Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings

  • Received: 11 March 2022 Revised: 03 June 2022 Accepted: 13 June 2022 Published: 24 June 2022
  • MSC : 26A33, 26A51, 26D10

  • The notions of convex mappings and inequalities, which form a strong link and are key parts of classical analysis, have gotten a lot of attention recently. As a familiar extension of the classical one, interval-valued analysis is frequently used in the research of control theory, mathematical economy and so on. Motivated by the importance of convexity and inequality, our aim is to consider a new class of convex interval-valued mappings (I-V⋅Ms) known as left and right (L-R) J-convex interval-valued mappings through pseudo-order relation (p) or partial order relation, because in interval space, both concepts coincide, so this order relation is defined in interval space. By using this concept, first we obtain Hermite-Hadamard (HH-) and Hermite-Hadamard-Fejér (HH-Fejér) type inequalities through pseudo-order relations via the Riemann-Liouville fractional integral operator. Moreover, we have shown that our results include a wide class of new and known inequalities for L-R J-convex- I-V⋅Ms and their variant forms as special cases. Under some mild restrictions, we have proved that the inclusion relation "" is coincident to pseudo-order relation "p" when the I-V⋅M is L-R J-convex or L-R J-concave. Results obtained in this paper can be viewed as an improvement and refinement of classical known results.

    Citation: Muhammad Bilal Khan, Savin Treanțǎ, Hleil Alrweili, Tareq Saeed, Mohamed S. Soliman. Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings[J]. AIMS Mathematics, 2022, 7(8): 15659-15679. doi: 10.3934/math.2022857

    Related Papers:

    [1] Ping Zhu . Dynamics of the positive almost periodic solution to a class of recruitment delayed model on time scales. AIMS Mathematics, 2023, 8(3): 7292-7309. doi: 10.3934/math.2023367
    [2] Yanshou Dong, Junfang Zhao, Xu Miao, Ming Kang . Piecewise pseudo almost periodic solutions of interval general BAM neural networks with mixed time-varying delays and impulsive perturbations. AIMS Mathematics, 2023, 8(9): 21828-21855. doi: 10.3934/math.20231113
    [3] Xiaofang Meng, Yongkun Li . Pseudo almost periodic solutions for quaternion-valued high-order Hopfield neural networks with time-varying delays and leakage delays on time scales. AIMS Mathematics, 2021, 6(9): 10070-10091. doi: 10.3934/math.2021585
    [4] Shihe Xu, Zuxing Xuan, Fangwei Zhang . Analysis of a free boundary problem for vascularized tumor growth with time delays and almost periodic nutrient supply. AIMS Mathematics, 2024, 9(5): 13291-13312. doi: 10.3934/math.2024648
    [5] Ramazan Yazgan . An analysis for a special class of solution of a Duffing system with variable delays. AIMS Mathematics, 2021, 6(10): 11187-11199. doi: 10.3934/math.2021649
    [6] Yongkun Li, Xiaoli Huang, Xiaohui Wang . Weyl almost periodic solutions for quaternion-valued shunting inhibitory cellular neural networks with time-varying delays. AIMS Mathematics, 2022, 7(4): 4861-4886. doi: 10.3934/math.2022271
    [7] Lini Fang, N'gbo N'gbo, Yonghui Xia . Almost periodic solutions of a discrete Lotka-Volterra model via exponential dichotomy theory. AIMS Mathematics, 2022, 7(3): 3788-3801. doi: 10.3934/math.2022210
    [8] Qi Shao, Yongkun Li . Almost periodic solutions for Clifford-valued stochastic shunting inhibitory cellular neural networks with mixed delays. AIMS Mathematics, 2024, 9(5): 13439-13461. doi: 10.3934/math.2024655
    [9] Ardak Kashkynbayev, Moldir Koptileuova, Alfarabi Issakhanov, Jinde Cao . Almost periodic solutions of fuzzy shunting inhibitory CNNs with delays. AIMS Mathematics, 2022, 7(7): 11813-11828. doi: 10.3934/math.2022659
    [10] Jin Gao, Lihua Dai . Weighted pseudo almost periodic solutions of octonion-valued neural networks with mixed time-varying delays and leakage delays. AIMS Mathematics, 2023, 8(6): 14867-14893. doi: 10.3934/math.2023760
  • The notions of convex mappings and inequalities, which form a strong link and are key parts of classical analysis, have gotten a lot of attention recently. As a familiar extension of the classical one, interval-valued analysis is frequently used in the research of control theory, mathematical economy and so on. Motivated by the importance of convexity and inequality, our aim is to consider a new class of convex interval-valued mappings (I-V⋅Ms) known as left and right (L-R) J-convex interval-valued mappings through pseudo-order relation (p) or partial order relation, because in interval space, both concepts coincide, so this order relation is defined in interval space. By using this concept, first we obtain Hermite-Hadamard (HH-) and Hermite-Hadamard-Fejér (HH-Fejér) type inequalities through pseudo-order relations via the Riemann-Liouville fractional integral operator. Moreover, we have shown that our results include a wide class of new and known inequalities for L-R J-convex- I-V⋅Ms and their variant forms as special cases. Under some mild restrictions, we have proved that the inclusion relation "" is coincident to pseudo-order relation "p" when the I-V⋅M is L-R J-convex or L-R J-concave. Results obtained in this paper can be viewed as an improvement and refinement of classical known results.



    Let V be an -dimensional vector space over a field K of characteristic 0. An arrangement of hyperplanes A is a finite collection of codimension one affine subspaces in V. An arrangement A is called central if every hyperplane HA goes through the origin.

    Let V be the dual space of V, and S=S(V) be the symmetric algebra over V. A K-linear map θ:SS is called a derivation if for f,gS,

    θ(fg)=fθ(g)+gθ(f).

    Let DerK(S) be the S-module of derivations. When A is central, for each HA, choose αHV with ker(αH)=H. Define an S-submodule of DerK(S), called the module of A-derivations by

    D(A):={θDerK(S)|θ(αH)αHSforallHA}.

    The arrangement A is called free if D(A) is a free S-module. Then, D(A) has a basis comprising of homogeneous elements. For an affine arrangement A in V, cA denotes the cone over A [7], which is a central arrangement in an (+1)-dimensional vector space by adding the new coordinate z.

    Let E=R be an -dimensional Euclidean space with a coordinate system x1,,x, and let Φ be a crystallographic irreducible root system in the dual space E. Let Φ+ be a positive system of Φ. For αΦ+ and kZ, define an affine hyperplane Hα,k by

    Hα,k:={vE(α,v)=k}.

    The Shi arrangement Shi() was introduced by Shi in the study of the Kazhdan-Lusztig representation theory of the affine Weyl groups in [9] by

    Shi():={Hα,kαΦ+,0k1},

    when the root system is of type A1.

    For mZ0, the extended Shi arrangement Shik of the type Φ is an affine arrangement defined by

    Shik:={Hα,kαΦ+,m+1km}.

    There are a lot of researches on the freeness of the cones over the extended Shi arrangements [1,3,4]. The first breakthrough was the proof of the freeness of multi-Coxeter arrangements with constant multiplicities by Terao in [13]. Combining it with algebro-geometric method, Yoshinaga proved the freeness of the extended Shi arrangements in [15]. Nevertheless, there has been limited progress in constructing their bases, and a universal method for determining these bases remains elusive. For types A1, B, C, and D, explicit bases for the cones over the Shi arrangements were constructed in [6,10,11]. Notably, a basis for the extended Shi arrangements of type A2 was established in [2]. Recently, Suyama and Yoshinaga constructed explicit bases for the extended Shi arrangements of type A1 using discrete integrals in [12]. Feigin et al. presented integral expressions for specific bases of certain multiarrangements in [5]. In these studies, Suyama and Terao first constructed a basis for the derivation module of the cone over the Shi arrangement, as detailed in [11], with Bernoulli polynomials playing a central role in their approach. The following definitions are pertinent to this result.

    For (k1,k2)(Z0)2, the homogenization polynomial of degree k1+k2+1 is defined by

    ¯Bk1,k2(x,z):=zk1+k2+1k1i=01k2+i+1(k1i){Bk2+i+1(xz)Bk2+i+1},

    where Bk(x) denotes the k-th Bernoulli polynomial and Bk(0)=Bk denotes the k-th Bernoulli number. Using this polynomial, the basis for D(cShi()) was constructed as follows.

    Theorem 1.1. [11, Theorem 3.5] The arrangement cShi() is free with the exponents (0,1,1). The homogeneous derivations

    η1:=1+2++,η2:=x11+x22++x+zz,ψ()j:=(xjxj+1z)i=10k1j10k2j1(1)k1+k2Ijk11[1,j1]Ijk21[j+2,]¯Bk1,k2(xi,z)i,

    form a basis for D(cShi()), where 1j1 and i(1i), z denote xi, z respectively. Ik[u,v] represents the elementary symmetric function in the variables {xu,xu+1,,xv} of degree k for 1uv.

    The above conclusion was reached by using Saito's criterion, which is a crucial theorem for determining the basis of a free arrangement.

    Theorem 1.2. [8, Saito's criterion] Let A be a central arrangement, and Q(A) be the defining polynomial of A. Given θ1,,θD(A), the following two conditions are equivalent:

    (1)detM(θ1,,θ)Q(A),

    (2)θ1,,θ form a basis for D(A) over S,

    where M(θ1,,θ)=(θj(xi))× denotes the coefficient matrix, and AB means that A=cB, cK{0}.

    This theorem provides a useful tool for determining when a set of derivations forms a basis for the module of derivations associated with a central arrangement.

    Let α=(1,,1)T and β=(x1,,x)T be the ×1 column vectors, and define ψ()i,j:=ψ()j(xi) for 1i, 1j1. Suyuma and Terao in [11] proved the equality

    detM(η1,η2,ψ()1,,ψ()1)=det(αβ(ψ()i,j)×(1)0z01×(1))(+1)×(+1)z1m<n(xmxn)(xmxnz),

    which yields

    det(α(ψ()i,j)×(1))1m<n(xmxn)(xmxnz). (1.1)

    A graph G=(V,E) is defined as an ordered pair, where the set V={1,2,,} represents the vertex set, and E is a collection of two-element subsets of V. If {i,j}E for some i,jV, then {i,j} is referred to as an edge. Writing {i,j}G implies {i,j}E. Let UV, and define E(U)={{i,j}i,jU,{i,j}E}. We say U induces a subgraph GU=(U,E(U)). Specifically, we use the symbol KU for the induced subgraph of the complete graph K. For i<j, the interval notation [i,j] represents {i,i+1,,j}.

    For a graph G on the vertex set {1,2,,}, the arrangement Shi(G) was defined in [14] by

    Shi(G):={{xmxn=0}|{m,n}G}{{xmxn=1}|1m<n}.

    Then, Shi(G) is an arrangement between the Linial arrangement

    {{xmxn=1}1m<n},

    and the Shi arrangement Shi(). Write A(G):=cShi(G). It was classified to be free according to the following theorem.

    Theorem 1.3. [14, Theorem 3] The arrangement A(G) is free if and only if G consists of all edges of three complete induced subgraphs G[1,s],G[t,],G[2,1], where 1s, ts+1. The free arrangement A(G) has exponents (0,1,(1)+ts2,st+1) for s< and t>1, and (0,1,1) for s= or t=1.

    For s,tZ+, we may define the arrangement

    A[s,t]:=A(K[2,1]){{x1xn=0}2ns}{{xmx=0}1tm1}.

    By Theorem 1.3, for 1s and ts+1, the arrangement A[s,t] is free with exponents (0,1,(1)+ts2,st+1) for s< and t>1, and (0,1,1) for s= or t=1.

    For 0q2, we write A[q]:=A[1,q], then A[q] is free with exponents (0,1,(1)q1,q).

    In this section, based on the conclusions of Suyama and Terao, we provide an explicit construction of the basis for D(A[q]), 0q2. First, we shall establish a basis for D(A[0]), which is the ingredient of the basis for D(A[q]).

    Theorem 2.1. For 1j2, define homogeneous derivations

    φ(0)j:=(xjxj+1z)i=10k1j10k2j2(1)k1+k2Ijk11[1,j1]Ijk22[j+2,1]¯Bk1,k2(yi,z)i,φ(0)1:=1s=1(xsxz)D(A[0]),

    where

    yi={xi,1i1,x+z,i=.

    Then, the derivations η1,η2,φ(0)1,,φ(0)1 form a basis for D(A[0]).

    Proof. Write φ(0)i,j:=φ(0)j(xi),1i,1j1, and from the definitions of φ(0)j and ψ()j, we can get

    φ(0)i,j=ψ(1)i,j, (2.1)

    for 1i1, 1j2. Consequently, for 1m<n1, it follows that φ(0)j(xmxn) is divisible by xmxn, and φ(0)j(xmxnz) is divisible by xmxnz. For 1m1, let the congruence notation (m,k) in the subsequent calculation denote modulo the ideal (xmxkz). We derive

    φ(0)j(xmxz)=(xjxj+1z)0k1j10k2j2(1)k1+k2Ijk11[1,j1]Ijk22[j+2,1][¯Bk1,k2(xm,z)¯Bk1,k2(x+z,z)](m,1)0,

    which implies that φ(0)j(xmxz) is divisible by xmxz. Thus, φ(0)jD(A[0]) for 1j2. Therefore, we have η1,η2,φ(0)1,,φ(0)1D(A[0]). Additionally, we obtain

    detM(η1,η2,φ(0)1,,φ(0)1)=(1)+1zdet(1φ(0)1,1φ(0)1,201φ(0)1,1φ(0)1,201φ(0),1φ(0),21s=1(xsxz))×=(1)+1z1s=1(xsxz)det(1φ(0)1,1φ(0)1,21φ(0)1,1φ(0)1,2)(1)×(1)=(1)+1z1s=1(xsxz)det(α1(φ(0)i,j)(1i1,1j2))(1)×(1).

    According to the equalities (1.1) and (2.1), we have

    det(α1(φ(0)i,j)(1i1,1j2))1m<n1(xmxn)(xmxnz).

    Hence, we obtain

    detM(η1,η2,φ(0)1,,φ(0)1).=z1s=1(xsxz)1m<n1(xmxn)(xmxnz)=z1m<n1(xmxn)1m<n(xmxnz)=Q(A[0]).

    By applying Theorem 1.2, we conclude that the derivations η1,η2,φ(0)1,,φ(0)1 form a basis for D(A[0]).

    Definition 2.1. For 1q2, 1j1, define the homogeneous derivations

    φ(q)j:={φ(0)j,1jq2,(xj+1x)φ(0)j(xjxj+1z)j1a=q1φ(0)a,q1j3,φ(0)j+1+ja=q1(a1)φ(0)a,j=2,(xjx)φ(0)j+(xjxj+1z)j2a=q1(a2)φ(0)a,j=1.

    To prove the derivations η1,η2,φ(q)1,,φ(q)1 form a basis for D(A[q]), first we prove all such derivations belong to the module D(A[q]).

    Theorem 2.2. For 1m1, 1j2, we have

    φ(0)j(xmx)(m,0)(z)(xjxj+1z)j1s=1(xsxmz)1s=j+2(xsxm). (2.2)

    Proof. We have the following congruence relation of polynomials modulo the ideal (xmx).

    φ(0)j(xmx)=(xjxj+1z)0k1j10k2j2(1)k1+k2Ijk11[1,j1]Ijk22[j+2,1][¯Bk1,k2(xm,z)¯Bk1,k2(x+z,z)](m,0)(xjxj+1z)0k1j10k2j2(1)k1+k2+1Ijk11[1,j1]Ijk22[j+2,1][¯Bk1,k2(xm+z,z)¯Bk1,k2(xm,z)]=(xjxj+1z)0k1j10k2j2(1)k1+k2+1Ijk11[1,j1]Ijk22[j+2,1]zk1+k2+1(xm+zz)k1(xmz)k2=(z)(xjxj+1z)j1k1=0Ijk11[1,j1][(xm+z)]k1j2k2=0Ijk22[j+2,1](xm)k2=(z)(xjxj+1z)j1s=1(xsxmz)1s=j+2(xsxm).

    We complete the proof.

    Remark 2.1 In equality (2.2), we observe that 1s=j+2(xsxm)=0 for j+2m1. This implies that φ(0)j(xmx) is divisible by xmx for 1j3 and j+2m1.

    According to Remark 2.1, for 1jq2, we have φ(0)j(xmx) is divisible by xmx for qm1, which implies that φ(q)j=φ(0)jD(A[q]). Therefore, to prove the derivations belong to the module D(A[q]), it suffices to prove φ(q)jD(A[q]) for q1j1.

    For the sake of convenience in the proof, let us introduce the notations for f,g,hZ+,

    A[g,h]f:=hs=g(xsxf),B[g,h]f:=hs=g(xsxfz).

    If g>h, we agree that A[g,h]f=B[g,h]f=1.

    Lemma 2.1. For any u,v,wZ+ that satisfy 4j+1u2, 3v2, and 3w2, we have the following three equalities:

    B[u,j1]u1=A[u+1,j]u1+j1a=u(xaxa+1z)A[a+2,j]u1B[u,a1]u1. (2.3)
    B[v,1]v1=(v+1)A[v,1]v1+2a=v1(a1)(xaxa+1z)A[a+2,1]v1B[v1,a1]v1. (2.4)
    B[w,2]w1=wA[w,2]w1+3a=w1(a2)(xaxa+1z)A[a+2,2]w1B[w1,a1]w1. (2.5)

    Proof. We will only prove equality (2.5) by induction on w. The proofs of equalities (2.3) and (2.4) are similar. For w=3,

    3A[3,2]4+3a=4(a2)(xaxa+1z)A[a+2,2]4B[4,a1]4=3(x3x4)(x2x4)+2(x4x3z)(x2x4)+(x3x2z)(z)=(x3x4z)(x2x4z)=B[3,2]4,

    and the equality holds. Assume that for w=k3, the equality holds. Then, we replace xk1 with xk2, and multiply both sides of the equality by (xk1xk2z) to get

    B[k1,2]k2=(k1)(xk2xkz)(xk1xk2z)A[k+1,2]k2+k(xk1xk2z)A[k,2]k2+3a=k(a2)(xaxa+1z)A[a+2,2]k2B[k2,a1]k2=(k+1)A[k1,2]k2+3a=k2(a2)(xaxa+1z)A[a+2,2]k2B[k2,a1]k2.

    We have completed the induction.

    Lemma 2.2. The derivation φ(q)j belongs to the module D(A[q]) for 2q2 and q1j3.

    Proof. For 2q2 and j=q1, it is evident from Remark 2.1 that

    φ(q)q1=(xqx)φ(0)q1D(A[q]).

    For 3q2 and qj3, we will establish this by induction on q. From Theorem 2.2, for qm1, we have

    φ(q)j(xmx)=(xj+1x)φ(0)j(xmx)(xjxj+1z)j1a=q1φ(0)a(xmx)(m,0)(z)(xjxj+1z)A[j+1,1]mB[1,q2]m[B[q1,j1]mj1a=q1(xaxa+1z)A[a+2,j]mB[q1,a1]m].

    (1) For q=3, we get

    φ(3)3(xmx)(m,0)(z)(x3x2z)A[2,1]mB[1,5]m(x3xm).

    If m=3,2,1, then we have φ(3)3(xmx)(m,0)0, which indicates that φ(3)3(xmx) is divisible by xmx for m=3,2,1. Therefore, φ(3)jD(A[3]).

    (2) For q=k3, assume that φ(k)jD(A[k]), which implies that φ(k)j(xmx) is divisible by xmx for km1.

    For q=k+1, we observe that

    φ(k+1)j=φ(k)j(xjxj+1z)φ(0)k2.

    According to the induction hypothesis and Remark 2.1, it is sufficient to prove that φ(k+1)j(xk1x) is divisible by xk1x. By using the equality (2.3), we obtain

    φ(k+1)j(xk1x)(k1,0)(z)(xjxj+1z)A[j+1,1]k1B[1,k3]k1[B[k2,j1]k1j1a=k2(xaxa+1z)A[a+2,j]k1B[k2,a1]k1]=(z)2(xjxj+1z)A[j+1,1]k1B[1,k2]k1[B[k,j1]k1A[k+1,j]k1j1a=k(xaxa+1z)A[a+2,j]k1B[k,a1]k1]=0.

    Therefore, φ(k+1)j(xk1x) is divisible by xk1x, and it follows that φ(k+1)jD(A[k+1]). Consequently, we can conclude that for any 3q2 and qj3, φ(q)jD(A[q]).

    Lemma 2.3. The derivation φ(q)2 belongs to the module D(A[q]) for 1q2.

    Proof. From Theorem 2.2, we can get the following equality for qm1,

    φ(q)2(xmx)=φ(0)1(xmx)+2a=q1(a1)φ(0)a(xmx)(m,0)B[1,1]m+(z)2a=q1(a1)(xaxa+1z)A[a+2,1]mB[1,a1]m.

    (1) For q=1,2, this conclusion is straightforward to verify.

    (2) For q=k3, assume that φ(k)2D(A[k]), which implies that φ(k)2(xmx) is divisible by xmx for km1.

    For q=k+1, we have

    φ(k+1)2=φ(k)2+(k+1)φ(0)k2.

    By using the equality (2.4), we have

    φ(k+1)2(xk1x)(k1,0)B[1,1]k1+(z)2a=k2(a1)(xaxa+1z)A[a+2,1]k1B[1,a1]k1=B[1,k1]k1[B[k,1]k1+(k+1)A[k,1]k1+2a=k1(a1)(xaxa+1z)A[a+2,1]k1B[k1,a1]k1]=0.

    Therefore, φ(k+1)2(xk1x) is divisible by xk1x. According to the induction hypothesis and Remark 2.1, we have φ(k+1)2D(A[k+1]). Hence, we may conclude that for any 1q2, φ(q)2D(A[q]).

    Lemma 2.4. The derivation φ(q)1 belongs to the module D(A[q]) for 1q2.

    Proof. First, from Theorem 2.2, for qm1, we can get

    φ(q)1(xmx)=(x1x)φ(0)1(xmx)+(x1xz)3a=q1(a2)φ(0)a(xmx)(m,0)(x1xm)B[1,1]m+(z)(x1xmz)3a=q1(a2)(xaxa+1z)A[a+2,1]mB[1,a1]m.

    (1) For q=1,2, it is obvious that φ(q)1D(A[q]).

    (2) For q=k3, assume that φ(k)1D(A[k]), which implies that φ(k)1(xmx) is divisible by xmx for km1.

    For q=k+1, we can see

    φ(k+1)1=φ(k)1+k(x1xz)φ(0)k2.

    By using the equality (2.5), we have

    φ(k+1)1(xk1x)(k1,0)(x1xk1)B[1,1]k1+(z)(x1xk1z)3a=k2(a2)(xaxa+1z)A[a+2,1]k1B[1,a1]k1=(x1xk1)(x1xk1z)B[1,k1]k1[B[k,2]k1+kA[k,2]k1+3a=k1(a2)(xaxa+1z)A[a+2,2]k1B[k1,a1]k1]=0.

    Therefore, φ(k+1)1(xk1x) is divisible by xk1x. According to the induction hypothesis and Remark 2.1, we have φ(k+1)1D(A[k+1]). Hence, we may conclude that for any 1q2, φ(q)1D(A[q]).

    From the above proof, we finally conclude that φ(q)1,,φ(q)1 belong to the module D(A[q]).

    Theorem 2.3. For 1q2, the derivations η1,η2,φ(q)1,,φ(q)1 form a basis for D(A[q]).

    Proof. According to Lemmas 2.2–2.4, it suffices to prove that

    detM(η1,η2,φ(q)1,,φ(q)1)Q(A[q]).

    Let

    γ1=(q,q1,,1,1)T

    and

    γ2=((q1)(x1xz),(q2)(x1xz),,x1xz,0,x1x)T

    be the (q+1)×1 column vectors, and define a matrix

    M(q+1)×(q1):=(xqx(xqxq+1z)(x3x2z)0xq+1x(x3x2z)00x2x000000).

    Write ˜M(q+1)×(q+1):=(M(q+1)×(q1),γ1,γ2), then

    det˜M(q+1)×(q+1)=1s=q(xsx).

    Thus, we obtain the following equality

    (η1,η2,φ(q)1,,φ(q)1)(+1)×(+1)=(η1,η2,φ(0)1,,φ(0)1)(Eq0(q)×(q+1)0(q+1)×(q)˜M(q+1)×(q+1)).

    Hence,

    detM(η1,η2,φ(q)1,,φ(q)1)=detM(η1,η2,φ(0)1,,φ(0)1)det˜M(q+1)×(q+1).=z1m<n1(xmxn)1m<n(xmxnz)1s=q(xsx)=Q(A[q]).

    We complete the proof.

    Meihui Jiang: writing-original draft; Ruimei Gao: writing-review and editing, methodology and supervision. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have used Artificial Intelligence (AI) tools in the creation of this article.

    The work was partially supported by Science and Technology Development Plan Project of Jilin Province, China (No. 20230101186JC) and NSF of China (No. 11501051).

    The authors declare no conflict of interest in this paper.



