In this paper, we investigate the problem of energy equality of the two and three dimensional compressible Navier-Stokes-Korteweg equations with general pressure law. By using the commutator estimation to deal with the nonlinear terms, we obtain the sufficient conditions for the regularity of weak solutions to conserve the energy.
Citation: Hui Fang, Yihan Fan, Yanping Zhou. Energy equality for the compressible Navier-Stokes-Korteweg equations[J]. AIMS Mathematics, 2022, 7(4): 5808-5820. doi: 10.3934/math.2022321
[1] | Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710 |
[2] | Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637 |
[3] | Fangfang Shi, Guoju Ye, Dafang Zhao, Wei Liu . Some integral inequalities for coordinated log-h-convex interval-valued functions. AIMS Mathematics, 2022, 7(1): 156-170. doi: 10.3934/math.2022009 |
[4] | Hongling Zhou, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . Hermite-Hadamard type inequalities for interval-valued exponential type pre-invex functions via Riemann-Liouville fractional integrals. AIMS Mathematics, 2022, 7(2): 2602-2617. doi: 10.3934/math.2022146 |
[5] | Muhammad Bilal Khan, Gustavo Santos-García, Hüseyin Budak, Savin Treanțǎ, Mohamed S. Soliman . Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for (p,J)-convex fuzzy-interval-valued functions. AIMS Mathematics, 2023, 8(3): 7437-7470. doi: 10.3934/math.2023374 |
[6] | Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273 |
[7] | Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024 |
[8] | Muhammad Bilal Khan, Savin Treanțǎ, Hleil Alrweili, Tareq Saeed, Mohamed S. Soliman . Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings. AIMS Mathematics, 2022, 7(8): 15659-15679. doi: 10.3934/math.2022857 |
[9] | Zehao Sha, Guoju Ye, Dafang Zhao, Wei Liu . On interval-valued K-Riemann integral and Hermite-Hadamard type inequalities. AIMS Mathematics, 2021, 6(2): 1276-1295. doi: 10.3934/math.2021079 |
[10] | Guoshan Deng, Dafang Zhao, Sina Etemad, Jessada Tariboon . Generalized fractional Hermite-Hadamard-type inequalities for interval-valued s-convex functions. AIMS Mathematics, 2025, 10(6): 14102-14121. doi: 10.3934/math.2025635 |
In this paper, we investigate the problem of energy equality of the two and three dimensional compressible Navier-Stokes-Korteweg equations with general pressure law. By using the commutator estimation to deal with the nonlinear terms, we obtain the sufficient conditions for the regularity of weak solutions to conserve the energy.
In convex function theory, the classical Hermite-Hadamard inequality is one of the most well-known inequalities with geometrical interpretation, and it has a wide range of applications, see [1,2].
Let S:K→R+ be a convex function on a convex set K and ρ,ς∈K with ρ≠ς. Then,
S(ρ+ς2)≤1ς−ρ∫ςρS(ϖ)dϖ≤S(ρ)+S(ς)2. | (1) |
In [3], Fejér looked at the key extensions of HH-inequality which is known as Hermite-Hadamard-Fejér inequality (HH-Fejér inequality).
Let S:K→R+ be a convex function on a convex set K and ρ,ς ∈K with ρ≠ς. Then,
S(ρ+ς2)≤1∫ςρD(ϖ)dϖ∫ςρS(ϖ)D(ϖ)dϖ≤S(ρ)+S(ς)2∫ςρD(ϖ)dϖ. | (2) |
If D(ϖ)=1, then we obtain (1) from (2). We should remark that Hermite-Hadamard inequality is a refinement of the idea of convexity, and it can be simply deduced from Jensen's inequality. In recent years, the Hermite-Hadamard inequality for convex functions has gotten a lot of attention, and there have been a lot of improvements and generalizations examined. Sarikaya [4] proved the Hadamard type inequality for coordinated convex functions such that
Let G:Δ→R+ be a coordinate convex function on Δ=[ς,ρ]×[μ,ν]. If G is double fractional integrable, then following inequalities hold:
G(μ+ν2,ς+ρ2)≤Γ(α+1)4(ν−μ)α[Iαμ+G(ν,ς+ρ2)+Iαν−G(μ,ς+ρ2)]+Γ(β+1)4(ρ−ς)β[Iβς+G(μ+ν2,ρ)+Iβρ−G(μ+ν2,ς)]≤Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)+Iα,βν−,ς+G(μ,ρ)+Iα,βν−,ρ−G(μ,ς)]≤Γ(α+1)8(ν−μ)α[Iαμ+G(ν,ς)GIαμ+G(ν,ρ)+Iαν−G(μ,ς)+Iαν−G(μ,ρ)]+Γ(β+1)4(ρ−ς)β[Iβς+G(μ,ρ)˜+Iβρ−G(ν,ς)+Iβς+G(μ,ρ)+Iβρ−G(ν,ς)]≤G(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4. | (3) |
If α=1, then we obtain the following Dragomir inequality [5] on coordinates:
G(μ+ν2,ς+ρ2) |
≤12[1ν−μ∫νμG(x,ς+ρ2)dx+1ρ−ς∫ρςG(μ+ν2,y)dy]≤1(ν−μ)(ρ−ς)∫νμ∫ρςG(x,y)dydx≤14(ν−μ)[∫νμG(x,ς)dx+∫νμG(x,ρ)dx]+14(ρ−ς)[∫ρςG(μ,y)dy+∫ρςG(ν,y)dy]≤G(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4. | (4) |
For more details related to inequalities, see [6,7,8,9] and reference therein.
Interval analysis, on the other hand, is a well-known example of set-valued analysis, which is the study of sets in the context of mathematical analysis and general topology. It was created as a way of dealing with the interval uncertainty that can be found in many mathematical or computer models of deterministic real-world phenomena. Archimede's method, which is used to calculate the circumference of a circle, is an old example of an interval enclosure. Moore [10], who is credited with being the first user of intervals in computational mathematics, published the first book on interval analysis in 1966. Following the publication of his book, a number of scientists began to research the theory and applications of interval arithmetic. Interval analysis is now a helpful technique in a variety of fields that are interested in ambiguous data because of its applicability. Computer graphics, experimental and computational physics, error analysis, robotics, and many more fields have applications.
Furthermore, in recent years, numerous major inequalities (Hermite-Hadamard, Ostrowski and others) have been addressed for interval-valued functions. Chalco-Cano et al. used the Hukuhara derivative for interval-valued functions to construct Ostrowski type inequalities for interval-valued functions in [11,12,13,14]. For interval-valued functions, Román-Flores et al. developed Minkowski and Beckenbach's inequality in [15]. For fuzzy interval-valued function, Khan et al. [16,17,18] derived some new versions of Hermite-Hadamard type inequalities and proved their validity with the help of non-trivial examples. Moreover, Khan et al. [19,20] discussed some novel types of Hermite-Hadamard type inequalities in fuzzy-interval fractional calculus and proved that many classical versions are special cases of these inequalities. Recently, Khan et al. [21] introduced the new class of convexity in fuzzy-interval calculus which is known as coordinated convex fuzzy-interval-valued functions and with the support of these classes, some Hermite-Hadamard type inequalities are obtained via newly defined fuzzy-interval double integrals. We encourage readers to [22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54] for other related results.
The following is an overview of the paper's structure. Section 2 recalls some preliminary notions and definitions. Moreover, some properties of introduced coordinated LR-convex IVF are also discussed. Section 3 presents some Hermite-Hadamard type inequalities for coordinated LR-convex IVF. With the help of this class, some fractional integral inequalities are also derived for the coordinated LR-convex IVF and for the product of two coordinated LR-convex IVFs. The fourth section, Conclusions and Future Work, brings us to a close.
Let R be the set of real numbers and RI be the space of all closed and bounded intervals of R, such that U∈RI is defined by
U=[U∗,U∗]={y∈R|U∗≤y≤U∗},(U∗,U∗∈R). | (5) |
If U∗=U∗, then U is said to be degenerate. If U∗≥0, then [U∗,U∗] is called positive interval. The set of all positive interval is denoted by R+I and defined as R+I={[U∗,U∗]:[U∗,U∗]∈RIandU∗≥0}.
Let ϱ∈R and ϱU be defined by
ϱ.U={[ϱU∗,ϱU∗]ifϱ>0,{0}ifϱ=0,[ϱU∗,ϱU∗]ifϱ<0. | (6) |
Then, the Minkowski difference D−U, addition U+D and U×D for U,D∈RI are defined by
[D∗,D∗]−[U∗,U∗]=[D∗−U∗,D∗−U∗],[D∗,D∗]+[U∗,U∗]=[D∗+U∗,D∗+U∗], | (7) |
and
[D∗,D∗]×[U∗,U∗]=[min{D∗U∗,D∗U∗,D∗U∗,D∗U∗},max{D∗U∗,D∗U∗,D∗U∗,D∗U∗}]. |
The inclusion "⊇" means that
U⊇D if and only if, [U∗,U∗]⊇[D∗,D∗], and if and only if
U∗≤D∗,D∗≤U∗. | (8) |
Remark 1. [36] (ⅰ) The relation "≤p" is defined on RI by
[D∗,D∗]≤p[U∗,U∗]ifandonlyifD∗≤U∗,D∗≤U∗, | (9) |
for all [D∗,D∗],[U∗,U∗]∈RI, and it is a pseudo order relation. The relation [D∗,D∗]≤p[U∗,U∗] coincident to [D∗,D∗]≤[U∗,U∗] on RI when it is "≤p"
(ⅱ) It can be easily seen that "≤p" looks like "left and right" on the real line R, so we call "≤p" is "left and right" (or "LR" order, in short).
