Research article Special Issues

Application of fixed point result to the boundary value problem using the $ M $-type generalized contraction condition for best proximity point considerations

  • Received: 21 February 2025 Revised: 06 May 2025 Accepted: 27 May 2025 Published: 13 June 2025
  • MSC : : 47H10, 54H25

  • This paper serves a dual purpose: to introduce a contraction condition and to demonstrate its application. We established a new framework for obtaining best proximity points in complete metric spaces, extending and generalizing several existing fixed point theorems. From this foundational result, multiple corollaries were derived, providing broader applicability in various mathematical settings. To validate the theoretical development, we applied our results to boundary value problems and dynamic market equilibrium models, illustrating both the mathematical robustness and real-world relevance of the proposed method.

    Citation: Rajagopalan Ramaswamy, Penumarthy Parvateesam Murthy, Pushplata Sahu, Rayan Abdulrahman Alkhowaiter, Ola Ashour Abdelnaby, Gunaseelan Mani. Application of fixed point result to the boundary value problem using the $ M $-type generalized contraction condition for best proximity point considerations[J]. AIMS Mathematics, 2025, 10(6): 13622-13639. doi: 10.3934/math.2025613

    Related Papers:

  • This paper serves a dual purpose: to introduce a contraction condition and to demonstrate its application. We established a new framework for obtaining best proximity points in complete metric spaces, extending and generalizing several existing fixed point theorems. From this foundational result, multiple corollaries were derived, providing broader applicability in various mathematical settings. To validate the theoretical development, we applied our results to boundary value problems and dynamic market equilibrium models, illustrating both the mathematical robustness and real-world relevance of the proposed method.



    加载中


    [1] I. Altun, M. Aslantas, H. Sahin, Best proximity point results for p-proximal contractions, Acta Math. Hungar., 162 (2020), 393–402. https://doi.org/10.1007/s10474-020-01036-3 doi: 10.1007/s10474-020-01036-3
    [2] A. Amini-Harandi, Best proximity points for proximal generalized contractions in metric spaces, Optim. Lett., 7 (2013), 913–921. https://doi.org/10.1007/s11590-012-0470-z doi: 10.1007/s11590-012-0470-z
    [3] H. Aydi, H. Lakzian, Z. D. Mitrović, S. Radenović, Best proximity points of MT-cyclic contractions with property UC, Numer. Func. Anal. Opt., 41 (2020), 871–882. https://doi.org/10.1080/01630563.2019.1708390 doi: 10.1080/01630563.2019.1708390
    [4] S. S. Basha, Best proximity points: optimal solutions, J. Optim. Theory Appl., 151 (2011), 210–216. https://doi.org/10.1007/s10957-011-9869-4 doi: 10.1007/s10957-011-9869-4
    [5] P. Debnath, N. Konwar, S. Radenović, Metric fixed point theory: Applications in science, engineering and behavioural sciences, Singapore: Springer, 2021. https://doi.org/10.1007/978-981-16-4896-0
    [6] A. Hussain, T. Kanwal, M. Adeel, S. Radenović, Best proximity point results in b-metric space and application to nonlinear fractional differential equation, Mathematics, 6 (2018), 221. https://doi.org/10.3390/math6110221 doi: 10.3390/math6110221
    [7] A. Kostić, V. Rakočević, S. Radenović, Best proximity points involving simulation functions with $w_{0}$-distance, RACSAM, 113 (2019), 715–727. https://doi.org/10.1007/s13398-018-0512-1 doi: 10.1007/s13398-018-0512-1
    [8] S. C. Nesič, A theorem on contractive mappings, Mat. Vesnik, 44 (1992), 51–54.
    [9] V. S. Raj, A best proximity point theorem for weakly contractive non-self-mappings, Nonlinear Anal. Theor., 74 (2011), 4804–4808. https://doi.org/10.1016/j.na.2011.04.052 doi: 10.1016/j.na.2011.04.052
    [10] B. Samet, Some results on best proximity points, J. Optim. Theory Appl., 159 (2013), 281–291. https://doi.org/10.1007/s10957-013-0269-9 doi: 10.1007/s10957-013-0269-9
    [11] V. Todorčević, Harmonic quasiconformal mappings and hyperbolic type metrics, Cham: Springer, 2019. https://doi.org/10.1007/978-3-030-22591-9
    [12] K. H. Alam, Y. Rohen, A. Tomar, M. Sajid, On fixed point and solution to nonlinear matrix equations related to beam theory in Mb v-metric space, J. Nonlinear Convex Anal., 25 (2024), 2149–2171.
    [13] G. Dong, M. Hintermueller, Z. Ye, A class of second-order geometric quasilinear hyperbolic PDEs and their application in imaging, SIAM J. Imaging Sci., 14 (2021), 645–688. https://doi.org/10.1137/20M1366277 doi: 10.1137/20M1366277
    [14] A. Shcheglov, J. Li, C. Wang, A. Ilin, Z. Ye, Reconstructing the absorption function in a quasi-linear sorption dynamic model via an iterative regularizing algorithm, Adv. Appl. Math. Mech., 16 (2023), 237–252. https://doi.org/10.4208/aamm.OA-2023-0020 doi: 10.4208/aamm.OA-2023-0020
    [15] Z. Ye, B. Hofmann, Two new non-negativity preserving iterative regularization methods for ill-posed inverse problems, Inverse Probl. Imag., 15 (2021), 229–256. https://doi.org/10.3934/ipi.2020062 doi: 10.3934/ipi.2020062
    [16] G. Lin, X. Cheng, Z. Ye, A parametric level set based collage method for an inverse problem in elliptic partial differential equations, J. Comput. Appl. Math., 340 (2018), 101–121. https://doi.org/10.1016/j.cam.2018.02.008 doi: 10.1016/j.cam.2018.02.008
    [17] G. Baravdish, O. Svensson, M. Gulliksson, Y. Zhang, Damped second order flow applied to image denoising, IMA J. Appl. Math., 84 (2019), 1082–1111. https://doi.org/10.1093/imamat/hxz027 doi: 10.1093/imamat/hxz027
    [18] M. D. L. Sen, E. Karapinar, On a cyclic Jungck modified $TS$-iterative procedure with application examples, Appl. Math. Comput., 233 (2013), 383–397. https://doi.org/10.1016/j.amc.2014.02.008 doi: 10.1016/j.amc.2014.02.008
    [19] E. Naraghirad, Bregman best proximity points for bergman asymptotic cyclic contraction mappings in banach spaces, J. Nonlinear Var. Anal., 3 (2019), 27–44. https://doi.org/10.23952/jnva.3.2019.1.04. doi: 10.23952/jnva.3.2019.1.04
    [20] A. Abkar, M. Norouzian, Coincidence quasi-best proximity points for quasi-cyclic-noncyclic mappings in convex metric spaces, IJMSI, 17 (2022), 27–46. https://doi.org/10.52547/ijmsi.17.1.27 doi: 10.52547/ijmsi.17.1.27
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(549) PDF downloads(27) Cited by(1)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog