Research article Special Issues

Bifurcation and chaos in a discrete activator-inhibitor system

  • Received: 28 July 2022 Revised: 19 October 2022 Accepted: 19 October 2022 Published: 06 December 2022
  • MSC : 70K50, 40A05

  • In this paper, we explore local dynamic characteristics, bifurcations and control in the discrete activator-inhibitor system. More specifically, it is proved that discrete-time activator-inhibitor system has an interior equilibrium solution. Then, by using linear stability theory, local dynamics with different topological classifications for the interior equilibrium solution are investigated. It is investigated that for the interior equilibrium solution, discrete activator-inhibitor system undergoes Neimark-Sacker and flip bifurcations. Further chaos control is studied by the feedback control method. Finally, numerical simulations are presented to validate the obtained theoretical results.

    Citation: Abdul Qadeer Khan, Zarqa Saleem, Tarek Fawzi Ibrahim, Khalid Osman, Fatima Mushyih Alshehri, Mohamed Abd El-Moneam. Bifurcation and chaos in a discrete activator-inhibitor system[J]. AIMS Mathematics, 2023, 8(2): 4551-4574. doi: 10.3934/math.2023225

    Related Papers:

  • In this paper, we explore local dynamic characteristics, bifurcations and control in the discrete activator-inhibitor system. More specifically, it is proved that discrete-time activator-inhibitor system has an interior equilibrium solution. Then, by using linear stability theory, local dynamics with different topological classifications for the interior equilibrium solution are investigated. It is investigated that for the interior equilibrium solution, discrete activator-inhibitor system undergoes Neimark-Sacker and flip bifurcations. Further chaos control is studied by the feedback control method. Finally, numerical simulations are presented to validate the obtained theoretical results.



