In this paper, we considered a class of analytical, rotational, and self-similar solutions to the 2D compressible Navier-Stokes equations (CNS) with density-dependent viscosity coefficients. For the isentropic case $ k > 0, \ \gamma = \varphi > 1 $, we provided the formula of self-similar analytical solutions and proved the well-posedness and the large time behavior for the corresponding generalized Emden equation. It is interesting to see that the different effects of rotation and pressure were revealed. Compared with the irrotational and pressureless case, when the free boundary $ a(t) $ increases linearly or sub-linearly in time, we can find some classes of solutions with linear growth by taking the pressure effect or the swirl effect into account. In this sense, rotation or pressure effects may accelerate the growth of the boundary. Finally, we gave some examples of blow-up solutions and used a new method to prove the results.
Citation: Jia Jia. Analytical solutions to the 2D compressible Navier-Stokes equations with density-dependent viscosity coefficients[J]. AIMS Mathematics, 2025, 10(5): 10831-10851. doi: 10.3934/math.2025492
In this paper, we considered a class of analytical, rotational, and self-similar solutions to the 2D compressible Navier-Stokes equations (CNS) with density-dependent viscosity coefficients. For the isentropic case $ k > 0, \ \gamma = \varphi > 1 $, we provided the formula of self-similar analytical solutions and proved the well-posedness and the large time behavior for the corresponding generalized Emden equation. It is interesting to see that the different effects of rotation and pressure were revealed. Compared with the irrotational and pressureless case, when the free boundary $ a(t) $ increases linearly or sub-linearly in time, we can find some classes of solutions with linear growth by taking the pressure effect or the swirl effect into account. In this sense, rotation or pressure effects may accelerate the growth of the boundary. Finally, we gave some examples of blow-up solutions and used a new method to prove the results.
| [1] | G.-Q. Chen, D. Wang, The Cauchy problem for the Euler equations for compressible fluids, In: Handbook of mathematical fluid dynamics, 1 (2002), 421–543. https://doi.org/10.1016/S1874-5792(02)80012-X |
| [2] | A. J. Chorin, J. E. Marsden, A mathematical introduction to fluid mechanics, 3 Eds., New York: Springer, 1993. https://doi.org/10.1007/978-1-4684-0082-3 |
| [3] | P. L. Lions, Mathematical topics in fluid mechanics, New York: Oxford University Press, 1996. |
| [4] |
T. Liu, Z. Xin, T. Yang, Vacuum states for compressible flow, Discrete Contin. Dyn. Syst., 4 (1998), 1–32. https://doi.org/10.3934/dcds.1998.4.1 doi: 10.3934/dcds.1998.4.1
|
| [5] |
Z. Guo, S. Jiang, F. Xie, Global existence and asymptotic behavior of weak solutions to the 1D compressible Navier-Stokes equations with degenerate viscosity coefficient, Asymptot. Anal., 60 (2008), 101–123. https://doi.org/10.3233/asy-2008-0902 doi: 10.3233/asy-2008-0902
|
| [6] |
S. Jiang, Z. Xin, P. Zhang, Global weak solutions to 1D compressible isentropy Navier-Stokes with density-dependent viscosity, Methods Appl. Anal., 12 (2005), 239–252. https://doi.org/10.4310/MAA.2005.v12.n3.a2 doi: 10.4310/MAA.2005.v12.n3.a2
|
| [7] |
M. Okada, Š. Matušu-Nečasová, T. Makino, Free boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity, Ann. Univ. Ferrara, 48 (2002), 1–20. https://doi.org/10.1007/bf02824736 doi: 10.1007/bf02824736
|
| [8] |
A. Mellet, A. Vasseur, On the barotropic compressible Navier-Stokes equations, Commun. Partial Differ. Equations, 32 (2007), 431–452. https://doi.org/10.1080/03605300600857079 doi: 10.1080/03605300600857079
|
| [9] |
D. Bresch, B. Desjardins, On viscous shallow-water equations (Saint-Venant model) and the quasi-geostrophic limit, C. R. Math., 335 (2002), 1079–1084. https://doi.org/10.1016/S1631-073X(02)02610-9 doi: 10.1016/S1631-073X(02)02610-9
|
| [10] |
D. Bresch, B. Desjardins, C.-K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Commun. Partial Differ. Equations, 28 (2003), 843–868. https://doi.org/10.1081/pde-120020499 doi: 10.1081/pde-120020499
|
| [11] |
D. Hoff, D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow, SIAM J. Appl. Math., 51 (1991), 887–898. https://doi.org/10.1137/0151043 doi: 10.1137/0151043
|
| [12] | Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229–240. |
| [13] | E. Becker, Gasdynamik, Stuttgart: Teubner Verlag, 1966. |
| [14] | Y. B. Zel'dovich, Y. P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena, New York: Dover Publications, 2002. |
| [15] | S. Chapman, T. G. Cowling, The mathematical theory of non-uniform gases: An account of the kinetic theory of viscosity, thermal conduction and diffusion in gases, 3 Eds., Cambridge: Cambridge University Press, 1970. |
| [16] | H. Grad, Asymptotic theory of the boltzmann equation II, New York: Academic Press, 1963. |
| [17] |
D. Bresch, B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Commun. Math. Phys., 238 (2003), 211–223. https://doi.org/10.1007/s00220-003-0859-8 doi: 10.1007/s00220-003-0859-8
|
| [18] |
Z. Guo, Z. Xin, Analytical solutions to the compressible Navier-Stokes equations with density-dependent viscosity coefficients and free boundaries, J. Differ. Equations, 253 (2012), 1–19. https://doi.org/10.1016/j.jde.2012.03.023 doi: 10.1016/j.jde.2012.03.023
|
| [19] |
L. Yeung, M. Yuen, Analytical solutions to the Navier-Stokes equations with density-dependent viscosity and with pressure, J. Math. Phys., 50 (2009), 083101. https://doi.org/10.1063/1.3197860 doi: 10.1063/1.3197860
|
| [20] |
M. Yuen, Analytical solutions to the Navier-Stokes equations, J. Math. Phys., 49 (2008), 113102. https://doi.org/10.1063/1.3013805 doi: 10.1063/1.3013805
|
| [21] |
Y. Deng, J. Xiang, T. Yang, Blowup phenomena of solutions to Euler-Poisson equations, J. Math. Anal. Appl., 286 (2003), 295–306. https://doi.org/10.1016/s0022-247x(03)00487-6 doi: 10.1016/s0022-247x(03)00487-6
|
| [22] |
M. Kwong, M. Yuen, Periodic solutions of 2D isothermal Euler-Poisson equations with possible applications to spiral and disk-like galaxies, J. Math. Anal. Appl., 420 (2014), 1854–1863. https://doi.org/10.1016/j.jmaa.2014.06.033 doi: 10.1016/j.jmaa.2014.06.033
|
| [23] |
W. Yuen, Analytical blowup solutions to the 2-dimensional isothermal Euler-Poisson equations of gaseous stars, J. Math. Anal. Appl., 341 (2008), 445–456. https://doi.org/10.1016/j.jmaa.2007.10.026 doi: 10.1016/j.jmaa.2007.10.026
|
| [24] |
J. Dong, M. Yuen, Blowup of smooth solutions to the compressible Euler equations with radial symmetry on bounded domains, Z. Angew. Math. Phys., 71 (2020), 189. https://doi.org/10.1007/s00033-020-01392-8 doi: 10.1007/s00033-020-01392-8
|
| [25] |
M. Yuen, Exact, rotational, infinite energy, blowup solutions to the 3-dimensional Euler equations, Phys. Lett. A, 375 (2011), 3107–3113. https://doi.org/10.1016/j.physleta.2011.06.067 doi: 10.1016/j.physleta.2011.06.067
|
| [26] |
M. Yuen, Vortical and self-similar flows of 2D compressible Euler equations, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2172–2180. https://doi.org/10.1016/j.cnsns.2013.11.008 doi: 10.1016/j.cnsns.2013.11.008
|
| [27] |
J. Dong, J. Li, Analytical solutions to the compressible Euler equations with time-dependent damping and free boundaries, J. Math. Phys., 63 (2022), 101502. https://doi.org/10.1063/5.0089142 doi: 10.1063/5.0089142
|
| [28] |
J. Dong, H. Xue, Q. Zhang, Analytical solutions to the pressureless Navier-Stokes equations with density-dependent viscosity coefficients, Commun. Contemp. Math., 26 (2024), 2350022. https://doi.org/10.1142/S0219199723500220 doi: 10.1142/S0219199723500220
|
| [29] |
C. Dou, Z. Zhao, Analytical solution to 1D compressible Navier-Stokes equations, J. Funct. Spaces, 2021 (2021), 6339203. https://doi.org/10.1155/2021/6339203 doi: 10.1155/2021/6339203
|
| [30] |
H. Li, X. Zhang, Global strong solutions to radial symmetric compressible Navier-Stokes equations with free boundary, J. Differ. Equations, 261 (2016), 6341–6367. https://doi.org/10.1016/j.jde.2016.08.038 doi: 10.1016/j.jde.2016.08.038
|
| [31] | H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, New York: Springer, 2011. https://doi.org/10.1007/978-0-387-70914-7 |
| [32] | P. D. Lax, Functional analysis, New York: Wiley, 2002. |
| [33] | K. Yosida, Functional analysis, Berlin, Heidelberg: Springer, 1995. https://doi.org/10.1007/978-3-642-61859-8 |
| [34] | R. Nagle, E. Saff, A. Snider, Fundamentals of differential equations and boundary value problems, 5 Eds., New York: Addison-Wesley, 2008. |
| [35] | R. Courant, F. John, Introduction to calculus and analysis I, Berlin, Heidelberg: Springer, 1999. https://doi.org/10.1007/978-3-642-58604-0 |
| [36] | W. Rudin, Principles of mathematical analysis, 3 Eds., New York: McGraw-Hill Education, 1976. |