.1155/2012/259671 doi: 10.1155/2012/259671
|
| [7] | H. R. Biswas, M. M. Hasan, S. K. Bala, Chaos theory and its applications in our real life, Barishal University Journal Part 1, 5 (2018), 123–140. |
| [8] |
L. M. Pecora, T. L. Carroll, G. A. Johnson, D. J. Mar, J. F. Heagy, Fundamentals of synchronization in chaotic systems: concepts and applications, Chaos, 7 (1997), 520–543. https://doi.org/10.1063/1.166278 doi: 10.1063/1.166278
|
| [9] |
H. R. Lin, C. H. Wang, S. C. Du, W. Yao, Y. C. Sun, A family of memristive multibutterfly chaotic systems with multidirectional initial-based offset boosting, Chaos Soliton. Fract., 172 (2023), 113518. https://doi.org/10.1016/j.chaos.2023.113518 doi: 10.1016/j.chaos.2023.113518
|
| [10] |
D. X. Yang, Z. J. Liu, J. L. Zhou, Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization, Commun. Nonlinear Sci., 19 (2014), 1229–1246. https://doi.org/10.1016/j.cnsns.2013.08.017 doi: 10.1016/j.cnsns.2013.08.017
|
| [11] |
S. Gao, J. F. Liu, H. H.-C. Iu, U. Erkan, S. Zhou, R. Wu, et al., Development of a video encryption algorithm for critical areas using 2D extended Schaffer function map and neural networks, Appl. Math. Model., 134 (2024), 520–537. https://doi.org/10.1016/j.apm.2024.06.016 doi: 10.1016/j.apm.2024.06.016
|
| [12] |
S. Gao, R. Wu, X. Y. Wang, J. F. Liu, Q. Li, X. L. Tang, EFR-CSTP: Encryption for face recognition based on the chaos and semi-tensor product theory, Inform. Sciences, 621 (2023), 766–781. https://doi.org/10.1016/j.ins.2022.11.121 doi: 10.1016/j.ins.2022.11.121
|
| [13] |
G.-C. Wu, D. Baleanu, Discrete fractional logistic map and its chaos, Nonlinear Dyn., 75 (2014), 283–287. https://doi.org/10.1007/s11071-013-1065-7 doi: 10.1007/s11071-013-1065-7
|
| [14] | A. Ouannas, I. M. Batiha, V.-T. Pham, Fractional discrete chaos: theories, methods and applications, Singapore: World Scientific, 2023. https://doi.org/10.1142/13277 |
| [15] |
M. T. Shatnawi, N. Djenina, A. Ouannas, I. M. Batiha, G. Grassi, Novel convenient conditions for the stability of nonlinear incommensurate fractional-order difference systems, Alex. Eng. J., 61 (2022), 1655–1663. https://doi.org/10.1016/j.aej.2021.06.073 doi: 10.1016/j.aej.2021.06.073
|
| [16] |
A. Abbes, A. Ouannas, N. Shawagfeh, A. A. Khennaoui, Incommensurate fractional discrete neural network: chaos and complexity, Eur. Phys. J. Plus, 137 (2022), 235. https://doi.org/10.1140/epjp/s13360-022-02472-6 doi: 10.1140/epjp/s13360-022-02472-6
|
| [17] |
L. Diabi, A. Ouannas, G. Grassi, S. Momani, Symmetry breaking in fractional difference chaotic equations and their control, Symmetry, 17 (2025), 352. https://doi.org/10.3390/sym17030352 doi: 10.3390/sym17030352
|
| [18] |
R. Saadeh, A. Abbes, A. Al-Husban, A. Ouannas, G. Grassi, The fractional discrete predator-prey model: chaos, control, and synchronization, Fractal Fract., 7 (2023), 120. https://doi.org/10.3390/fractalfract7020120 doi: 10.3390/fractalfract7020120
|
| [19] |
A. Abbes, A. Ouannas, N. Shawagfeh, H. Jahanshahi, The fractional-order discrete COVID-19 pandemic model: stability and chaos, Nonlinear Dyn., 111 (2023), 965–983. https://doi.org/10.1007/s11071-022-07766-z doi: 10.1007/s11071-022-07766-z
|
| [20] |
A.-A. Khennaoui, A. Ouannas, S. Bendoukha, X. Wang, V.-T. Pham, On chaos in the fractional-order discrete-time unified system and its control synchronization, Entropy, 20 (2018), 530. https://doi.org/10.3390/e20070530 doi: 10.3390/e20070530
|
| [21] | A. Ouannas, G. Grassi, A. T. Azar, A. A. Khennaouia, V. T. Pham, Chaotic control in fractional-order discrete-time systems, In: Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019, Cham: Springer, 2019,207–217. https://doi.org/10.1007/978-3-030-31129-2_20 |
| [22] |
M. A. Hammad, R. Alkhateeb, G. Farraj, N. Djenina, A. Ouannas, Discrete fractional incommensurate order Ebola model: analyzing dynamics and numerical simulation, Fractals, 2025 (2025), 2540127. https://doi.org/10.1142/S0218348X25401279 doi: 10.1142/S0218348X25401279
|
| [23] |
A. A. Khennaoui, V. T. Pham, V. P. Thoai, A. Ouannas, G. Grassi, S. Momani, From Lozi map to fractional memristive Lozi map, Eur. Phys. J. Spec. Top., 232 (2023), 2385–2393. https://doi.org/10.1140/epjs/s11734-023-00911-8 doi: 10.1140/epjs/s11734-023-00911-8
|
| [24] |
A. Abbes, A. Ouannas, N. Shawagfeh, An incommensurate fractional discrete macroeconomic system: bifurcation, chaos, and complexity, Chinese Phys. B, 32 (2023), 030203. https://doi.org/10.1088/1674-1056/ac7296 doi: 10.1088/1674-1056/ac7296
|
| [25] |
A. Dababneh, N. Djenina, A. Ouannas, G. Grassi, I. M. Batiha, I. H. Jebril, A new incommensurate fractional-order discrete COVID-19 model with vaccinated individuals compartment, Fractal Fract., 6 (2022), 456. https://doi.org/10.3390/fractalfract6080456 doi: 10.3390/fractalfract6080456
|
| [26] |
A. Abbes, A. Ouannas, A. Hioual, S. Momani, Hidden chaos in a new memristor-based discrete system with commensurate, incommensurate and variable fractional orders, Phys. Scr., 99 (2024), 105233. https://doi.org/10.1088/1402-4896/ad7361 doi: 10.1088/1402-4896/ad7361
|
| [27] |
A. Ouannas, S. Ahmed, G. Grassi, M. Al Horani, A. A. Khennaoui, A. Hioual, The fractional variable-order Grassi–Miller map: chaos, complexity, and control, Comput. Math. Methods, 2025 (2025), 6674521. https://doi.org/10.1155/cmm4/6674521 doi: 10.1155/cmm4/6674521
|
| [28] |
S. Gao, H. H.-C. Iu, U. Erkan, C. Simsek, A. Toktas, Y. H. Cao, et al., A 3D memristive cubic map with dual discrete memristors: design, implementation, and application in image encryption, IEEE T. Circ. Syst. Vid., 2025 (2025), 3545868. https://doi.org/10.1109/TCSVT.2025.3545868 doi: 10.1109/TCSVT.2025.3545868
|
| [29] |
S. Gao, Z. Y. Zhang, H. H.-C. Iu, S. Q. Ding, J. Mou, U. Erkan, et al., A parallel color image encryption algorithm based on a 2-D Logistic-Rulkov neuron map, IEEE Internet Things, 12 (2025), 18115–18124. https://doi.org/10.1109/JIOT.2025.3540097 doi: 10.1109/JIOT.2025.3540097
|
| [30] |
J. G. Ren, X. F. Yang, Q. Y. Zhu, L.-X. Yang, C. M. Zhang, A novel computer virus model and its dynamics, Nonlinear Anal.-Real, 13 (2012), 376–384. https://doi.org/10.1016/j.nonrwa.2011.07.048 doi: 10.1016/j.nonrwa.2011.07.048
|
| [31] |
Z. X. Hu, H. W. Wang, F. C. Liao, W. B. Ma, Stability analysis of a computer virus model in latent period, Chaos Soliton. Fract., 75 (2015), 20–28. https://doi.org/10.1016/J.CHAOS.2015.02.001 doi: 10.1016/J.CHAOS.2015.02.001
|
| [32] |
O. Kahouli, I. Zouak, A. Ouannas, I. Abidi, Y. Bahou, S. Elgharbi, et al., Control and synchronization of chaos in some fractional computer virus models, Asian J. Control, 2025 (2025), 3693. https://doi.org/10.1002/asjc.3693 doi: 10.1002/asjc.3693
|
| [33] |
T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl., 62 (2011), 1602–1611. https://doi.org/10.1016/j.camwa.2011.03.036 doi: 10.1016/j.camwa.2011.03.036
|
| [34] |
F. M. Atici, P. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ., 2009 (2009), 1–12. https://doi.org/10.14232/ejqtde.2009.4.3 doi: 10.14232/ejqtde.2009.4.3
|
| [35] |
J. Čermák, I. Győri, L. Nechvátal, On explicit stability conditions for a linear fractional difference system, Fract. Calc. Appl. Anal., 18 (2015), 651–672. https://doi.org/10.1515/fca-2015-0040 doi: 10.1515/fca-2015-0040
|
| [36] |
L.-X. Yang, X. F. Yang, Q. Y. Zhu, L. S. Wen, A computer virus model with graded cure rates, Nonlinear Anal.-Real, 14 (2013), 414–422. https://doi.org/10.1016/j.nonrwa.2012.07.005 doi: 10.1016/j.nonrwa.2012.07.005
|
| [37] |
R. Mahardika, Widowati, Y. D. Sumanto, Routh-Hurwitz criterion and bifurcation method for stability analysis of tuberculosis transmission model, J. Phys.: Conf. Ser., 1217 (2019), 012056. https://doi.org/10.1088/1742-6596/1217/1/012056 doi: 10.1088/1742-6596/1217/1/012056
|
| [38] |
G.-C. Wu, D. Baleanu, Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps, Commun. Nonlinear Sci., 22 (2015), 95–100. https://doi.org/10.1016/j.cnsns.2014.06.042 doi: 10.1016/j.cnsns.2014.06.042
|
| [39] |
J. S. Richman, J. R. Moorman, Physiological time-series analysis using approximate entropy and sample entropy, Am. J. Physiol.-Heart C., 278 (2000), H2039–H2049. https://doi.org/10.1152/ajpheart.2000.278.6.H2039 doi: 10.1152/ajpheart.2000.278.6.H2039
|
| [40] |
E.-H. Shen, Z.-J. Cai, F.-J. Gu, Mathematical foundation of a new complexity measure, Appl. Math. Mech., 26 (2005), 1188–1196. https://doi.org/10.1007/BF02507729 doi: 10.1007/BF02507729
|
| [41] |
C. Bandt, B. Pompe, Permutation entropy: A natural complexity measure for time series, Phys. Rev. Lett., 88 (2002), 174102. http://doi.org/10.1103/PhysRevLett.88.174102 doi: 10.1103/PhysRevLett.88.174102
|