    加载中


    [1] A. A. Saboury, Enzyme inhibition and activation: a general theory, J. Iran. Chem. Soc., 6 (2009), 219–229. https://doi.org/10.1007/BF03245829 doi: 10.1007/BF03245829
    [2] G. Pasemann, S. Flemming, S. Alonso, C. Beta, W. Stannat, Diffusivity estimation for activator-inhibitor models: theory and application to intracellular dynamics of the actin cytoskeleton, J. Nonlinear Sci., 31 (2021), 1–34. https://doi.org/10.1007/s00332-021-09714-4 doi: 10.1007/s00332-021-09714-4
    [3] S. Chen, J. Shi, G. Zhang, Spatial pattern formation in activator-inhibitor models with nonlocal dispersal, Discrete Cont. Dyn. Syst. Ser. B, 26 (2021), 1843–1866. https://doi.org/10.3934/dcdsb.2020042 doi: 10.3934/dcdsb.2020042
    [4] S. Chen, Some properties for the solutions of a general activator-inhibitor model, Commun. Pure Appl. Anal., 5 (2006), 919–928. https://doi.org/10.3934/cpaa.2006.5.919 doi: 10.3934/cpaa.2006.5.919
    [5] M. P. Harris, S. Williamson, J. F. Fallon, H. Meinhardt, R. O. Prum, Molecular evidence for an activator-inhibitor mechanism in development of embryonic feather branching, Proc. Natl. Acad. Sci., 102 (2005), 11734–11739. https://doi.org/10.1073/pnas.0500781102 doi: 10.1073/pnas.0500781102
    [6] W. M. Ni, I. Takagi, E. Yanagida, Stability of least energy patterns of the shadow system for an activator-inhibitor model, Japan J. Indust. Appl. Math., 18 (2001), 259–272. https://doi.org/10.1007/BF03168574 doi: 10.1007/BF03168574
    [7] L. Edelstein-Keshet, Mathematical models in biology, SIAM, 2005.
    [8] N. I. Kavallaris, T. Suzuki, Non-local partial differential equations for engineering and biology, Mathematical modeling and analysis, Springer, 2018. https://doi.org/10.1007/978-3-319-67944-0
    [9] S. H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering, CRC press, 2018.
    [10] S. M. Sohel Rana, Chaotic dynamics and control of discrete ratio-dependent predator-prey system, Discrete Dyn. Nat. Soc., 2017 (2017), 1–13. https://doi.org/10.1155/2017/4537450 doi: 10.1155/2017/4537450
    [11] K. S. Al-Basyouni, A. Q. Khan, Discrete-time predator-prey model with bifurcations and chaos, Math. Probl. Eng., 2020 (2020), 1–14. https://doi.org/10.1155/2020/8845926 doi: 10.1155/2020/8845926
    [12] P. Chakraborty, U. Ghosh, S. Sarkar, Stability and bifurcation analysis of a discrete prey-predator model with square-root functional response and optimal harvesting, J. Biol. Syst., 28 (2020), 91–110. https://doi.org/10.1142/S0218339020500047 doi: 10.1142/S0218339020500047
    [13] W. Liu, D. Cai, Bifurcation, chaos analysis and control in a discrete-time predator-prey system, Adv. Differ. Equ., 2019 (2019), 1–11. https://doi.org/10.1186/s13662-019-1950-6 doi: 10.1186/s13662-019-1950-6
    [14] M. Berkal, F. F. Navarro, Qualitative behavior of a two-dimensional discrete-time prey-predator model, Comput. Math. Methods, 3 (2021), e1193. https://doi.org/10.1002/cmm4.1193 doi: 10.1002/cmm4.1193
    [15] F. Chen, Permanence and global attractivity of a discrete multispecies Lotka-Volterra competition predator-prey system, Appl. Math. Comput., 182 (2006), 3–12. https://doi.org/10.1016/j.amc.2006.03.026 doi: 10.1016/j.amc.2006.03.026
    [16] H. N. Agiza, E. M. Elabbssy, Chaotic dynamics of a discrete prey-predator model with Holling type-Ⅱ, Nonlinear Anal.: RWA, 10 (2009), 116–129. https://doi.org/10.1016/j.nonrwa.2007.08.029 doi: 10.1016/j.nonrwa.2007.08.029
    [17] X. Liu, D. Xiao, Complex dynamic behaviors of a discrete-time predator-prey system, Chaos Solitons Fract., 32 (2007), 80–94. https://doi.org/10.1016/j.chaos.2005.10.081 doi: 10.1016/j.chaos.2005.10.081
    [18] A. Q. Khan, J. Ma, D. Xiao, Bifurcations of a two-dimensional discrete time plant-herbivore system, Commun. Nonlinear Sci. Numer. Simul., 39 (2016), 185–198. https://doi.org/10.1016/j.cnsns.2016.02.037 doi: 10.1016/j.cnsns.2016.02.037
    [19] A. Q. Khan, S. A. H. Bukhari, M. B. Almatrafi, Global dynamics, Neimark-Sacker bifurcation and hybrid control in a Leslie's prey-predator model, Alex. Eng. J., 61 (2022), 11391–11404. https://doi.org/10.1016/j.aej.2022.04.042 doi: 10.1016/j.aej.2022.04.042
    [20] Z. He, X. Lai, Bifurcation and chaotic behavior of a discrete-time predator-prey system, Nonlinear Anal. Real World Appl., 12 (2011), 403–417. https://doi.org/10.1016/j.nonrwa.2010.06.026 doi: 10.1016/j.nonrwa.2010.06.026
    [21] B. Li, H. Liang, L. Shi, Q. He, Complex dynamics of Kopel model with nonsymmetric response between oligopolists, Chaos Solitons Fract., 156 (2022), 111860. https://doi.org/10.1016/j.chaos.2022.111860 doi: 10.1016/j.chaos.2022.111860
    [22] J. Beddington, C. Free, J. Lawton, Dynamic complexity in predator-prey models framed in difference equations, Nature, 225 (1975), 58–60. https://doi.org/10.1038/255058a0 doi: 10.1038/255058a0
    [23] Q. Fang, X. Li, M. Cao, Dynamics of a discrete predator-prey system with beddington-deangelis function response, Appl. Math., 3 (2012), 389–394. https://doi.org/10.4236/am.2012.34060 doi: 10.4236/am.2012.34060
    [24] A. Q. Khan, H. S. Alayachi, Bifurcation and chaos in a phytoplankton-zooplankton model with holling type-ii response and toxicity, Int. J. Bifurcat. Chaos, 32 (2022), 2250176. https://doi.org/10.1142/S0218127422501760 doi: 10.1142/S0218127422501760
    [25] S. M. Salman, A. M. Yousef, A. A. Elsadany, Stability, bifurcation analysis and chaos control of a discrete predator-prey system with square root functional response, Chaos Solitons Fract., 93 (2016), 20–31. https://doi.org/10.1016/j.chaos.2016.09.020 doi: 10.1016/j.chaos.2016.09.020
    [26] F. A. Rihan, C. Rajivganthi, Dynamics of fractional-order delay differential model of prey-predator system with Holling-type Ⅲ and infection among predators, Chaos Solitons Fract., 141 (2020), 110365. https://doi.org/10.1016/j.chaos.2020.110365 doi: 10.1016/j.chaos.2020.110365
    [27] C. Xu, Z. Liu, C. Aouiti, P. Li, L. Yao, J. Yan, New exploration on bifurcation for fractional-order quaternion-valued neural networks involving leakage delays, Cogn. Neurodyn., 16 (2022), 1233–1248. https://doi.org/10.1007/s11571-021-09763-1 doi: 10.1007/s11571-021-09763-1
    [28] R. E. Mickens, Applications of nonstandard finite difference schemes, World Scientific, 2000.
    [29] J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems and bifurcation of vector fields, New York: Springer, 1983.
    [30] Y. A. Kuznetsov, Elements of applied bifurcation theorey, Springer, 2004.
    [31] S. N. Elaydi, An introduction to difference equations, Springer-Verlag, 1996.
    [32] S. Lynch, Dynamical systems with applications using mathematica, Boston, Mass, USA, 2007.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1086) PDF downloads(77) Cited by(1)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog