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Abstract: In this paper, we explore local dynamic characteristics, bifurcations and control in the
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system has an interior equilibrium solution. Then, by using linear stability theory, local dynamics
with different topological classifications for the interior equilibrium solution are investigated. It is
investigated that for the interior equilibrium solution, discrete activator-inhibitor system undergoes
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1. Introduction

Moderators or modifiers are the compounds that affect the rate of enzyme catalyzed reactions.
Usually, the influence which reduces the rate of reaction is called inhibition, while activation is the
process in which the rate of enzyme reaction is increased. The compounds which are responsible for
the inhibition and activation are termed as inhibitors and activators, respectively. Chemical inhibitors
are the particles which diminish the productivity of a compound by restricting it to its dynamic site.
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We can say that there is an inverse relationship between the amount of product produced and
concentration of enzyme inhibitors. This is because, whenever the concentration of enzyme inhibitors
increases, the rate of enzyme activity decreases. The inhibitors block catalyst action, which is liable
for killing a pathogen or correcting a metabolic imbalance, and that is why many medications work as
enzyme inhibitors.

The inhibitor can prevent a substrate from entering the dynamic site of proteins, or it can hinder the
enzyme from undergoing a catalyzing reaction. Catalyst inhibitors are utilized as drug specialists in
both human and veterinary medications, and furthermore as herbicides as well as pesticides. Inhibitors
are mainly classified into two classes. The first contains reversible inhibitors that do not form covalent
bonds with various pieces of the catalyst surface; that is the reason that they can be converted by
dialysis easily. The other type comprises irreversible inhibitors which form strong noncovalent bonds
with different areas of enzyme surfaces, and these bonds are so strong that they do not break and can
even survive the complex breakdown of protein. A reversible inhibitor restricts a compound completely
or to some extent by minimizing the action of the catalyst. Many medicines are compound inhibitors,
so their revelation and improvement are a functioning space of exploration in organic chemistry and
pharmacology. A therapeutic compound inhibitor is generally represented by its resistance to different
proteins and its constituents, which demonstrates the concentration needed to inhibit the enzyme. A
high particularity and intensity guarantee that a medication will not have many incidental effects and
accordingly, low toxicity.

In systems biology, the activator-inhibitor system of an enzyme is an important phenomenon
which describes the catalytic activity of the enzyme within a living organism. An enzyme is a group
of biologically active proteins that catalyze all of the chemical reactions occurring in a living system.
Activators and inhibitors are special substances which control the activity of an enzyme via a
feedback mechanism. An inhibitor decreases or stops the production of an enzyme, while an activator
accelerates or enhances the production depending upon the need of a living cell. Enzyme inhibitors
occur naturally and are responsible for the regulation of metabolism. For example, chemicals in a
metabolic process can be repressed by flowing materials. Other cellular protein inhibitors are proteins
that particularly interact with and hinder a protein target. This will offer assistance control proteins
which will be harmful to a cell, like proteases or nucleases. A well-known illustration of this
particular one is the ribonuclease inhibitor, which interacts with ribonuclease in one of the strongest
known forms of protein-protein bonding. Naturally occurring protein inhibitors can also be harmful,
and they are utilized as protection against predators, or as a way to kill prey.

Enzyme inhibition is widely analyzed due to its extraordinary significance in both chemical and
pharmacological fields. On the other hand, the chemical activation of enzymes is a rarely discussed
subject.  Real usage of enzyme inhibition mechanisms is qualitative, although quantitative
understanding of enzyme inhibition is also important. Experimental results obtained from the
molecular events should be understood while studying the phenomena. Numbers of techniques are
available to obtain the fundamental information about these mechanisms. Although the processes of
enzyme inhibition and activation are similar to each other, they are mostly studied separately [1].

Due to the great importance of activator inhibitor systems, many scientists have been working on it.
For activator-inhibitor models, Pasemann et al. [2] proposed a theory for diffusivity estimation. Chen
et al. [3] investigated spatial pattern formation in activator-inhibitor models with nonlocal dispersal.
Chen [4] studied certain characteristics for the solution of activator inhibitor system. The molecular
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evidence for an activator-inhibitor mechanism in the development of embryonic feather branching was
disclosed by Harris et al. [5]. Ni et al. [6] studied stability analysis for an activator-inhibitor model.
Edelstein-Keshet [7] proposed the following continuous-time activator inhibitor system

dx x? dy

o+ _x, o2y, 1.1
dtpyxdtxw (1.1)

where x and y represent concentrations of the activator and inhibitor, respectively, p is the strength of
self-activation of the activator with the gross activation of the inhibitor and y measures the strength of
the production of the activator and that of itself [8]. Now, it is important here to mention that
discrete-time models described by difference equations are more appropriate than continuous-time
models described by differential equations, and also discrete-time models provide more efficient
computational results for numerical simulation [9].  For instance, in recent years, many
mathematicians have investigated the dynamical characteristics of discrete-time biological models
instead of continuous-time models [10-27]. So, motivated by the aforementioned studies, the purpose
of this paper is to investigate the dynamical characteristics of an activator-inhibitor system that is a
discrete analogue of the continuous-time model (1.1), by using a non-standard finite difference
scheme [28]. In order to get the discrete version of the continuous-time model (1.1), we replace % by

Te=t Dy Y10 and x2 by x,x,41; thus, the continuous-time activator inhibitor system (1.1) takes the

Ko d h

form

Xyl — Xt —p+ XeXeel X, Vel = Wt = XXo1 — VYn (1.2)
h Vi h
where h is the step size. After straightforward manipulation, the desired discrete-time
activator-inhibitor system becomes
(A =h)x; + hp)y, _ (e = hx)(1 = hy) + hx,((1 — h)x; + hp))
X+l = s Y+l = . (1.3)

Vi — hx; Vi — hx;

More precisely, our main contributions of this paper are as follows:

e Local dynamical behaviors of the equilibrium solution of the discrete activator-inhibitor
model (1.3) are identified.

e Bifurcation analysis of the equilibrium solution by bifurcation theory.

e Study of chaos via a feedback control method.

e Validation of the obtained results numerically.

The next section is about the study of local dynamical classifications at the fixed point of the
discrete activator-inhibitor system (1.3). The bifurcation analysis of the equilibrium solution is given
in Section 3. Section 4 is about the investigation of chaos via a feedback control method for the
activator-inhibitor system (1.3). Theoretical results are numerically verified in Section 5. The
conclusions, along with future work, are given in Section 6.

2. Local dynamical classifications of the equilibrium solution of the discrete activator-inhibitor
system (1.3)

In this section, local dynamical classifications of the equilibrium solution of the discrete activator-
inhibitor system (1.3) are studied. For this, first we explore the existence of the equilibrium solution
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and variational matrix evaluated at equilibrium solution of the discrete activator-inhibitor system (1.3).
It is easy to verify that V y,p,h > 0, the discrete activator-inhibitor system (1.3) has the interior

equilibrium solution E7 (p +7, (p+7) ) The variational matrix Qg (., evaluated at E,, (x, y) under the
map
(f1, 2) = it Yis1) (2.1)
where ((1 = hyx + hp) ((y = (1 = ) + hx((1 = h)x + o)
— h)x + hp)y y x)(1 = hy) + hx((1 — h)x + hp
fi = o= (2.2)
y—hx y—hx
is
Y —hy’+h’py hx(hx—x—hp)
(y—hx)? (y—hx)?
2 2 2
Qlr ey = Yo —hyy” = 2hoay + 2h°yxy+ 2.3)
h2x2 _ h3yx2 _ h2x3
hy(2xy—2hxy+hpy—hx*+h*x%) -3+ h3x3 - h3px2
(—hx)? (—hx)?

Moreover, for the interior equilibrium solution E7, (p +, (p+7) ) (2.3) takes the form

Yt+o—hp hp _ hyz
|F§‘ (p+7 or? ) h(2— J;f)(phl/) p—f(;;z)y((p;—yljrhg) : (2.4)
y+p—hy y+p—hy
From (2.4), the characteristic equation of Q| , (p . Wy)z) evaluated at E7, (,0 +, (p+)’) ) is
A —pl+g=0, (2.5)
where
_o+y@—-h~-hy
+y—h ’
pry—ny ) (2.6)
_ pth = D)(hy = 1) +y(1 — hy + h7y)
p+y—hy
Finally, the roots of (2.5) are
A, = 2.7)
where
A= p2 - 4%
_ ((p +NQ—h- hy))z 4 (p(h — Dy =D +y( —hy+ hzw) (2.8)
p+y—hy p+y—hy

Based on the above computation, local dynamical classifications at E7, (p + 1y, = @) of the discrete

activator-inhibitor system (1.3) are presented according to the sign of A, ie, A < Oand A > 0,
respectively.
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Lemma 2.1. If A < 0, then for the interior equilibrium solution E7, (p + v, === of the activator-

inhibitor system (1.3), the following dynamical classifications hold

(i) E}, (p +7, (‘”7) ) is a stable focus if

(p+7) )

+py—y+vy?
0<h<PTEYZYTY 2.9)
pY+vy
with )
Y-
> ; 2.10
P> T3y (2.10)
(1) ET. (p +, ey 7) ) is an unstable focus if (2.10) holds and
+ +
py +7v?
(ii1) E7, (p + 1y, = <p+7) ) is non-hyperbolic if
+ +
p=PrPY=Yy 7 2.12)
py +7?
Proof. If A < 0, then from (2.7) one gets |15 = \/ £ (h_l)(hygi);yh(;_h”hzy) < 1 which gives the fact that
if0<h< p+p7_$+7 with p > &L= 7 then E;, (p +7, (p”) ) is a stable focus. In a similar way, it is easy to
prove that £, (p +, (p”) ) of the actlvator—mhlbltor system (1.3) is an unstable focus (non-hyperbolic)
ifh > 2y 7+7 (h = p+m/ 7+7 ). O
pY+Y? pY+y?

Lemma 2.2. If A > 0, then for the interior equilibrium solution E7 (p + v, === of the activator-

inhibitor system (1. 3) the following dynamical classifications hold

(i) Ey, (y +p, & 7) ) is a stable node if

(p+7) )

0<h<min{2,g}; (2.13)
Y
(i) E7, ()/ +p, (p”) ) is an unstable node if
2
h > max {2, —} ; (2.14)
Y
(i) E7, (y +p, & 7) ) is non-hyperbolic if
h=2, (2.15)
or 5
h=2 (2.16)
Y

Proof. If A > 0, then E7, (p + 7, (p”) ) of system (1.3) is a stable node if |1;,| <1 which implies
thatif 0 < h < min{2 g} then E* (p +y, L2 (‘)”) ) of the discrete activator-inhibitor system (1.3) is a

(p+7) )

stable node. In a similar way one can prove that EY, (p +7, of the discrete activator-inhibitor

system (1.3) is an unstable node if 4 > max {2, ;}, and non- hyperbohc ifh=2orh= % O
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3. Bifurcation analysis

We will study bifurcation analysis of the equilibrium solution E7, (p +, (‘”TV)Q) of the activator-
inhibitor system (1.3) in the present section by using bifurcation theory [29, 30].
3.1. Neimark-Sacker bifurcation analysis of E, (p + v, (p+T7)2)

Xy

2
If A = (E200om ) g (bl DUosin)) < 0, then in view of (2.7) and (2.12) the simple

computation yields |/11,2| o1y = 1. This implies that the activator-inhibitor system (1.3) may undergo
Neimark-Sacker bifurcation if (y, 4, p) are located in the set

_ 2
L PPy 7+7}_ 3.1

py +v?

. . . . 2 . . . . .
But in the following theorem it is proved that for E7, (p +, @), the discrete activator-inhibitor

system (1.3) must undergo the Neimark-Sacker bifurcation.

Theorem 3.1. For E7 (p+y, (”J;y)z), the discrete activator-inhibitor system (1.3) undergoes the

Neimark-Sacker bifurcation if (y,h,p) € N IE+ (pw sz), as achieved by choosing & as a bifurcation
xy Ty

NlE;‘_(pmwTyﬂ) = {(% h,p)

parameter.

Proof. If h varies in a small neighborhood of 4*, i.e., h = h* + € where € << 1, then the activator-
inhibitor system (1.3) becomes

(T =(h"+ e)x; + (I + €)p)y;
- yi — (h* + €)x,

Xt+1 5

WO = ORI =+ 9N + 0N =W +x + (W +ep) O
. yi— (" + o), '
Further, for the e-dependence model (3.2), from (2.7) one gets
A1y = pe) £t \/4;1(6) - Pz(f), (33)
where
_(p+Q2 - +e€)—(h"+€)y)
pe) = - ,
pty—(+ey (3.4)
4(6) = p("+e)— 1) +e)y—D+y(1 - +e)y+(h" + 6)27)_
pty—+ey
From (3.3), the following computation shows that the non-degenerate condition holds, i.e.,
d /l 2 3 2 2 2
| d;’z' g = AT 2 0. (3.5)
Further, for the existence of Neimark-Sacker bifurcation, it is also required that /1’1’f2 #1,m=1,---,4

if € = 0, which corresponds to p(0) # -2,0, 1, 2. But, if (2.12) holds then from (3.4), one gets g(0) = 1.
Therefore, p(0) # —2,2; thus, it is only required that p(0) # 0, 1. For this, the computation yields

" 22— ey V1+2y4472-23 -2y -y V2P -y2 =9 -4(1+72+7) (o +0?)
P 172 ’ 207 +y+1) :

(3.6)
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Now it is noted that (3.2) takes the form

_ Wy =B+ ) + X + (W + O)p)

o W1 +y*) = (" + €)u; + x*)

E}

W, +y") (e +y") = (0" + e)u + x))(A = (" + e)y)+ (3.7
3 ey (h* + e)(uy + x)(1 = (h* + €)(u, + x*) + (h* + €)p ;
T i+ 3) = (" + )y + x) -
using
U =x—x,v,=y-y, (3.8)
where x* =p+7vy, y" = WT”Z Hereafter, if € = 0, the normal form is investigated. So, by Taylor series

expansion about E (0, 0), (3.7) takes the form

2 2 3 2 2 3
Uyl = AU + @2V + Q13U + QqUdyVy + 5V, + AU, + QqUV, + Qg Ve + @19V,

2 2 3 2 2 3 (3.9)
Ury] = Qo1 + @V + Qo3ll; + QogllyVy + QosV; + Qoelt] + Qo7U,V; + Qoglly vy + gV,
with
v = hy”? + K2py* hx*(hx* — x* — hp)
an = ()7* _ hx*)2 » @2 = (y* _ hx*)Z ’
hy*? — h*y*2 + h’py* —h*py* — 2hx*y* + 2h*x*y* — W’px*
ap;3 = (y* — hx*)? = (y* = hx*)3 ’
hx? — B2x + Wpx* W2y? — B3y + htpy*
aps = ()/* _ hx*)3 » @l = (y* _ hx*)4 >
hx'y* — Bx2 + 213 %% + H2x2 — 2h2xy + Hpy*
air = (v* — hx*)* ’
o 12Xyt 4 B2y — hy? — lxp + 21Xy — 2h*3py*’
(y* _ hx*)4
B h2x*2 _ hx*2 _ thx*
Q9 = " — It s
() Ak - * $2 32 a2
a0y = hy*(2x*y 2hx(; _—l-:;);z hx* + h°x ), (3.10)
o o V2~ hyy? — 2hx'y* + 22yx'y* + Xt — Byx? — x4 Wi — h3px*2’
O — hx*)?
o o hy — B2y + py*z’
(y* _ hx*)3
B =32 x2y* + 3R3x 2y « =203 px*y* + h3x® — htx?
g = " — ') >
R2x*3 — 13 x7 + Bpx? H2y? — B3y + htpy?
@5 = (" — hx*)3 » @26 = (" — hx)* ’
B Bpx'y* + 302x°2y* — 33 x°2y" + htpx™
@27 = (" — hx*)* >

AIMS Mathematics Volume 8, Issue 2, 4551-4574.



4558

_h3py*2 _ 3h2x*y*2 + 3h3x*y*2 _ 2h4px*y*
(y* _ hx*)4 ’
_h2x*3 + h3x*3 _ h3x*2p
(y* _ hx*)“

a8 =

a9 =

Now in order to obtain the linear part of (3.9) in canonical form, we use the following transformation

u \ 051 0 Xt
(vz)_(n—au —f)()’z)’ G-11)

with
_(p+yQ@-h-hy)
20+y-hy)
> (3.12)
;) \/4p<h— Dihy - 1)+ 4y(1 - hy + By) ((p+y><2—h —hy))
2 p+y—hy p+vy—hy '
In view of (3.11), (3.9) takes the following form
Xyl = NX — Ly + P(xz,)’t), (3.13)
Vel = X+ 1yt Q(xt,)’t), .
where
I_’(xt,y,) = rnxf + rlzxt2 + r13xt2y, + rig Xy + rlsx,yt2 + r16yt3 + r17yf, (3.14)
O(x,y) =r 21X? +r 223@2 +r 23xt2yt + raaXyr + r25xtyt2 + rzéyt3 + r27y12, '
and
ao(n — aqy)
i = @i, + air(n — an)’ + asan() — an) + %,
12
a15(n — an)?
ro = apzan + a(n—agn) + 1577—11’
a2
3a19é(m — apy)?
riz = —2ap7E(m — ayy) — Eapaig - 10601 2 ,
ap
_ 2bay5(n — an)
rg = —apé — ——,
apn
3 2(n —
ris = apé + a196°(n afu)’
apn
_ 530/19
”'16 - = )
a
2
ry7 = g (1’15’ (315)
apn
i @607, —an) e —an)® | asenm-an)? | awph - ) 2axa,
21 = -
3 '3 3 Sayy '3
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() — ) _ s, (7 — @) (= an)

'3 & 3 ’
- apan( - an) | au® - an)’ N ais(n—an)®  anal,  auan@-—an)
n = _ _
'3 3 ap '3 '3
_ans(n — )
g b
3aio(n —an)?
1y = =2a17(7 — a1y)? — apaig(n — an) — B — + 2aman(n — an) + aj,ans
12
+ 3ag(n — 0111)2,
2a15(n — a)?
ru = —a(n—an) — ”Zv—l + @z + 2a5(n — agy),
12
3ai9(n — all)zf
rys = Eayr(n—an) + > — &y — 3ané(m — amy),
12
2
a9(n — an)
rog = _f 1917 11 + Ear,
ap
_Says(n—an)
Fyy = ———— — 5.
a2
From (3.14) the computation yields
O*P ) O*P O*P ) PP 6
Y = 212, =rg4, —> =7, —= = 0rq,
0x7 |Egy(0,0) 0x:0Y1 1 En(0.0) Y7 |Ex(0.0) 0%} 1Egy(0,0)
P &P P 0
5 =2r3, ——— =2rs, — = 6716, —% =2y,
0x;0y1E0(0,0) 0x:0Y; 1 E59(0,0) 3y; 1Ex(0,0) 0x; 1Eg(0,0) (3.16)
0’0 0’0 ) 0°0 6 0°0 5 )
=4, — =47, —= =0, ——— = 413,
0x:0Y11Eq(0.0) V7 |Eq(0.0) 9% 1Eg(0.0) 0x70y, | Ex(0.0)
63 A 03 2
Q2 = 21‘25, —? = 6}’26.
0x,0Y; | Ex(0,0) 0y} 1Eg(0.,0)

Finally, in order to determine the map (3.13) undergoes the Neimark-Sacker bifurcation following
quantity should be non-zero

1 -22)A2 1 _
=-R (%Qn@zo) - 5”911”2 —lloal* + R (/1921) , (3.17)
where
1{0*°P O*0 0?0 5’0 O*P
o =g5|73~ g+2 Q+L( g— g+2 )) ,
8\ dx; Jy; 0x,0y, ox; dy; 0x,0Y; ] | Egy0.0)
1(0*P O*P O 20,
011 = — 2+ 2+L( g-f- g)) N
4\0x;  dy; ox;  0y; /) lEw©0)
1({0°P O*P 0?0 0  9*0 O*P
0w =< > 2+2 Q +L( %— g—Z )) s (318)
8\dx;  Oy; 0x, 0y, 0x; dy; 0x:0Y; ) | Egy0.0)
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1 ( #*P &P 80 80

=— + + + —
16\dx>  ay>  ox*dy, Oy’

L(83Q N &Fo  FP ('3313))
ox}  Ox,0y?  Ox*dy, oy’

021

E0(0,0)

In view of (3.16), from (3.18) one gets

002 = Z(’”lz—”n + 1+ U(ryy — 17 +114))

1
on =3 (ria + 117 + (rn + 127))
(3.19)