For [D∗,D∗],[U∗,U∗]∈RI, the Hausdorff-Pompeiu distance between intervals [D∗,D∗] and [U∗,U∗] is defined by
d([D∗,D∗],[U∗,U∗])=max{|D∗−U∗|,|D∗−U∗|}. | (10) |
It is familiar fact that (RI,d) is a complete metric space.
Theorem 1. [10] If G:[μ,ν]⊂R→RI is an I-V-F given by (x) [G∗(x),G∗(x)], then G is Riemann integrable over [μ,ν] if and only if, G∗ and G∗ both are Riemann integrable over [μ,ν] such that
(IR)∫νμG(x)dx=[(R)∫νμG∗(x)dx,(R)∫νμG∗(x)dx]. | (11) |
The collection of all Riemann integrable real valued functions and Riemann integrable I-V-F is denoted by R[μ,ν] and TR[μ,ν], respectively.
Definition 1. [31,33] Let G:[μ,ν]→RI be interval-valued function and G∈TR[μ,ν]. Then interval Riemann-Liouville-type integrals of G are defined as
Iαμ+G(y)=1Γ(α)∫yμ(y−t)α−1G(t)dt(y>μ), | (12) |
Iαν−G(y)=1Γ(α)∫νy(t−y)α−1G(t)dt(y<ν), | (13) |
where α>0 and Γ is the gamma function.
Theorem 2. [20] Let G:[ς,ρ]→RI+ be a LR-convex I-V.F such that G(y)=[G∗(y),G∗(y)] for all y∈[ς,ρ]. If G∈L([ς,ρ],R+I), then
G(ς+ρ2)≤pΓ(α+1)2(ρ−ς)α[Iας+G(ρ)+Iαρ−G(ς)]≤pG(ς)+G(ρ)2. | (14) |
Theorem 3. [20] Let G,S:[ς,ρ]→R+I be two LR-convex I-V.Fs such that G(x)=[G∗(x),G∗(x)] and S(x)=[S∗(x),S∗(x)] for all x∈[ς,ρ]. If G×S∈L([ς,ρ],R+I) is fuzzy Riemann integrable, then
Γ(α+1)2(ρ−ς)α[Iας+G(ρ)×S(ρ)+Iαρ−G(ς)×S(ς)] |
≤p(12−α(α+1)(α+2))M(ς,ρ)+(α(α+1)(α+2))N(ς,ρ), | (15) |
and
G(ς+ρ2)×S(ς+ρ2) |
≤pΓ(α+1)4(ρ−ς)α[Iας+G(ρ)×S(ρ)+Iαρ−G(ς)×S(ς)] |
+12(12−α(α+1)(α+2))M(ς,ρ)+12(α(α+1)(α+2))N(ς,ρ), | (16) |
where M(ς,ρ)=G(ς)×S(ς)+G(ρ)×S(ρ), N(ς,ρ)=G(ς)×S(ρ)+G(ρ)×S(ς),
and M(ς,ρ)=[M∗(ς,ρ),M∗(ς,ρ)] and N(ς,ρ)=[N∗(ς,ρ),N∗(ς,ρ)].
Note that, the Theorem 1 is also true for interval double integrals. The collection of all double integrable I-V-F is denoted TOΔ, respectively.
Theorem 4. [35] Let Δ=[ς,ρ]×[μ,ν]. If G:Δ→RI is interval-valued doubl integrable (ID-integrable) on Δ. Then, we have
(ID)∫ρς∫νμG(x,y)dydx=(IR)∫ρς(IR)∫νμG(x,y)dydx. |
Definition 2. [36] Let G:Δ→R+I and G∈TOΔ. The interval Riemann-Liouville-type integrals Iα,βμ+,ς+,Iα,βμ+,ρ−, Iα,βν−,ς+,Iα,βν−,ρ− of G order α,β>0 are defined by
Iα,βμ+,ς+G(x,y)=1Γ(α)Γ(β)∫xμ∫yς(x−t)α−1(y−s)β−1G(t,s)dsdt(x>μ,y>ς), | (17) |
Iα,βμ+,ρ−G(x,y)=1Γ(α)Γ(β)∫xμ∫ρy(x−t)α−1(s−y)β−1G(t,s)dsdt(x>μ,y<ρ), | (18) |
Iα,βν−,ς+G(x,y)=1Γ(α)Γ(β)∫νx∫yς(t−x)α−1(y−s)β−1G(t,s)dsdt(x<ν,y>ς), | (19) |
Iα,βν−,ρ−G(x,y)=1Γ(α)Γ(β)∫νx∫ρy(t−x)α−1(s−y)β−1G(t,s)dsdt(x<ν,y<ρ). | (20) |
Definition 3. [38] The I-V.F G:Δ→R+I is said to be coordinated LR-convex I-V.F on Δ if
G(τμ+(1−τ)ν,sς+(1−s)ρ) |
≤pτsG(μ,ς)+τ(1−s)G(μ,ρ)+(1−τ)sG(ν,ς)+(1−τ)(1−s)G(ν,ρ), | (21) |
for all (μ,ν),(ς,ρ)∈Δ, and τ,s∈[0,1]. If inequality (21) is reversed, then G is called coordinate LR-concave I-V.F on Δ.
Lemma 1. [38] Let G:Δ→R+I be an coordinated I-V.F on Δ. Then, G is coordinated LR-convex I-V.F on Δ, if and only if there exist two coordinated LR-convex I-V.Fs Gx:[ς,ρ]→R+I, Gx(w)=G(x,w) and Gy:[μ,ν]→R+I, Gy(z)=G(z,y).
Theorem 5. [38] Let G:Δ→R+I be a I-V.F on Δ such that
G(x,ϖ)=[G∗(x,ϖ),G∗(x,ϖ)], | (22) |
for all (x,ϖ)∈Δ. Then, G is coordinated LR-convex I-V.F on Δ, if and only if, G∗(x,ϖ) and G∗(x,ϖ) are coordinated convex functions.
Example 1. We consider the I-V.Fs G:[0,1]×[0,1]→R+I defined by,
G(x)(σ)={σ2(6+ex)(6+eϖ),σ∈[0,2(6+ex)(6+eϖ)]4(6+ex)(6+eϖ)−σ2(6+ex)(6+eϖ),σ∈(2(6+ex)(6+eϖ),4(6+ex)(6+eϖ)]0,otherwise, |
Then, for each θ∈[0,1], we have G(x)=[2θ(6+ex)(6+eϖ),(4+2θ)(6+ex)(6+eϖ)]. Since end point functions G∗((x,ϖ),θ), G∗((x,ϖ),θ) are coordinate concave functions for each θ∈[0,1]. Hence S(x,ϖ) is coordinate LR-concave I-V.F.
From Lemma 1, we can easily note that each LR-convex I-V.F is coordinated LR-convex I-V.F. But the converse is not true.
Remark 2. If one takes G∗(x,ϖ)=G∗(x,ϖ), then G is known as coordinated function if G satisfies the coming inequality
G(τμ+(1−τ)ν,sς+(1−s)ρ) |
≤τsG(μ,ς)+τ(1−s)G(μ,ρ)+(1−τ)sG(ν,ς)+(1−τ)(1−s)G(ν,ρ), |
is valid which is defined by Dragomir [5]
Let one takes G∗(x,ϖ)≠G∗(x,ϖ), where G∗(x,ϖ) is affine function and G∗(x,ϖ) is a concave function. If coming inequality,
G(τμ+(1−τ)ν,sς+(1−s)ρ) |
⊇τsG(μ,ς)+τ(1−s)G(μ,ρ)+(1−τ)sG(ν,ς)+(1−τ)(1−s)G(ν,ρ), |
is valid, then G is named as coordinated IVF which is defined by Zhao et al. [37, Definition 2 and Example 2]
In this section, we shall continue with the following fractional HH-inequality for coordinated LR-convex I-V.Fs, and we also give fractional HH-Fejér inequality for coordinated LR-convex I-V.F through fuzzy order relation.
Theorem 6. Let G:Δ→R+I be a coordinate LR-convex I-V.F on Δ such that G(x,y)=[G∗(x,y),G∗(x,y)] for all (x,y)∈Δ. If G∈TOΔ, then following inequalities holds:
G(μ+ν2,ς+ρ2)≤pΓ(α+1)4(ν−μ)α[Iαμ+G(ν,ς+ρ2)+Iαν−G(μ,ς+ρ2)] |
+Γ(β+1)4(ρ−ς)β[Iβς+G(μ+ν2,ρ)+Iβρ−G(μ+ν2,ς)] |
≤pΓ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)+Iα,βν−,ς+G(μ,ρ)+Iα,βν−,ρ−G(μ,ς)] |
≤pΓ(α+1)8(ν−μ)α[Iαμ+G(ν,ς)+Iαμ+G(ν,ρ)+Iαν−G(μ,ς)+Iαν−G(μ,ρ)] |
+Γ(β+1)4(ρ−ς)β[Iβς+G(μ,ρ)+Iβρ−G(ν,ς)+Iβς+G(μ,ρ)+Iβρ−G(ν,ς)] |
≤pG(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4. | (23) |
If G(x) coordinated LR-concave I-V.F, then
G(μ+ν2,ς+ρ2)≥pΓ(α+1)4(ν−μ)α[Iαμ+G(ν,ς+ρ2)+Iαν−G(μ,ς+ρ2)] |
+Γ(β+1)4(ρ−ς)β[Iβς+G(μ+ν2,ρ)+Iβρ−G(μ+ν2,ς)] |
≥pΓ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)+Iα,βν−,ς+G(μ,ρ)+Iα,βν−,ρ−G(μ,ς)] |
≥pΓ(α+1)8(ν−μ)α[Iαμ+G(ν,ς)+Iαμ+G(ν,ρ)+Iαν−G(μ,ς)+Iαν−G(μ,ρ)] |
+Γ(β+1)4(ρ−ς)β[Iβς+G(μ,ρ)+Iβρ−G(ν,ς)+Iβς+G(μ,ρ)+Iβρ−G(ν,ς)] |
≥pG(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4. | (24) |
Proof. Let G:[μ,ν]→R+I be a coordinated LR-convex I-V.F. Then, by hypothesis, we have
4G(μ+ν2,ς+ρ2)≤pG(τμ+(1−τ)ν,τς+(1−τ)ρ)+G((1−τ)μ+τν,(1−τ)ς+τρ). |
By using Theorem 5, we have
4G∗(μ+ν2,ς+ρ2)≤G∗(τμ+(1−τ)ν,τς+(1−τ)ρ)+G∗((1−τ)μ+τν,(1−τ)ς+τρ),4G∗(μ+ν2,ς+ρ2)≤G∗(τμ+(1−τ)ν,τς+(1−τ)ρ)+G∗((1−τ)μ+τν,(1−τ)ς+τρ). |
By using Lemma 1, we have
2G∗(x,ς+ρ2)≤G∗(x,τς+(1−τ)ρ)+G∗(x,(1−τ)ς+τρ),2G∗(x,ς+ρ2)≤G∗(x,τς+(1−τ)ρ)+G∗(x,(1−τ)ς+τρ), | (25) |
and
2G∗(μ+ν2,y)≤G∗(τμ+(1−τ)ν,y)+G∗((1−τ)μ+tν,y),2G∗(μ+ν2,y)≤G∗(τμ+(1−τ)ν,y)+G∗((1−τ)μ+tν,y). | (26) |
From (25) and (26), we have
2[G∗(x,ς+ρ2),G∗(x,ς+ρ2)] |
≤p[G∗(x,τς+(1−τ)ρ),G∗(x,τς+(1−τ)ρ)] |
+[G∗(x,(1−τ)ς+τρ),G∗(x,(1−τ)ς+τρ)], |
and
2[G∗(μ+ν2,y),G∗(μ+ν2,y)] |
≤p[G∗(τμ+(1−τ)ν,y),G∗(τμ+(1−τ)ν,y)] |
+[G∗(τμ+(1−τ)ν,y),G∗(τμ+(1−τ)ν,y)], |
It follows that
G(x,ς+ρ2)≤pG(x,τς+(1−τ)ρ)+G(x,(1−τ)ς+τρ), | (27) |
and
G(μ+ν2,y)≤pG(τμ+(1−τ)ν,y)+G(τμ+(1−τ)ν,y). | (28) |
Since G(x,.) and G(.,y), both are coordinated LR-convex-IVFs, then from inequality (14), inequalities (27) and (28) we have
Gx(ς+ρ2)≤pΓ(β+1)2(ρ−ς)β[Iβς+Gx(ρ)+Iβρ−Gx(ς)]≤pGx(ς)+Gx(ρ)2. | (29) |
and
Gy(μ+ν2)≤pΓ(α+1)2(ν−μ)α[Iαμ+Gy(ν)+Iαν−Gy(μ)]≤pGy(μ)+Gy(ν)2 | (30) |
Since Gx(w)=G(x,w), the inequality (29) can be written as
G(x,ς+ρ2)≤pΓ(β+1)2(ρ−ς)β[Iας+G(x,ρ)+Iαρ−G(x,ς)]≤pG(x,ς)+G(x,ρ)2. | (31) |
That is
G(x,ς+ρ2)≤pβ2(ρ−ς)β[∫ρς(ρ−s)β−1G(x,s)ds+∫ρς(s−ς)β−1G(x,s)ds]≤pG(x,ς)+G(x,ρ)2. |
Multiplying double inequality (31) by α(ν−x)α−12(ν−μ)α and integrating with respect to x over [μ,ν], we have
α2(ν−μ)α∫νμG(x,ς+ρ2)(ν−x)α−1dx |
≤p∫νμ∫ρς(ν−x)α−1(ρ−s)β−1G(x,s)dsdx+∫νμ∫ρς(ν−x)α−1(s−ς)β−1G(x,s)dsdx |
≤pα4(ν−μ)α[∫νμ(ν−x)α−1G(x,ς)dx+∫νμ(ν−x)α−1G(x,ρ)dx]. | (32) |
Again multiplying double inequality (31) by α(x−μ)α−12(ν−μ)α and integrating with respect to x over [μ,ν], we have
α2(ν−μ)α∫νμG(x,ς+ρ2)(ν−x)α−1dx |
≤pαβ4(ν−μ)α(ρ−ς)β∫νμ∫ρς(x−μ)α−1(ρ−s)β−1G(x,s)dsdx |
+αβ4(ν−μ)α(ρ−ς)β∫νμ∫ρς(x−μ)α−1(s−ς)β−1G(x,s)dsdx |
≤pα4(ν−μ)α[∫νμ(x−μ)α−1G(x,ς)dx+∫νμ(x−μ)α−1G(x,d)dx]. | (33) |
From (32), we have
Γ(α+1)2(ν−μ)α[Iαμ+G(ν,ς+ρ2)] |
≤pΓ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)+Iα,βν−,ς+G(ν,ς)] |
≤pΓ(α+1)4(ν−μ)α[Iαμ+G(ν,ς)+Iαμ+G(ν,ρ)]. | (34) |
From (33), we have
Γ(α+1)2(ν−μ)α[Iαν−G(μ,ς+ρ2)] |
≤pΓ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βν−,ς+G(μ,ρ)+Iα,βν−,ρ−G(μ,ς)] |
≤pΓ(α+1)4(ν−μ)α[Iαν−G(μ,ς)+Iαν−G(μ,ρ)]. | (35) |
Similarly, since Gy(z)=G(z,y) then, from (34) and (35), (30) we have
Γ(β+1)2(ρ−ς)β[Iβς+G(μ+ν2,ρ)] |
≤pΓ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)+Iα,βν−,ς+G(μ,ρ)] |
≤pΓ(β+1)4(ρ−ς)β[Iβς+G(μ,ρ)+Iβς+G(ν,ρ)], | (36) |
and
Γ(β+1)2(ρ−ς)α[Iβρ−G(μ+ν2,ς)] |
≤pΓ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ρ−G(ν,ς)+Iα,βν−,ρ−G(μ,ς)] |
≤pΓ(β+1)4(ρ−ς)β[Iβρ−G(μ,ς)+Iβρ−G(ν,ς)]. | (37) |
After adding the inequalities (46), (35), (36) and (37), we will obtain as resultant second, third and fourth inequalities of (23).
Now, from left part of inequality (14), we have
G(μ+ν2,ς+ρ2)≤pΓ(β+1)2(ρ−ς)β[Iβς+G(μ+ν2,ρ)+Iβρ−G(μ+ν2,ς)], | (38) |
and
G(μ+ν2,ς+ρ2)≤pΓ(α+1)2(ν−μ)α[Iαμ+G(ν,ς+ρ2)+Iαν−G(μ,ς+ρ2)]. | (39) |
Summing the inequalities (38) and (39), we obtain the following inequality:
G(μ+ν2,ς+ρ2) |
≤pΓ(α+1)4(ν−μ)α[Iαμ+G(ν,ς+ρ2)+Iαν−G(μ,ς+ρ2)]+Γ(β+1)4(ρ−ς)β[Iβς+G(μ+ν2,ρ)+Iβρ−G(μ+ν2,ς)], | (40) |
this is the first inequality of (23).
Now, from right part of inequality (14), we have
Γ(β+1)2(ρ−ς)β[Iβς+G(μ,ρ)+Iβρ−G(μ,ς)]≤pG(μ,ς)+G(μ,ρ)2, | (41) |
Γ(β+1)2(ρ−ς)β[Iβς+G(ν,ρ)+Iβρ−G(ν,ς)]≤pG(ν,ς)+G(ν,ρ)2, | (42) |
Γ(α+1)2(ν−μ)α[Iαμ+G(ν,ς)+Iαν−G(μ,ς)]≤pG(μ,ς)+G(ν,ς)2, | (43) |
Γ(α+1)2(ν−μ)α[Iαμ+G(ν,ρ)+Iαν−G(μ,ρ)]≤pG(μ,ρ)+G(ν,ρ)2. | (44) |
Summing inequalities (41), (42), (43) and (44), and then taking multiplication of the resultant with 14, we have
Γ(α+1)8(ν−μ)α[Iαμ+G(ν,ς)+Iαν−G(μ,ς)+Iαμ+G(ν,ρ)+Iαν−G(μ,ρ)] |
+Γ(β+1)2(ρ−ς)β[Iβς+G(μ,ρ)+Iβρ−G(μ,ς)+Iβς+G(ν,ρ)+Iβρ−G(ν,ς)] |
≤pG(μ,ς)+G(μ,ρ)+G(ν,ς)+G(ν,ρ)4. | (45) |
This is last inequality of (23) and the result has been proven.
Remark 3. If one to take α=1 and β=1, then from (23), we achieve the coming inequality, see [38]:
G(μ+ν2,ς+ρ2) |
≤p12[1ν−μ∫νμG(x,ς+ρ2)dx+1ρ−ς∫ρςG(μ+ν2,y)dy]≤p1(ν−μ)(ρ−ς)∫νμ∫ρςG(x,y)dydx≤p14(ν−μ)[∫νμG(x,ς)dx+∫νμG(x,ρ)dx]+14(ρ−ς)[∫ρςG(μ,y)dy+∫ρςG(ν,y)dy] |
≤pG(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4. | (46) |
Let one takes G∗(x,y) is an affine function and G∗(x,y) is concave function. If G∗(x,y)≠G∗(x,y), then from Remark 2 and (24), we acquire the coming inequality, see [31]:
G(μ+ν2,ς+ρ2)⊇Γ(α+1)4(ν−μ)α[Iαμ+G(ν,ς+ρ2)+Iαν−G(μ,ς+ρ2)]+Γ(β+1)4(ρ−ς)β[Iβς+G(μ+ν2,ρ)+Iβρ−G(μ+ν2,ς)] |
⊇Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)+Iα,βν−,ς+G(μ,ρ)+Iα,βν−,ρ−G(μ,ς)] |
⊇Γ(α+1)8(ν−μ)α[Iαμ+G(ν,ς)GIαμ+G(ν,ρ)+Iαν−G(μ,ς)+Iαν−G(μ,ρ)] |
+Γ(β+1)4(ρ−ς)β[Iβς+G(μ,ρ)˜+Iβρ−G(ν,ς)+Iβς+G(μ,ρ)+Iβρ−G(ν,ς)] |
⊇G(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4. | (47) |
Let one takes α=1 and β=1, G∗(x,y) is an affine function and G∗(x,y) is concave function. If G∗(x,y)≠G∗(x,y), then Remark 2 and from (24), we acquire the coming inequality, see [37]:
G(μ+ν2,ς+ρ2) |
⊇12[1ν−μ∫νμG(x,ς+ρ2)dx+1ρ−ς∫ρςG(μ+ν2,y)dy]⊇1(ν−μ)(ρ−ς)∫νμ∫ρςG(x,y)dydx |
⊇14(ν−μ)[∫νμG(x,ς)dx+∫νμG(x,ρ)dx]+14(ρ−ς)[∫ρςG(μ,y)dy+∫ρςG(ν,y)dy] |
⊇G(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4. | (48) |
Example 2. We consider the I-V-Fs G:[0,1]×[0,1]→R+I defined by,
G(x)=[2,6](6+ex)(6+ey). |
Since end point functions G∗(x,y), G∗(x,y) are convex functions on coordinate, then G(x,y) is convex I-V-F on coordinate. Then for α=1 and β=1, we have
G(μ+ν2,ς+ρ2)=[2(5+e12)2,6(6+e12)2], |
Γ(α+1)4(ν−μ)α[Iαμ+G(ν,ς+ρ2)+Iαν−G(μ,ς+ρ2)]+Γ(β+1)4(ρ−ς)β[Iβς+G(μ+ν2,ρ)+Iβρ−G(μ+ν2,ς)] |
=[4(6+e12)(5+e),12(6+e12)(5+e)], |
Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)+Iα,βν−,ς+G(μ,ρ)+Iα,βν−,ρ−G(μ,ς)] |
=[2(5+e)2,6(5+e)2], |
Γ(α+1)8(ν−μ)α[Iαμ+G(ν,ς)GIαμ+G(ν,ρ)+Iαν−G(μ,ς)+Iαν−G(μ,ρ)] |
+Γ(β+1)4(ρ−ς)β[Iβς+G(μ,ρ)˜+Iβρ−G(ν,ς)+Iβς+G(μ,ρ)+Iβρ−G(ν,ς)] |
=[(5+e)(13+e),3(5+e)(13+e)] |
G(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4=[(6+e)(20+e)+492,6((6+e)(20+e)+49)2]. |
That is
[2(5+e12)2,6(6+e12)2]≤p[4(6+e12)(5+e),12(6+e12)(5+e)] |
≤p[2(5+e)2,6(5+e)2] |
≤p[(5+e)(13+e),3(5+e)(13+e)] |
≤p[(6+e)(20+e)+492,3((6+e)(20+e)+49)]. |
Hence, Theorem 3.1 has been verified
Next both results obtain Hermite-Hadamard type inequalities for the product of two coordinate LR-convex I-V.Fs
Theorem 7. Let G,S:Δ→R+I be a coordinate LR-convex I-V.Fs on Δ such that G(x,y)=[G∗(x,y),G∗(x,y)] and S(x,y)=[S∗(x,y),S∗(x,y)] for all (x,y)∈Δ. If G×S∈TOΔ, then following inequalities holds:
Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)] |
≤p(12−α(α+1)(α+2))(12−β(β+1)(β+2))K(μ,ν,ς,ρ)+α(α+1)(α+2)(12−β(β+1)(β+2))L(μ,ν,ς,ρ) |
+(12−α(α+1)(α+2))β(β+1)(β+2)M(μ,ν,ς,ρ)+β(β+1)(β+2)α(α+1)(α+2)N(μ,ν,ς,ρ). | (49) |
If G and S both are coordinate LR-concave I-V.Fs on Δ, then above inequality can be written as
Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)] |
≥p(12−α(α+1)(α+2))(12−β(β+1)(β+2))K(μ,ν,ς,ρ)+α(α+1)(α+2)(12−β(β+1)(β+2))L(μ,ν,ς,ρ) |
+(12−α(α+1)(α+2))β(β+1)(β+2)M(μ,ν,ς,ρ)+β(β+1)(β+2)α(α+1)(α+2)N(μ,ν,ς,ρ). | (50) |
Where
K(μ,ν,ς,ρ)=G(μ,ς)×S(μ,ς)+G(ν,ς)×S(ν,ς)+G(μ,ρ)×S(μ,ρ)+G(ν,ρ)×S(ν,ρ), |
L(μ,ν,ς,ρ)=G(μ,ς)×S(ν,ς)˜+G(ν,ρ)×S(μ,ρ)+G(ν,ς)×S(μ,ς)+G(μ,ρ)×S(ν,ρ), |
M(μ,ν,ς,ρ)=G(μ,ς)×S(μ,ρ)+G(ν,ς)×S(ν,ρ)+G(μ,ρ)×S(μ,ς)+G(ν,ρ)×S(ν,ς), |
N(μ,ν,ς,ρ)=G(μ,ς)×S(ν,ρ)+G(ν,ς)×S(μ,ρ)+G(μ,ρ)×S(ν,ς)+G(ν,ρ)×S(μ,ς). |
and K(μ,ν,ς,ρ), ˜L(μ,ν,ς,ρ), M(μ,ν,ς,ρ) and N(μ,ν,ς,ρ) are defined as follows:
K(μ,ν,ς,ρ)=[K∗(μ,ν,ς,ρ),K∗(μ,ν,ς,ρ)], |
L(μ,ν,ς,ρ)=[L∗(μ,ν,ς,ρ),L∗(μ,ν,ς,ρ)], |
M(μ,ν,ς,ρ)=[M∗(μ,ν,ς,ρ),M∗(μ,ν,ς,ρ)], |
N(μ,ν,ς,ρ)=[N∗(μ,ν,ς,ρ),N∗(μ,ν,ς,ρ)]. |
Proof. Let G and S both are coordinated LR-convex I-V.Fs on [μ,ν]×[ς,ρ]. Then
G(τμ+(1−τ)ν,sς+(1−s)ρ) |
≤pτsG(μ,ς)+τ(1−s)G(μ,ρ)+(1−τ)sG(ν,ς)+(1−τ)(1−s)G(ν,ρ), |
and
S(τμ+(1−τ)ν,sς+(1−s)ρ) |
≤pτsS(μ,ς)+τ(1−s)S(μ,ρ)+(1−τ)sS(ν,ς)+(1−τ)(1−s)S(ν,ρ). |
Since G and S both are coordinated LR-convex I-V.Fs, then by Lemma 1, there exist
Gx:[ς,ρ]→R+I,Gx(y)=G(x,y),Sx:[ς,ρ]→R+I,Sx(y)=S(x,y), |
Since Gx, and Sx are I-V.Fs, then by inequality (15), we have
Γ(β+1)2(ρ−ς)β[Iβς+Gx(ρ)×Sx(ρ)+Iβρ−Gx(ς)×Sx(ς)] |
≤p(12−β(β+1)(β+2))(Gx(ς)×Sx(ς)+Gx(ρ)×Sx(ρ)) |
+(β(β+1)(β+2))(Gx(ς)×Sx(ρ)+Gx(ρ)×Sx(ς)). |
That is
β2(ρ−ς)β[∫ρς(ρ−y)β−1G(x,y)×S(x,y)ρy+∫ρς(y−ς)β−1G(x,y)×S(x,y)ρy] |
≤p(12−β(β+1)(β+2))(G(x,ς)×S(x,ς)+G(x,ρ)×S(x,ρ)) |
+(β(β+1)(β+2))(G(x,ς)×S(x,ρ)+G(x,ρ)×S(x,ς)). | (51) |
Multiplying double inequality (51) by α(ν−x)α−12(ν−μ)α and integrating with respect to x over [μ,ν], we get
Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)] |
≤pΓ(α+1)2(ν−μ)α(12−β(β+1)(β+2))(Iαμ+G(ν,ς)×S(ν,ς)+Iαμ+G(ν,ρ)×S(ν,ρ)) |
+Γ(α+1)2(ν−μ)αβ(β+1)(β+2)(Iαμ+G(ν,ς)×S(ν,ρ)+Iαμ+G(ν,ρ)×S(ν,ς)). | (52) |
Again, multiplying double inequality (51) by α(x−μ)α−12(ν−μ)α and integrating with respect to x over [μ,ν], we gain
Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)] |
≤pΓ(α+1)2(ν−μ)α(12−β(β+1)(β+2))(Iαν−G(μ,ς)×S(μ,ς)+Iαν−G(μ,ρ)×S(μ,ρ)) |
+Γ(α+1)2(ν−μ)αβ(β+1)(β+2)(Iαν−G(μ,ς)×S(μ,ρ)+Iαν−G(μ,ρ)×S(μ,ς)). | (53) |
Summing (52) and (53), we have
Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)] |
≤pΓ(α+1)2(ν−μ)α(12−β(β+1)(β+2))(Iαμ+G(ν,ς)×S(ν,ς)+Iαν−G(μ,ς)×S(μ,ς)) |
+Γ(α+1)2(ν−μ)α(12−β(β+1)(β+2))(Iαμ+G(ν,ρ)×S(ν,ρ)+Iαν−G(μ,ρ)×S(μ,ρ)) |
+Γ(α+1)2(ν−μ)αβ(β+1)(β+2)(Iαμ+G(ν,ς)×S(ν,ρ)+Iαν−G(μ,ς)×S(μ,ρ)) |
+Γ(α+1)2(ν−μ)αβ(β+1)(β+2)(Iαμ+G(ν,ρ)×S(ν,ς)+Iαν−G(μ,ρ)×S(μ,ς)). | (54) |
Now, again with the help of integral inequality (15) for first two integrals on the right-hand side of (54), we have the following relation
Γ(α+1)2(ν−μ)α(Iαμ+G(ν,ς)×S(ν,ς)+Iαν−G(μ,ς)×S(μ,ς)) |
≤p(12−α(α+1)(α+2))(G(μ,ς)×S(μ,ς)+G(ν,ς)×S(ν,ς)) |
+(α(α+1)(α+2))(G(μ,ς)×S(ν,ς)+G(ν,ς)×S(μ,ς)). | (55) |
Γ(α+1)2(ν−μ)α(Iαμ+G(ν,ρ)×S(ν,ρ)+Iαν−G(μ,ρ)×S(μ,ρ)) |
≤p(12−α(α+1)(α+2))(G(μ,ρ)×S(μ,ρ)+G(ν,ρ)×S(ν,ρ)) |
+(α(α+1)(α+2))(G(μ,ρ)×S(ν,ρ)+G(ν,ρ)×S(μ,ρ)). | (56) |
Γ(α+1)2(ν−μ)α(Iαμ+G(ν,ς)×S(ν,ρ)+Iαν−G(μ,ς)×S(μ,ρ)) |
≤p(12−α(α+1)(α+2))(G(μ,ς)×S(μ,ρ)+G(ν,ς)×S(ν,ρ)) |
+(α(α+1)(α+2))(G(μ,ς)×S(ν,ρ)+G(ν,ς)×S(μ,ρ)). | (57) |
And
Γ(α+1)2(ν−μ)α(Iαμ+G(ν,ρ)×S(ν,ς)+Iαν−G(μ,ρ)×S(μ,ς)) |
≤p(12−α(α+1)(α+2))(G(μ,ρ)×S(μ,ς)+G(ν,ρ)×S(ν,ς)) |
+(α(α+1)(α+2))(G(μ,ρ)×S(ν,ς)+G(ν,ρ)×S(μ,ς)). | (58) |
From (55)–(58), inequality (54) we have
Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)] |
≤p(12−α(α+1)(α+2))(12−β(β+1)(β+2))K(μ,ν,ς,ρ)+α(α+1)(α+2)(12−β(β+1)(β+2))L(μ,ν,ς,ρ) |
+(12−α(α+1)(α+2))β(β+1)(β+2)M(μ,ν,ς,ρ)+β(β+1)(β+2)α(α+1)(α+2)N(μ,ν,ς,ρ). |
Hence, the result has been proven.
Remark 4. If one to take α=1 and β=1, then from (49), we achieve the coming inequality, see [38]:
1(ν−μ)(ρ−ς)∫νμ∫ρςG(x,y)×S(x,y)dydx |
≤p19K(μ,ν,ς,ρ)+118[L(μ,ν,ς,ρ)+M(μ,ν,ς,ρ)]+136N(μ,ν,ς,ρ). | (59) |
Let one takes G∗(x,y) is an affine function and G∗(x,y) is concave function. If G∗(x,y)≠G∗(x,y), then by Remark 2 and (50), we acquire the coming inequality, see [36]:
Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)] |
⊇(12−α(α+1)(α+2))(12−β(β+1)(β+2))K(μ,ν,ς,ρ)+α(α+1)(α+2)(12−β(β+1)(β+2))L(μ,ν,ς,ρ) |
+(12−α(α+1)(α+2))β(β+1)(β+2)M(μ,ν,ς,ρ)+β(β+1)(β+2)α(α+1)(α+2)N(μ,ν,ς,ρ). | (60) |
Let one takes G∗(x,y) is an affine function and G∗(x,y) is concave function. If G∗(x,y)≠G∗(x,y), then by Remark 2 and (50), we acquire the coming inequality, see [37]:
1(ν−μ)(ρ−ς)∫νμ∫ρςG(x,y)×S(x,y)dydx |
⊇19K(μ,ν,ς,ρ)+118[L(μ,ν,ς,ρ)+M(μ,ν,ς,ρ)]+136N(μ,ν,ς,ρ). | (61) |
If G∗(x,y)=G∗(x,y) and S∗(x,y)=S∗(x,y), then from (49), we acquire the coming inequality, see [39]:
Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)] |
≤(12−α(α+1)(α+2))(12−β(β+1)(β+2))K(μ,ν,ς,ρ)+α(α+1)(α+2)(12−β(β+1)(β+2))L(μ,ν,ς,ρ) |
+(12−α(α+1)(α+2))β(β+1)(β+2)M(μ,ν,ς,ρ)+β(β+1)(β+2)α(α+1)(α+2)N(μ,ν,ς,ρ). | (62) |
Theorem 8. Let G,S:Δ→R+I be a coordinate LR-convex I-V.F on Δ such that G(x,y)=[G∗(x,y),G∗(x,y)] and S(x,y)=[S∗(x,y),S∗(x,y)] for all (x,y)∈Δ. If G×S∈TOΔ, then following inequalities holds:
4G(μ+ν2,ς+ρ2)×S(μ+ν2,ς+ρ2) |
≤pΓ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)]+[α2(α+1)(α+2)+β(β+1)(β+2)(12−α(α+1)(α+2))]K(μ,ν,ς,ρ) |
+[12(12−α(α+1)(α+2))+α(α+1)(α+2)β(β+1)(β+2)]L(μ,ν,ς,ρ) |
+[12(12−β(β+1)(β+2))+α(α+1)(α+2)β(β+1)(β+2)]M(μ,ν,ς,ρ) |
+[14−α(α+1)(α+2)β(β+1)(β+2)]N(μ,ν,ς,ρ). | (63) |
If G and S both are coordinate LR-concave I-V.Fs on Δ, then above inequality can be written as
4G(μ+ν2,ς+ρ2)×S(μ+ν2,ς+ρ2)≥pΓ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)]+[α2(α+1)(α+2)+β(β+1)(β+2)(12−α(α+1)(α+2))]K(μ,ν,ς,ρ) |
+[12(12−α(α+1)(α+2))+α(α+1)(α+2)β(β+1)(β+2)]L(μ,ν,ς,ρ)+[12(12−β(β+1)(β+2))+α(α+1)(α+2)β(β+1)(β+2)]M(μ,ν,ς,ρ)+[14−α(α+1)(α+2)β(β+1)(β+2)]N(μ,ν,ς,ρ). | (64) |
Where K(μ,ν,ς,ρ), L(μ,ν,ς,ρ), M(μ,ν,ς,ρ) and N(μ,ν,ς,ρ) are given in Theorem 7.
Proof. Since G,S:Δ→R+I be two LR-convex I-V.Fs, then from inequality (16), we have
2G(μ+ν2,ς+ρ2)×S(μ+ν2,ς+ρ2)≤pα2(ν−μ)α[∫νμ(ν−x)α−1G(x,ς+ρ2)×S(x,ς+ρ2)dx+∫νμ(x−μ)α−1G(x,ς+ρ2)×S(x,ς+ρ2)dx]+(α(α+1)(α+2))(G(μ,ς+ρ2)×S(μ,ς+ρ2)+G(ν,ς+ρ2)×S(ν,ς+ρ2))+(12−α(α+1)(α+2))(G(μ,ς+ρ2)×S(ν,ς+ρ2)+G(ν,ς+ρ2)×S(μ,ς+ρ2)), | (65) |
and
2G(μ+ν2,ς+ρ2)×S(μ+ν2,ς+ρ2)≤pβ2(ρ−ς)β[∫ρς(ρ−y)β−1G(μ+ν2,y)×S(μ+ν2,y)dy+∫ρς(y−ς)β−1G(μ+ν2,y)×S(μ+ν2,y)dy]+(β(β+1)(β+2))(G(μ+ν2,ς)×S(μ+ν2,ς)+G(μ+ν2,ρ)×S(μ+ν2,ρ))+(12−β(β+1)(β+2))(G(μ+ν2,ς)×S(μ+ν2,ρ)+G(μ+ν2,ρ)×S(μ+ν2,ς)), | (66) |
Adding (73) and (74), and then taking the multiplication of the resultant one by 2, we obtain
8G(μ+ν2,ς+ρ2)×S(μ+ν2,ς+ρ2)≤pα2(ν−μ)α[∫νμ2(ν−x)α−1G(x,ς+ρ2)×S(x,ς+ρ2)dx+∫νμ2(x−μ)α−1G(x,ς+ρ2)×S(x,ς+ρ2)dx]+β2(ρ−ς)β[∫ρς2(ρ−y)β−1G(μ+ν2,y)×S(μ+ν2,y)dy+∫ρς2(y−ς)β−1G(μ+ν2,y)×S(μ+ν2,y)dy]+(α(α+1)(α+2))(2G(μ,ς+ρ2)×S(μ,ς+ρ2)+2G(ν,ς+ρ2)×S(ν,ς+ρ2))+(12−α(α+1)(α+2))(2G(μ,ς+ρ2)×S(ν,ς+ρ2)+2G(ν,ς+ρ2)×S(μ,ς+ρ2))+(β(β+1)(β+2))(2G(μ+ν2,ς)×S(μ+ν2,ς)+2G(μ+ν2,ρ)×S(μ+ν2,ρ))+(12−β(β+1)(β+2))(2G(μ+ν2,ς)×S(μ+ν2,ρ)+2G(μ+ν2,ρ)×S(μ+ν2,ς)). | (67) |
Again, with the help of integral inequality (16) and Lemma 1 for each integral on the right-hand side of (67), we have
α2(ν−μ)α∫νμ2(ν−x)α−1G(x,ς+ρ2)×S(x,ς+ρ2)dx≤pαβ4(ν−μ)α(ρ−ς)β[∫νμ∫ρς(ν−x)α−1(ρ−y)β−1G(x,y)dydx+∫νμ∫ρς(ν−x)α−1(y−ς)β−1G(x,y)dydx]+β(β+1)(β+2)α2(ν−μ)α∫νμ(ν−x)α−1(G(x,ς)×S(x,ς)+G(x,ρ)×S(x,ρ))dx+(12−β(β+1)(β+2))α2(ν−μ)α∫νμ(ν−x)α−1(G(x,ς)×S(x,ρ)+G(x,ρ)×S(x,ς))dx,=Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)]+Γ(α+1)2(ν−μ)α(β(β+1)(β+2))(Iαμ+G(ν,ς)×S(ν,ς)+Iαμ+G(ν,ρ)×S(ν,ρ))+Γ(α+1)2(ν−μ)α(12−β(β+1)(β+2))(Iαμ+G(ν,ς)×S(ν,ρ)+Iαμ+G(ν,ρ)×S(ν,ς)). | (68) |
α2(ν−μ)α∫νμ2(x−μ)α−1G(x,ς+ρ2)×S(x,ς+ρ2)dx≤pαβ4(ν−μ)α(ρ−ς)β[∫νμ∫ρς(x−μ)α−1(ρ−y)β−1G(x,y)dydx+∫νμ∫ρς(x−μ)α−1(y−ς)β−1G(x,y)dydx]+β(β+1)(β+2)α2(ν−μ)α∫νμ(x−μ)α−1(G(x,ς)×S(x,ς)+G(x,ρ)×S(x,ρ))dx+(12−β(β+1)(β+2))α2(ν−μ)α∫νμ(x−μ)α−1(G(x,ς)×S(x,ρ)+G(x,ρ)×S(x,ς))dx,=Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)]+Γ(α+1)2(ν−μ)α(β(β+1)(β+2))(Iαν−G(μ,ς)×S(μ,ς)+Iαν−G(μ,ρ)×S(μ,ρ))+Γ(α+1)2(ν−μ)α(12−β(β+1)(β+2))(Iαν−G(μ,ς)×S(μ,ρ)+Iαν−G(μ,ρ)×S(μ,ς)). | (69) |
β2(ρ−ς)β[∫ρς2(ρ−y)β−1G(μ+ν2,y)×S(μ+ν2,y)dy] |
≤pΓ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)]+Γ(β+1)2(ρ−ς)β(α(α+1)(α+2))(Iβς+G(μ,ρ)×S(μ,ρ)+Iβς+G(ν,ρ)×S(ν,ρ))+Γ(β+1)2(ρ−ς)β(12−α(α+1)(α+2))(Iβς+G(μ,ρ)×S(ν,ρ)+Iβς+G(ν,ρ)×S(ν,ρ)). | (70) |
β2(ρ−ς)β[∫ρς2(y−ς)β−1G(μ+ν2,y)×S(μ+ν2,y)dy] |
≤pΓ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ρ−G(ν,ς)×S(ν,ς)]+Γ(β+1)2(ρ−ς)β(α(α+1)(α+2))(Iβρ−G(μ,ς)×S(μ,ς)+Iβρ−G(ν,ς)×S(ν,ς))+Γ(β+1)2(ρ−ς)β(12−α(α+1)(α+2))(Iβρ−G(μ,ς)×S(ν,ς)+Iβρ−G(ν,ς)×S(ν,ς)). | (71) |
And
2G(μ+ν2,ς)×S(μ+ν2,ς)≤pΓ(α+1)2(ν−μ)α[Iαμ+G(ν,ς)×S(ν,ς)+Iαν−G(μ,ς)×S(μ,ς)]+α(α+1)(α+2)(G(μ,ς)×S(μ,ς)+G(ν,ς)×S(ν,ς))+(12−α(α+1)(α+2))(G(μ,ς)×S(ν,ς)+G(ν,ς)×S(μ,ς)), | (72) |
2G(μ+ν2,ρ)×S(μ+ν2,ρ)≤pΓ(α+1)2(ν−μ)α[Iαμ+G(ν,ρ)×S(ν,ρ)+Iαν−G(μ,ρ)×S(μ,ρ)]+α(α+1)(α+2)(G(μ,ρ)×S(μ,ρ)+G(ν,ρ)×S(ν,ρ))+(12−α(α+1)(α+2))(G(μ,ρ)×S(ν,ρ)+G(ν,ρ)×S(μ,ρ)), | (73) |
2G(μ+ν2,ς)×S(μ+ν2,ρ)≤pΓ(α+1)2(ν−μ)α[Iαμ+G(ν,ς)×S(ν,ρ)+Iαν−G(μ,ς)×S(μ,ρ)]+α(α+1)(α+2)(G(μ,ς)×S(μ,ρ)+G(ν,ς)×S(ν,ρ))+(12−α(α+1)(α+2))(G(μ,ς)×S(ν,ρ)+G(ν,ς)×S(μ,ρ)), | (74) |
2G(μ+ν2,ρ)×S(μ+ν2,ς)≤pΓ(α+1)2(ν−μ)α[Iαμ+G(ν,ρ)×S(ν,ς)+Iαν−G(μ,ρ)×S(μ,ς)] |
+α(α+1)(α+2)(G(μ,ρ)×S(μ,ς)+G(ν,ρ)×S(ν,ς))+(12−α(α+1)(α+2))(G(μ,ρ)×S(ν,ς)+G(ν,ρ)×S(μ,ς)), | (75) |
2G(μ,ς+ρ2)×S(μ,ς+ρ2)≤pΓ(β+1)2(ρ−ς)β[Iβς+G(μ,ρ)×S(μ,ρ)+Iβρ−G(μ,ρ)×S(μ,ς)]+β(β+1)(β+2)(G(μ,ς)×S(μ,ς)+G(μ,ρ)×S(μ,ρ))+(12−β(β+1)(β+2))(G(μ,ς)×S(μ,ρ)+G(μ,ρ)×S(μ,ς)), | (76) |
2G(ν,ς+ρ2)×Sϕ(ν,ς+ρ2)≤pΓ(β+1)2(ρ−ς)β[Iβς+G(ν,ρ)×S(ν,ρ)+Iβρ−G(ν,ρ)×S(ν,ς)]+β(β+1)(β+2)(G(ν,ς)×S(ν,ς)+G(ν,ρ)×S(ν,ρ))+(12−β(β+1)(β+2))(G(ν,ς)×S(ν,ρ)+G(ν,ρ)×S(ν,ς)), | (77) |
2G(μ,ς+ρ2)×S(ν,ς+ρ2)≤pΓ(β+1)2(ρ−ς)β[Iβς+G(μ,ρ)×S(ν,ρ)+Iβρ−G(μ,ρ)×S(ν,ς)]+β(β+1)(β+2)(G(μ,ς)×S(ν,ς)+G(μ,ρ)×S(ν,ρ))+(12−β(β+1)(β+2))(G(μ,ς)×S(ν,ρ)+G(μ,ρ)×S(ν,ς)), | (78) |
and
2G(ν,ς+ρ2)×S(μ,ς+ρ2)≤pΓ(β+1)2(ρ−ς)β[Iβς+G(ν,ρ)×S(μ,ρ)+Iβρ−G(ν,ρ)×S(μ,ς)]+β(β+1)(β+2)(G(ν,ς)×S(μ,ς)+G(ν,ρ)×S(μ,ρ))+(12−β(β+1)(β+2))(G(ν,ς)×S(μ,ρ)+G(ν,ρ)×S(μ,ς)), | (79) |
From inequalities (68) to (79), inequality (67) we have
8G(μ+ν2,ς+ρ2)×S(μ+ν2,ς+ρ2)≤pΓ(α+1)Γ(β+1)2(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)]+(2α(α+1)(α+2))[Γ(β+1)2(ρ−ς)β(Iβς+G(μ,ρ)×S(μ,ρ)+Iβς+G(ν,ρ)×S(ν,ρ))+Γ(β+1)2(ρ−ς)β(Iβρ−G(μ,ς)×S(μ,ς)+Iβρ−G(ν,ς)×S(ν,ς))]+2(12−α(α+1)(α+2))[Γ(β+1)2(ρ−ς)β(Iβς+G(μ,ρ)×S(ν,ρ)+Iβς+G(ν,ρ)×S(μ,ρ))+Γ(β+1)2(ρ−ς)β(Iβρ−G(μ,ς)×S(ν,ς)+Iβρ−G(ν,ς)×S(μ,ς))]+2(β(β+1)(β+2))[Γ(α+1)2(ν−μ)α(Iαμ+G(ν,ς)×S(ν,ς)+Iαμ+G(ν,ρ)×S(ν,ρ))+Γ(α+1)2(ν−μ)α(Iαν−G(μ,ς)×S(μ,ς)+Iαν−G(μ,ρ)×S(μ,ρ))]+2(12−β(β+1)(β+2))[Γ(α+1)2(ν−μ)α(Iαμ+G(ν,ς)×S(ν,ρ)+Iαμ+G(ν,ρ)×S(ν,ς))+Γ(α+1)2(ν−μ)α(Iαν−G(μ,ς)×S(μ,ρ)+Iαν−G(μ,ρ)×S(μ,ς))] |
+2α(α+1)(α+2)β(β+1)(β+2)K(μ,ν,ς,ρ)++(12−α(α+1)(α+2))2β(β+1)(β+2)L(μ,ν,ς,ρ) |
+2α(α+1)(α+2)(12−β(β+1)(β+2))M(μ,ν,ς,ρ)+2(12−α(α+1)(α+2))(12−β(β+1)(β+2))N(μ,ν,ς,ρ). | (80) |
Again, with the help of integral inequality (15) and Lemma 1, for each integral on the right-hand side of (80), we have
Γ(β+1)2(ρ−ς)β(Iβς+G(μ,ρ)×S(μ,ρ)+Iβς+G(ν,ρ)×S(ν,ρ))+Γ(β+1)2(ρ−ς)β(Iβρ−G(μ,ς)×S(μ,ς)+Iβρ−G(ν,ς)×S(ν,ς))≤p(12−β(β+1)(β+2))K(μ,ν,ς,ρ)+β(β+1)(β+2)M(μ,ν,ς,ρ). | (81) |
Γ(β+1)2(ρ−ς)β(Iβς+G(μ,ρ)×S(ν,ρ)+Iβς+G(ν,ρ)×S(μ,ρ))+Γ(β+1)2(ρ−ς)β(Iβρ−G(μ,ς)×S(ν,ς)+Iβρ−G(ν,ς)×S(μ,ς))≤p(12−β(β+1)(β+2))L(μ,ν,ς,ρ)+β(β+1)(β+2)N(μ,ν,ς,ρ). | (82) |
Γ(α+1)2(ν−μ)α(Iαμ+G(ν,ς)×S(ν,ς)+Iαμ+G(ν,ρ)×S(ν,ρ))+Γ(α+1)2(ν−μ)α(Iαν−G(μ,ς)×S(μ,ς)+Iαν−G(μ,ρ)×S(μ,ρ))≤p(12−α(α+1)(α+2))K(μ,ν,ς,ρ)+α(α+1)(α+2)L(μ,ν,ς,ρ). | (83) |
Γ(α+1)2(ν−μ)α(Iαν−G(μ,ς)×S(μ,ρ)+Iαν−G(μ,ρ)×S(μ,ς))+Γ(α+1)2(ν−μ)α(Iαν−G(μ,ς)×S(μ,ρ)+Iαν−G(μ,ρ)×S(μ,ς))≤p(12−α(α+1)(α+2))M(μ,ν,ς,ρ)+α(α+1)(α+2)N(μ,ν,ς,ρ). | (84) |
From (77) to (84), (80) we have
4G(μ+ν2,ς+ρ2)×S(μ+ν2,ς+ρ2)≤pΓ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)]+[α2(α+1)(α+2)+β(β+1)(β+2)(12−α(α+1)(α+2))]K(μ,ν,ς,ρ)+[12(12−α(α+1)(α+2))+α(α+1)(α+2)β(β+1)(β+2)]L(μ,ν,ς,ρ)+[12(12−β(β+1)(β+2))+α(α+1)(α+2)β(β+1)(β+2)]M(μ,ν,ς,ρ)+[14−α(α+1)(α+2)β(β+1)(β+2)]N(μ,ν,ς,ρ). | (85) |
This concludes the proof of Theorem 8 result has been proven.
Remark 5. If we take α=1 and β=1, then from (63), we achieve the coming inequality, see [38]:
4G(μ+ν2,ς+ρ2)×S(μ+ν2,ς+ρ2)≤p1(ν−μ)(ρ−ς)∫νμ∫ρςG(x,y)×S(x,y)dydx+536K(μ,ν,ς,ρ)+736[L(μ,ν,ς,ρ)+M(μ,ν,ς,ρ)]+29N(μ,ν,ς,ρ). | (86) |
Let one takes G∗(x,y) is an affine function and G∗(x,y) is convex function. If G∗(x,y)≠G∗(x,y), then from Remark 2 and (64), we acquire the coming inequality, see [37]:
4G(μ+ν2,ς+ρ2)×S(μ+ν2,ς+ρ2)⊇1(ν−μ)(ρ−ς)∫νμ∫ρςG(x,y)×S(x,y)dydx+536K(μ,ν,ς,ρ)+736[L(μ,ν,ς,ρ)+M(μ,ν,ς,ρ)]+29N(μ,ν,ς,ρ). | (87) |
Let one takes G∗(x,y) is an affine function and G∗(x,y) is convex function. If G∗(x,y)≠G∗(x,y), then from Remark 2 and (64) we acquire the coming inequality, see [36]:
4G(μ+ν2,ς+ρ2)×S(μ+ν2,ς+ρ2)⊇Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)]+[α2(α+1)(α+2)+β(β+1)(β+2)(12−α(α+1)(α+2))]K(μ,ν,ς,ρ)+[12(12−α(α+1)(α+2))+α(α+1)(α+2)β(β+1)(β+2)]L(μ,ν,ς,ρ)+[12(12−β(β+1)(β+2))+α(α+1)(α+2)β(β+1)(β+2)]M(μ,ν,ς,ρ)+[14−α(α+1)(α+2)β(β+1)(β+2)]N(μ,ν,ς,ρ). | (88) |
If we take G∗(x,y)=G∗(x,y) and S∗(x,y)=S∗(x,y), then from (63), we acquire the coming inequality, see [39]:
4G(μ+ν2,ς+ρ2)×S(μ+ν2,ς+ρ2)≤Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)]+[α2(α+1)(α+2)+β(β+1)(β+2)(12−α(α+1)(α+2))]K(μ,ν,ς,ρ)+[12(12−α(α+1)(α+2))+α(α+1)(α+2)β(β+1)(β+2)]L(μ,ν,ς,ρ)+[12(12−β(β+1)(β+2))+α(α+1)(α+2)β(β+1)(β+2)]M(μ,ν,ς,ρ)+[14−α(α+1)(α+2)β(β+1)(β+2)]N(μ,ν,ς,ρ). | (89) |
In this study, with the help of coordinated LR-convexity for interval-valued functions, several novel Hermite-Hadamard type inequalities are presented. It is also demonstrated that the conclusions reached in this study represent a possible extension of previously published equivalent results. Similar inequalities may be discovered in the future using various forms of convexities. This is a novel and intriguing topic, and future study will be able to find equivalent inequalities for various types of convexity and coordinated m-convexity by using different fractional integral operators.
The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research. All authors read and approved the final manuscript. This work was funded by Taif University Researchers Supporting Project number (TURSP-2020/345), Taif University, Taif, Saudi Arabia.
The authors declare that they have no competing interests.
[1] | D. Korteweg, Sur la forme que prennent les équations du mouvements des fluides si l'on tient compte des forces capillaires causées par des variations de densité considérables mais connues et sur la théorie de la capillarité dans l'hypothse d'une variation continue de la densité, Archives Néerlandaises des Sciences exactes et naturelles, 6 (1901), 1–24. |
[2] |
J. Dunn, J. Serrin, On the thermomechanics of interstitial working, Arch. Ration. Mech. An., 88 (1985), 95–133. https://doi.org/10.1007/BF00250907 doi: 10.1007/BF00250907
![]() |
[3] |
H. Hattori, D. Li, Solutions for two-dimensional system for materials of Korteweg type, SIAM J. Math. Anal., 25 (1994), 85–98. https://doi.org/10.1137/S003614109223413X doi: 10.1137/S003614109223413X
![]() |
[4] |
H. Hattori, D. Li, Global solutions of a high-dimensional system for Korteweg materials, J. Math. Anal. Appl., 198 (1996), 84–97. https://doi.org/10.1006/jmaa.1996.0069 doi: 10.1006/jmaa.1996.0069
![]() |
[5] |
M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2008), 679–696. https://doi.org/10.1016/j.anihpc.2007.03.005 doi: 10.1016/j.anihpc.2007.03.005
![]() |
[6] |
B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type, J. Math. Fluid Mech., 13 (2011), 223–249. https://doi.org/10.1007/s00021-009-0013-2 doi: 10.1007/s00021-009-0013-2
![]() |
[7] |
D. Bresch, B. Desjardins, C. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Commun. Part. Diff. Eq., 28 (2003), 843–868. https://doi.org/10.1081/PDE-120020499 doi: 10.1081/PDE-120020499
![]() |
[8] | B. Haspot, Existence of global strong solution for the compressible Navier-Stokes system and the Korteweg system in two-dimension, Math. Meth. Appl. Sci., 20 (2012), 141–164. |
[9] |
Y. Wang, Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 379 (2011), 256–271. https://doi.org/10.1016/j.jmaa.2011.01.006 doi: 10.1016/j.jmaa.2011.01.006
![]() |
[10] |
Y. Li, Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force, J. Math. Anal. Appl., 388 (2011), 1218–1232. https://doi.org/10.1016/j.jmaa.2011.11.006 doi: 10.1016/j.jmaa.2011.11.006
![]() |
[11] |
Z. Tan, R. Zhang, Optimal decay rates for the compressible fluid models of Korteweg type, Z. Angew. Math. Phys., 65 (2014), 279–300. https://doi.org/10.1007/s00033-013-0331-3 doi: 10.1007/s00033-013-0331-3
![]() |
[12] |
W. Wang, W. Wang, Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces, Discrete Cont. Dyn.-A, 35 (2015), 513–536. http://dx.doi.org/10.3934/dcds.2015.35.513 doi: http://dx.doi.org/10.3934/dcds.2015.35.513
![]() |
[13] |
Y. Z. Wang, Y. Wang, Optimal decay estimate of mild solutions to the compressible Navier-Stokes-Korteweg system in the critical Besov space, Math. Meth. Appl. Sci., 41 (2018), 9592–9606. https://doi.org/10.1002/mma.5316 doi: 10.1002/mma.5316
![]() |
[14] |
T. Kobayashi, K. Tsuda, Global existence and time decay estimate of solutions to the compressible Navier-Stokes-Korteweg system under critical condition, Asymptotic Anal., 121 (2020), 1–13. https://doi.org/10.3233/ASY-201600 doi: 10.3233/ASY-201600
![]() |
[15] |
Y. Zhang, Z. Tan, Blow-up of smooth solutions to the compressible fluid models of Korteweg type, Acta Math. Sin., 28 (2012), 645–652. https://doi.org/10.1007/s10114-012-9042-5 doi: 10.1007/s10114-012-9042-5
![]() |
[16] |
T. Tang, J. Kuang, Blow-up of compressible Naiver-Stokes-Korteweg equations, Acta Appl. Math., 130 (2014), 1–7. https://doi.org/10.1007/s10440-013-9836-1 doi: 10.1007/s10440-013-9836-1
![]() |
[17] |
T. Tang, Blow-up of smooth solutions to the compressible barotropic Navier-Stokes-Korteweg equations on bounded domains, Acta Appl. Math., 136 (2015), 55–61. https://doi.org/10.1007/s10440-014-9884-1 doi: 10.1007/s10440-014-9884-1
![]() |
[18] |
T. Dȩbiec, P. Gwiazda, A. Świerczewska-Gwiazda, A. Tzavaras, Conservation of energy for the Euler-Korteweg equations, Calc. Var., 57 (2018), 160. https://doi.org/10.1007/s00526-018-1441-8 doi: 10.1007/s00526-018-1441-8
![]() |
[19] |
P. Constantin, E. Weinan, E. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Commun. Math. Phys., 165 (1994), 207–209. https://doi.org/10.1007/BF02099744 doi: 10.1007/BF02099744
![]() |
[20] |
E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda, Regularity and energy conservation for the compressible Euler equations, Arch. Ration. Mech. Anal., 261 (2017), 1375–1395. https://doi.org/10.1007/s00205-016-1060-5 doi: 10.1007/s00205-016-1060-5
![]() |
[21] |
J. Serrin, On the uniqueness of compressible fluid motion, Arch. Ration. Mech. Anal., 3 (1959), 271–288. https://doi.org/10.1007/BF00284180 doi: 10.1007/BF00284180
![]() |
[22] | J. Nash, Le problme de Cauchy pour leséquations différentielles d'un fluide général, B. Soc. Math. Fr., 90 (1962), 487–497. |
[23] |
X. Huang, J. Li, Z. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equaitons, Commun. Pur. Appl. Math., 65 (2012), 549–585. https://doi.org/10.1002/cpa.21382 doi: 10.1002/cpa.21382
![]() |
[24] | Z. Xin, Blow up of smooth solutions to the compressible Navier-Stokes equation with compact density, Commun. Pur. Appl. Math., 51 (1998), 229–240. |
[25] |
Z. Xin, W. Yan, On blow up of classical solutions to the compressible Navier-Stokes equations, Commun. Math. Phys., 321 (2013), 529–541. https://doi.org/10.1007/s00220-012-1610-0 doi: 10.1007/s00220-012-1610-0
![]() |
[26] |
M. Okita, Optimal decay rate for strong solutions in critial spaces to the compressible Navier-Stokes equations, J. Differ. Equ., 257 (2014), 3850–3867. https://doi.org/10.1016/j.jde.2014.07.011 doi: 10.1016/j.jde.2014.07.011
![]() |
[27] |
R. Danchin, J. Xu, Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical Lp framework, Arch. Ration. Mech. Anal., 224 (2017), 53–90. https://doi.org/10.1007/s00205-016-1067-y doi: 10.1007/s00205-016-1067-y
![]() |
[28] | J. Serrin, The initial value problem for the Navier-Stokes equations, University of Wisconsin Press, Madison, 1963. |
[29] |
M. Shinbrot, The energy equation for the Navier-Stokes system, SIAM J. Math. Anal., 5 (1974), 948–954. https://doi.org/10.1137/0505092 doi: 10.1137/0505092
![]() |
[30] |
C. Yu, Energy conservation for the weak solutions of the compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 225 (2017), 1073–1087. https://doi.org/10.1007/s00205-017-1121-4 doi: 10.1007/s00205-017-1121-4
![]() |
[31] |
I. Akramov, T. Dbiec, J. Skipper, E. Wiedemann, Energy conservation for the compressible Euler and Navier-Stokes equations with vacuum, Anal. PDE, 13 (2020), 789–811. https://doi.org/10.2140/apde.2020.13.789 doi: 10.2140/apde.2020.13.789
![]() |
[32] |
Q. Nguyen, P. Nguyen, Q. Bao, Energy equalities for compressible Navier-Stokes equations, Nonlinearity, 32 (2019), 4206–4231. https://doi.org/10.1088/1361-6544/ab28ae doi: 10.1088/1361-6544/ab28ae
![]() |
[33] |
Z. Liang, Regularity criterion on the energy conservation for the compressible Navier-Stokes equations, P. Roy. Soc. Edinb. A, 225 (2020), 1–18. https://doi.org/10.1017/prm.2020.87 doi: 10.1017/prm.2020.87
![]() |
[34] |
L. Berselli, E. Chiodaroli, On the energy equality for the 3D Navier-Stokes equations, Nonlinear Anal., 192 (2020), 111704. https://doi.org/10.1016/j.na.2019.111704 doi: 10.1016/j.na.2019.111704
![]() |
[35] |
T. Leslie, R. Shvydkoy, The energy balance relation for weak solutions of the density-dependent Navier-Stokes equations, J. Differ. Equ., 261 (2016), 3719–3733. https://doi.org/10.1016/j.jde.2016.06.001 doi: 10.1016/j.jde.2016.06.001
![]() |
1. | Waqar Afzal, Khurram Shabbir, Thongchai Botmart, Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued (h1,h2)-Godunova-Levin functions, 2022, 7, 2473-6988, 19372, 10.3934/math.20221064 | |
2. | Muhammad Bilal Khan, Omar Mutab Alsalami, Savin Treanțǎ, Tareq Saeed, Kamsing Nonlaopon, New class of convex interval-valued functions and Riemann Liouville fractional integral inequalities, 2022, 7, 2473-6988, 15497, 10.3934/math.2022849 | |
3. | Miguel J. Vivas-Cortez, Hasan Kara, Hüseyin Budak, Muhammad Aamir Ali, Saowaluck Chasreechai, Generalized fractional Hermite-Hadamard type inclusions for co-ordinated convex interval-valued functions, 2022, 20, 2391-5455, 1887, 10.1515/math-2022-0477 | |
4. | Tareq Saeed, Eze R. Nwaeze, Muhammad Bilal Khan, Khalil Hadi Hakami, New Version of Fractional Pachpatte-Type Integral Inequalities via Coordinated ℏ-Convexity via Left and Right Order Relation, 2024, 8, 2504-3110, 125, 10.3390/fractalfract8030125 | |
5. | HAIYANG CHENG, DAFANG ZHAO, GUOHUI ZHAO, FRACTIONAL QUANTUM HERMITE–HADAMARD-TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS, 2023, 31, 0218-348X, 10.1142/S0218348X23501049 | |
6. | Haiyang Cheng, Dafang Zhao, Guohui Zhao, Delfim F. M. Torres, New quantum integral inequalities for left and right log-ℏ-convex interval-valued functions, 2024, 31, 1072-947X, 381, 10.1515/gmj-2023-2088 |