020 = — (}"12 — Iy +ryg+ L(rzz — Iy — r14)),

4

1
on =g (Briy + 3ri6 + ra3 + 3126 + 1(3ra; + 1as — 115 — 3116))

Finally, incorporating (3.19) into (3.17) if one gets y # 0 as (0, h,y) € N IE+ (WD ) ) then for interior

equilibrium solution the activator-inhibitor system (1.3) undergoes Neimark-Sacker bifurcation.
Further supercritical (subcritical) Neimark-Sacker bifurcation occurs if y < 0 (y > 0). O

3.2. Flip bifurcation of E?, (p +, (p+yy)2)

xy

2
If A = (L2 g (i) 5 ), then, from (2.15) and (2.7) one gets A5 =
—1 but Ayla15 = 20729 4 | or — 1. This implies that the activator-inhibitor system (1.3) may

undergo flip bifurcation if (y, h, p) are located in the set

Fli ooz = (0 hop) 1 = 2). (3.20)

But, the following theorem guarantees that flip bifurcation will occur for EY, (p +, (‘OJ;Y)Z) of the
activator-inhibitor system (1.3).

v (p+y? AP
Theorem 3.2. If (y,h,p) € TlEIy(pm@)’ then for Exy (p+y, 7 ) the activator-inhibitor

system (1.3) undergoes the flip bifurcation.

Proof. If h varies in a small neighborhood of 4", i.e., h = h* +¢, then the activator-inhibitor system (1.3)
takes the form (3.2). Further, the activator-inhibitor system (1.3) takes the form

_— — — 2 — — 2
Urrl =11 U + AV + Q13U + Q4lUsVy + A5V, + Vo1 U€ + Yo Vi€ + Yo3U, €+

2
Yo4U Vi€ + Yo5V; €,

Virl =Q21U; + AoV, + Qo3U; + QoqUs vy + 5V + YoelU:€ + Yo7V:€ + YosU; +

(3.21)
Yool Vi€ + YioV7E,
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where

—_—

ay =

—_—

a3 =

—_—

a5 =

Yo1r =

Y02

Yo3

Yo4

Yos5 =

—_—

ar) =

—_—

ax =

—_—

a3 =

—_—

a4 =

—_—

a5 =

Yoe

Yo7 =

Yos =

Yoo = —15x" +

Yio =

AIMS Mathematics

v2 — I'y2 + h2py*
(y* _ h*x*)z ’
By — 2y + oy
(y* _ h*x*)3 ’
B2 — h2x? + i 2px"
(y* _ h*x*)3 ’
2x7y*? 4x* 2 y*3
h*3 h*z h*:’y
6px 4x*3 N 6x*3
120"y 3py?  6xy?
- h J+2 h3
120x%  12x*y* 12x*2 *
he 2 3
B 9px2 N 6x3 93 . 20xty*
L2 B3 B2 3 e
By X'y — 20 Xy* + B py" — I x? + h2x2)
()/* _ h*x*)z ’
2hx*y* + 20 yx*y* + h*?x*? —
0}* _ h*x*)z
. h*3x*3 _ h*zx*3 _ h*zx*3 _ h*3px*2
(y* _ h*x*)z ?
— 12y 4 B py?
(y* _ h*x*)3 ?
=32 x2y* + 303 x 2y « =203 pxtyt + W3 —
(y* _ h*x*)3 ’
— h3x3 + hPpx*?
(y* h*x*)3 >
6x*3y* 6px*y*2
h* h*

W x*(h*x*
(y*

—h*py
a4 =

—x" —h'p)

_ h*x*)z ?

* Zh*x*y* + 2h*2x*y* _ h*3px*
(ya: _ h*x*)3 ’

—_—

app =

—_—

2py*

h*2 ’
~ x*2y*
7

%3

h*
sz*y*
- h*z

9x>s %2 y

h*2 h*4 -
18x2y*  2py
RS
*Zy* 2X*2 *
h*3 ’

) %2 %

y
h*Z ’
2y*3

3’
%2

2x

4)C* %2
h*g ’

2X* *2
7

(3.22)

_ h*,yy*Z _ h*3,yx*2

h*y*3

h*4x3

W2 x*3

4x* *3
h*Z ?

2)(,'* *3
h*3
9 %2 %
4 yxy
h*

6x*zy*2
h*Z
6)(:*4
w2

Ox*2y*2
h*
6)(?*2 *
&

2py*3
L2y
h*Z
3px*2y*3
h*

— 8x*3y*
6x*3

e
2x*3y*

— h*2

— 8yx* + 8x™

— 8px™

,yy*z

— h*3’

3x*3y*
h*

12px*y>k2

3py2 6.X* %3
h*Z + h*3
12x N 24px7y*
N ox*  12x*
h*2 h*

9x* *3 . ﬁ B 2L*4
W2 h4 W3’
24)6*3 o 32xMy
h*2 + h*
x*Z * 2X*3y* 3x y
h*3 <2 >

h*
9x*2y*2
h*l ?

6x*zy*2
h*3

6px*y*2
h*Z -

(3.23)

3p 3 %

h*Z

12px*3
h*
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by using the transformation shown in (3.8). Again, it is noted that (3.21) becomes

EHE M) e
Vi+1 0 A4 Y Y(uy, vy, €) ' '
where
@5 (b =) ~ @ o | (b= E) - G
an (1+ 1) ’ an (1+ 1) .
a5 (b — @) —anas 5 Yo (A2 — @) — @y
an(+) a1+
Yo (A2 — @11) = @Yoy Yo3 (A2 — @11) — @nyes
an (1+4y) ’ @ (1+4y) f
7’04(/12—@)—@)’09MV6+)’os(/lz—gﬁ)—&l\z)’lo )
an (1+ 1) . an (1+ 1) o
?:@(1+6ﬁ)+@@ ) @(1+§ﬁ)+@@uv
an (1+4y) f an (1+ ) .
ais (1 +an)+anas ,  yo (1 +an)+@nye
ap (1+2,) ! ap(1+2) '
Yoo (1 + a11) + @Yo Yo3 (1 +ai1) + @nyos ,
an(l+h) an (1+ 1) ’
Yos (1 + @) +anyio ,  yu(l+amn)+anyo
an(+d) and+dy (3.25)

U, =X + @12y,

v ==+ amx + (A —an)y,

W =a ()ct2 +2x,y; + yf) ,

2=(l+ a2+ (L —an)’ ¥ =21 +an) (4 —an) xy,

upv, =—ap (1 +an) x; + (@5 (b - an) - an (1 +an)) 6y,
+a (A — ﬁ)ytz,

W€ =2 X,€ + ALY,

vie = — (1 +ap)xe+ (A, —ayy) ye,

vie =(1 +an)*x’e + (1, — an)’ yie—2(1+am) (A, — any) xyie,

—2
u,ze =€a, (x,2 + 2x,y; + y?) ,

uvie = —an (1 +an) x2e+ (@n (4 —an) —an (1 +an)) xye
+amn (4 — an)yre,

as obtained by using
Uy ap apn Xy

= _ _ . 3.26

(v,) (—1—0/11 /12—0/11)(%) ( )

Hereafter, for (3.24), the center manifold M“Eyy(0, 0) around Eyy(0, 0) is explored in a neighborhood
of €; hence, one can write M“E(,(0, 0) as the following mathematical expression

M Eq(0,0) = {(x;,3,) : yi = Age + A1x} + Ayxie + Az€® + O (x| + lel)’)} (3.27)
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The computation yields

Ayg =0,

1 o _— = — —
A= (@pan( +all) + @na?, — ald(l + all)?)
)
a1 +an) + apan(l +all)?

an(l - 13)

— — — ——
1 (2012 cola3(1 +ayy) + axarn)

b

A, = —— + co(r — a1
2 1_/1% an 0( 2 ll) (328)
— (L +an)(anu(l +a) + anarn))
3 2co(1 + a11)(A — an)(@is(1 + @ip) + @a5@12)
an
N yoan(l +an) + Yos@ _ Yool + an)? +yoran(l + 51\1))
an an ’
A3 =0.
Finally, we will express (3.24), restricted to M°Ey(0, 0) as follows
FO6) = =X, + p1x; + paxi€ + paxje + paxie® + psx; + O ((lx] + le])*), (3.29)
where
= L[ - @anan - a5an” - @t - @ + @)
D1 N 2 11)A13Q12 — @312 14(A2 1 1
. __aps(—an)(1 +ag)? — apass(l + agn)?
ranan(l+an) + ai5(Ay — a)( 01/12 apaxs(l +ap) ],
apn
Dy = 1 (or (s = @1) = Y06 02) (1 +67ﬁ)(702(/12—67ﬁ)—671\2707)]
) = o1 (A2 — @11) — Yos@12) — — ,
(1+2,) a2
1 e _ I
p3 = SN [2C2C¥122 (@13(A2 — a11) — @12@23)
+ Crapn (2 —anp) — (1 +any)) (a15(A — @11) — @@ss))
— 2Can5(A — @)’ (1 + any) + 2Coaps@1a(Ay — an (1 + @)
+ (Yo1(d2 = @11) — @2yos) Crann (3.30)
+ Ci(A — an) (Yoo (Ao — @11) — @12Y07)
+ (Yo3(y — @m) — @rayos) @iz
— (1 + an)an) (&2 — a11)Yos — Yool'12)
+yos(l — @) (1 +am)’ — @i (1+ @) yuol
C . . A —aqy A —aq1) — s
s = 2| (yor (s — @) — Tr3y06) + (A2 61/11)(702(/2\ 1) — @12Y07) ,
(1+2,) app
C — _ e _ - —
D5 = (1 +1/11) [2012 (0/13(/12 — ) — CY126123) + (014(/12 —agp) — 012024)
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_ o 2ap5(1 + @) — an)’ans — anaos
x (la—an) - +an) - a5(1 + a1 — @) ars — @pass

an

Now, in order for the map (3.29) to undergo flip bifurcation it should be required that I'; and I'; are
non-zero

r= (2L 1018,
' \oxoe 2 de ox2 ) OO0

\Fr (16f (3.31)
I = ( ) | Eg0(0,0)-

6 x> \20x
Therefore the calculation yields
Ti = 3=+’ +Ty) +4py — 4oy’ -4y + 1720 + 1) + 4py - 57D, (3.32)
and

16Y'(y* +y =D +7) (3.33)

I, = .
2T 0o+t +y—p+py)

Finally, from (3.33), if I, # 0 as (y,h,p) € ?|E+ ( - (W)z) then for E} (p +7, (p+ 7) ) the activator-

inhibitor system (1.3) undergoes flip bifurcation. Further if I, > 0 (I, < 0) then the period-2 points

(py))

bifurcating from E7, (p +, are stable (unstable). O

4. Chaos control

Now, the state feedback control method is utilized to stabilize chaos at the state of unstable
trajectories by adding u, as a control force to the discrete-time activator-inhibitor system [31,32]

(e h)xz +hp)y:

Xivl = U,
~ ha (4.1)
~ y,((y, hx)(1 - hy) + (= B, + hp) :
Vi1 = e
t

where u, = —k; (x, — x) — k, (y; — y), k; and k, denote feedback gains, x = p+yand y = WTV)Z Now,
for the control system (4.1), the variational matrix QC| E,(xy) takes the following form

th—k tin—ky

Qg (o) = , 4.2
|E)L)( ,y) 521 622 ( )
where
y+p—hp hy?
511 =, 512 = - )
y+p—hy (e +Y)(y+p—hy) 4.3)
_h2—-h)(p +7y)* p=hpy —y(h=1+hy)
[21 = s 522 -
Y+p—hy Y+p—hy
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Now, if the roots of the characteristic equation of Q€| En(xy) are dip then
/11+/12:€11+€22—k1, (44)
A Ay = Ol — ky) — Oo1(612 — k). 4.5)

Now, it is noted here that marginal stability is determined from the restrictions 4; = £1 and 414, =1,
which give the fact that |1, | < 1. If ;4, = 1 then from (4.5), we get

Li:(p—hpy—y(h—=1+hy)p+y—hp—ki(p+y—hy) — (2h—h*)(p + 7))

) ) (4.6)
X(=hy" —k(p+y)o+y—hy)—(o+y—hy)=0.
If A4, = 1 then from (4.4) and (4.5) we get:
Ly : (hpy + hy)ky + (2h = P)(p + y))ka + (o + ¥)(h = 2 + hy) + (hp — p)(hy — 1) 47
+y(1 —hy +h*y) = (o +y - hy) = 0. '
Finally if 4; = —1 then from (4.4) and (4.5) one has
Ly : ki(2p + 2y = 2hy = hpy — hy®) = koh = I*)(p + 7)*) = ((hp — p)(hy = 1) 45

+y(1 = hy + h*y)) — (3p + 3y = 2hy — hp — phy — hy*) = 0.

Therefore from (4.6)—(4.8), the lines L;—L; in the (k;, k»)-plane gives the triangular region, which
further gives the fact that |4, 5| < 1.

5. Numerical simulations

The main results are numerically verified in this section for fixing suitable values of the involved
parameters. Here, the following two cases are to be considered for the completeness of this section.

Case 1: Lety = 0.37 and p = 045 > 711—7; = 0.17014598540145986 then from (2.12) one gets

h = 1.2636783124588005. So, Lemma 2.1 implies that E;y (p +, (’”Ty)z) of the activator-inhibitor
system (1.3) is a stable focus if 7 < 1.2636783124588005 and has exchange stability if
h = 1.2636783124588005; and meanwhile it is an unstable focus if 2 > 1.2636783124588005. In
order to show this fact deeply, if 7 = 0.5 < 1.2636783124588005 then Figure la shows that
E;y (0.82,1.8172972972972976) of the discrete activator-inhibitor system (1.3) is a stable focus.

Moreover, Figure Ib—1f also show that the interior equilibrium  solution
E;“y (0.83,1.8128947368421056) of the discrete activator-inhibitor system (1.3) is a stable focus if
h = 08,1.23,1.254,1.261,1.263 < 1.2636783124588005. On the other hand, if

h =127 > 1.2636783124588005 then Figure 2a shows that E7, (0.82,1.8172972972972976) of the
discrete activator-inhibitor system (1.3) changes behavior, i.e., it is an unstable focus and as a
consequence stable curves appear. Now, numerically we have to show that, if
vy = 127 > 1.2636783124588005 then the discrete system (1.3) undergoes supercritical
Neimark-Sacker bifurcation, that is, from (3.17) the discriminator quantity y < 0. So, if y = 1.27 then
from (3.5) one gets 422|_, = —0.009311101383197325 # 0, i.e., the non-degenerate condition holds.
Moreover, from (3.3) and (3.19) one gets

A12 = 0.30460154241645243 + 0.9561252598212974., (5.1)
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and

on = 1.5733628161382742 + 0.7852920800715116¢,

o1 = —0.5900461579192877 + 0.7144295009123655¢,
020 = 1.5733628161382742 + 0.20701539785842238.,
021 = —1.1693108796562233 + 0.5003042167226045:.

(5.2)

Using (5.1) and (5.2) in (3.17) one gets y = —2.0038147757104667 < 0, which confirms that our
theoretical results are mathematically correct and, hence, that the activator-inhibitor system (1.3)
undergoes a supercritical Neimark-Sacker bifurcation. Similarly, for others chosen bifurcation values
h = 1.28, 1.29, 1.3, 1.34, 1.343 > 1.2636783124588005 Figure 2b—2f indicate that stable curves
appear and therefore, the discrete activator-inhibitor system (1.3) undergoes a supercritical
Neimark-Sacker bifurcation, particularly for said bifurcation values: y < O (see Table 1). Finally,
bifurcation diagrams are presented in Figure 3, and the Maximum Lyapunov exponent corresponding
to Figure 3 are drawn in Figure 4.

Case 2: If y = 2.31 then from (2.13) one gets 0 < 2 < min{2,0.8658008658008658}. From
theoretical discussion, if p = 1.9 then the interior fixed point E7, (3.5, 7.65625) of the discrete activator-
inhibitor system (1.3) is a stable node if 0 < h < min{2, 0.8658008658008658}, and an unstable
node if &7 > max{2,0.8658008658008658} according to (2.14). Moreover, from (2.15) if 7 = 2, then
the discrete activator-inhibitor system (1.3) changes its stability and in fact, the model undergoes flip
bifurcation. So in this case, the flip bifurcation diagram along with the maximum Lyapunov exponents
are plotted and presented in Figures 5 and 6. Finally, the complex dynamics with orbits of period-

11,-13,-14 and —15 are shown if Figure 7.

Hereafter, we will prove the validity of the obtained results in Section 4. For instance, if & = 2.23,
v =2.31and p = 1.9, then from (4.6)—(4.8) one gets

Ly : 15.06875009k; + 29.28570767099999%k, + 2.5381501089999965 = 0, (5.3)
L, : 10.697610000000001%; + 4.1678999999999995k, + 8.429371000000003 = 0, (5.4)
Ls : —=7.359610000000002k; — 17.546859%; + 2.049849000000002. (5.5)

Hence lines that are presented in (5.3)—(5.5) determine the triangular region that gives [1;,| < 1 (see
Figure 8).
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Figure 1. Stable focus of the discrete activator-inhibitor system (1.3).
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Figure 2. Stable closed curves of the discrete activator-inhibitor system (1.3).
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Figure 3. Neimark-Sacker bifurcation diagrams of the discrete activator-inhibitor
system (1.3) with 4 € [0.97, 1.5] and the initial value (0.74, 1.95).
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Figure 4. Maximum Lyapunov exponents corresponding to Figure 3.
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Table 1. Corresponding values of y for 2 > 1.2636783124588005.
Different values of & if h > 1.2636783124588005 Corresponding y values

1.27 —2.0038147757104667 < 0
1.28 —2.450393091374341 < 0
1.29 —2.995700277824937 < 0
1.3 -3.6613654157639792 < 0
1.34 —-8.151946700055621 < 0
1.343 —8.655495416630451 < 0
3\ . s
- 2 ’/} s 2 ’/\
15 .:. 15 :..
1 ;‘.". 1 3'.
0.5 J’! 05 J/
0 0.2 0.4 0.6 i 08 1 12 14 0 02 0.4 0.6 D’: 1 12 14 16

(a) (b)
Figure 5. Flip bifurcation diagrams of discrete activator-inhibitor system (1.3) with h €
[0.000001, 2.8] and the initial value (0.0009, 17.9).

0 0.5 1 15 2 25 3 3.5 4 4.5

Figure 6. Maximum Lyapunov exponents corresponding to Figure 5.
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(a) h = 2.2 with (0.0009, 17.9)

35

30

25

(¢) h = 2.5 with (0.09, 17.9)

(d) 7 = 2.654 with (3.009, 1.9)

Figure 7. Complex dynamics of the discrete activator-inhibitor system (1.3).
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Figure 8. Region of stability where [4;,| < 1.
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6. Conclusions and future work

The work was about the local dynamic characteristics at the interior equilibrium solution,

bifurcations and chaos control in the discrete activator-inhibitor system (1.3). We proved that V A,y

and p, the activator-inhibitor system (1.3) has the interior equilibrium solution E7, (7 +p, (P+7)2)

Further, we studied the local stability with different topological classifications for E7, (y +p, (‘0”) ) It

(p+7) )

was investigated that the interior equilibrium solution E7 (y + p, is a stable focus if

0 < h < 2 iy p > ¥ an unstable focus if (2.10) and ho> 2 poldand
py+y? I+y pY+y?

prey=y+y*

non-hyperbolic if 7 = pore

. Further, it was also proved that the interior equilibrium solution

E? (y+p, (o+y)” ) of system (1.3) is a stable node if 0 < h < min{Z,%}, an unstable node if

h > maX{Z } and non hyperbolic if 4 = 2 or h = =. We have also studied the existence of possible

bifurcations of E7, (p + 7, (p”) )

Ef (v +p. 225),
if N IE;).(YW’% ) {(y,h o), h =Ly 7+7 } and T|E}'y(’y+p, WT”Z ) = {(y,h,p),h =2}, respectively.

, and proved that for the interior equilibrium solution

the act1vat0r-1nh1bitor system (1.3) undergoes Neimark-Sacker and flip bifurcations

oy+y?

Biologically, the occurrence of the Neimark-Sacker bifurcation means that there exist periodic or
quasiperiodic oscillations between the activator and inhibitor concentrations. Further, the state
feedback control method was utilized in order to stabilize the chaos existing in the discrete-time
activator-inhibitor system (1.3). Finally, simulations were performed to not only validate the obtained
results, but also to show the complex dynamics with orbits of period-11,—-13,-14 and -15.
Investigation of the global dynamics, calculation of the forbidden set and global bifurcation analysis
for the under consideration discrete activator-inhibitor system are our next goals of study.
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