    [1] M. U. Awan, N. Akhtar, S. Iftikhar, M. A. Noor, Y M. Chu, New Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), Article ID 125. https://doi.org/10.1186/s13660-020-02393-x doi: 10.1186/s13660-020-02393-x
    [2] S. Varošanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303–311. https://doi.org/10.1016/j.jmaa.2006.02.086 doi: 10.1016/j.jmaa.2006.02.086
    [3] M. A. Latif, S. Rashid, S. S. Dragomir, Y. M. Chu, Hermite-Hadamard type inequalities for co-ordinated convex and quasi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), Article ID 317. https://doi.org/10.1186/s13660-019-2272-7 doi: 10.1186/s13660-019-2272-7
    [4] Y. M. Chu, G. D. Wang, X. H, Zhang, The Schur multiplicative and harmonic convexities of the complete symmetric function, Math. Nachr., 284 (2011), 653–663. https://doi.org/10.1002/mana.200810197 doi: 10.1002/mana.200810197
    [5] Y. M. Chu, W. F. Xia, X. H. Zhang, The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications, J. Multivar. Anal., 105 (2012), 412–442. https://doi.org/10.1016/j.jmva.2011.08.004 doi: 10.1016/j.jmva.2011.08.004
    [6] S. Zaheer Ullah, M. Adil Khan, Z. A. Khan, Y. M. Chu, Integral majorization type inequalities for the functions in the sense of strong convexity, J. Funct. Spaces, 2019 (2019), Article ID 9487823. https://doi.org/10.1186/s13660-019-2007-9 doi: 10.1186/s13660-019-2007-9
    [7] S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, Majorization theorems for strongly convex functions, J. Inequal. Appl., 2019 (2019), 58. https://doi.org/10.1186/s13660-019-2007-9 doi: 10.1186/s13660-019-2007-9
    [8] K. S. Zhang, J. P. Wan, p-convex functions and their properties, Pure Appl. Math., 23 (2007), 130–133.
    [9] Z. B. Fang, R. J. Shi, On the (p, h)-convex function and some integral inequalities, J. Inequal. Appl., 2014 (2014), Article ID 45. https://doi.org/10.1186/1029-242X-2014-45 doi: 10.1186/1029-242X-2014-45
    [10] S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 291. https://doi.org/10.1186/s13660-019-2242-0 doi: 10.1186/s13660-019-2242-0
    [11] M. Adil Khan, J. Pečarić, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Math., 5 (2020), 4931–4945. https://doi.org/10.3934/math.2020315 doi: 10.3934/math.2020315
    [12] Y. Bai, L. Gasiński, P. Winkert, S. D. Zeng, W1, p versus C1: the nonsmooth case involving critical growth, Bull. Math. Sci., 10 (2020), 2050009. https://doi.org/10.1142/S1664360720500095 doi: 10.1142/S1664360720500095
    [13] H. Bai, M. S. Saleem, W. Nazeer, M. S. Zahoor, T. Zhao, Hermite-Hadamard-and Jensen-type inequalities for interval nonconvex function, J. Math., 2020 (2020), 1–6. https://doi.org/10.1155/2020/3945384 doi: 10.1155/2020/3945384
    [14] Y. M. Chu, G. D. Wang, X. H, Zhang, The Schur multiplicative and harmonic convexities of the complete symmetric function, Math. Nachr., 284 (2011), 653–663. https://doi.org/10.1002/mana.200810197 doi: 10.1002/mana.200810197
    [15] M. Kunt, İ. İşcan, Hermite-Hadamard-Fejer type inequalities for p-convex functions, Arab J. Math. Sci., 23 (2017), 215–230. https://doi.org/10.1016/j.ajmsc.2016.11.001 doi: 10.1016/j.ajmsc.2016.11.001
    [16] Y. Sawano, H. Wadade, On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Orrey space, J. Fourier Anal. Appl., 19 (2013), 20–47. https://doi.org/10.1007/s00041-012-9223-8 doi: 10.1007/s00041-012-9223-8
    [17] P. Ciatti, M. G. Cowling, F. Ricci, Hardy and uncertainty inequalities on stratified Lie groups, Adv. Math., 277 (2015), 365–387. https://doi.org/10.1016/j.aim.2014.12.040 doi: 10.1016/j.aim.2014.12.040
    [18] B. Gavrea, I. Gavrea, On some Ostrowski type inequalities, Gen. Math., 18 (2010), 33–44.
    [19] H. Gunawan, Fractional integrals and generalized Olsen inequalities, Kyungpook Math. J., 49 (2009), 31–39. https://doi.org/10.5666/KMJ.2009.49.1.031 doi: 10.5666/KMJ.2009.49.1.031
    [20] J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pure Appl., 58 (1893), 171–215.
    [21] L. Fejxer, Uberdie Fourierreihen Ⅱ, Math. Naturwise. Anz, Ungar. Akad. Wiss., 24 (1906), 369–390.
    [22] R. E. Moore, Interval Analysis, Prentice Hall, Englewood Cliffs, 1966.
    [23] L. A. Zadeh, Fuzzy sets, Inform. Contr., 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [24] T. M. Costa, Jensen's inequality type integral for fuzzy-interval-valued functions, Fuzzy Set. Syst., 327 (2017), 31–47. https://doi.org/10.1016/j.fss.2017.02.001 doi: 10.1016/j.fss.2017.02.001
    [25] T. M. Costa, H. Roman-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inform. Sci., 420 (2017), 110–125. https://doi.org/10.1016/j.ins.2017.08.055 doi: 10.1016/j.ins.2017.08.055
    [26] H. Roman-Flores, Y. Chalco-Cano, G. N. Silva, A note on Gronwall type inequality for interval-valued functions, 2013 joint IFSA World Congress and NAFIPS Annual Meeting IEEE, 35 (2013), 1455–1458. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608616 doi: 10.1109/IFSA-NAFIPS.2013.6608616
    [27] Y. Chalco-Cano, A. Flores-Franulič, H. Román-Flores, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 457–472. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608617 doi: 10.1109/IFSA-NAFIPS.2013.6608617
    [28] Y. Chalco-Cano, W. A. Lodwick, W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput., 19 (2015), 3293-–3300. https://doi.org/10.1007/s00500-014-1483-6 doi: 10.1007/s00500-014-1483-6
    [29] K. Nikodem, J. L. Snchez, L. Snchez, Jensen and Hermite-Hadamard inequalities for strongly convex set-valued maps, Math. Aterna, 4 (2014), 979–987.
    [30] J. Matkowski, K. Nikodem, An integral Jensen inequality for convex multifunctions, Results Math., 26 (1994), 348–353. https://doi.org/10.1007/BF03323058 doi: 10.1007/BF03323058
    [31] D. Zhang, C. Guo, D. Chen, G. Wang, Jensen's inequalities for set-valued and fuzzy set-valued functions, Fuzzy Set. Syst., 404 (2021), 178–204. https://doi.org/10.1016/j.fss.2020.06.003 doi: 10.1016/j.fss.2020.06.003
    [32] M. B. Khan, P. O. Mohammed, M. A. Noor, Y. S. Hamed, New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities, Symmetry, 13 (2021), 673. https://doi.org/10.3390/sym13040673 doi: 10.3390/sym13040673
    [33] M. B. Khan, P. O. Mohammed, M. A. Noor, A. M. Alsharif, K. I. Noor, New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation, AIMS Math., 6 (2021), 10964–10988. https://doi.org/10.3934/math.2021637 doi: 10.3934/math.2021637
    [34] G. Sana, M. B. Khan, M. A. Noor, P. O. Mohammed, Y. M. Chu, Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1809–1822. https://doi.org/10.2991/ijcis.d.210620.001 doi: 10.2991/ijcis.d.210620.001
    [35] M. B. Khan, P. O. Mohammed, M. A. Noor, D. Baleanu, J. L. G. Guirao, Some new fractional estimates of inequalities for LR-p-convex interval-valued functions by means of pseudo order relation, Axioms, 10 (2021), 175. https://doi.org/10.3390/axioms10030175 doi: 10.3390/axioms10030175
    [36] D. F. Zhao, T. Q. An, G. J. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), Article number: 302. https://doi.org/10.1186/s13660-018-1896-3 doi: 10.1186/s13660-018-1896-3
    [37] V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Set. Syst., 265 (2015), 63–85. https://doi.org/10.1016/j.fss.2014.04.005 doi: 10.1016/j.fss.2014.04.005
    [38] R. E. Moore, Interval Analysis, Prentice Hall, Englewood Cliffs, 1966.
    [39] H. Budak, T. Tunç, M. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc. Am. Math. Soc., 148 (2020), 705–718. https://doi.org/10.1090/proc/14741 doi: 10.1090/proc/14741
    [40] M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for (h1, h2)-convex fuzzy-interval-valued functions, Adv. Differ. Equations, 2021 (2021), 6–20. https://doi.org/10.1186/s13662-020-03166-y doi: 10.1186/s13662-020-03166-y
    [41] M. B. Khan, M. A. Noor, P. O. Mohammed, J. L. Guirao, K. I. Noor, Some integral inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals, Int. J. Comput. Intell. Syst., 14 (2021), 1–15. https://doi.org/10.1007/s44196-021-00009-w doi: 10.1007/s44196-021-00009-w
    [42] M. B. Khan, M. A. Noor, L. Abdullah, Y. M. Chu, Some new classes of preinvex fuzzy-interval-valued functions and inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1403–1418. https://doi.org/10.2991/ijcis.d.210409.001 doi: 10.2991/ijcis.d.210409.001
    [43] P. Liu, M. B. Khan, M. A. Noor, K. I. Noor, New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense, Complex Intell. Syst., 2021 (2021), 1–15. https://doi.org/10.1007/s40747-021-00379-w doi: 10.1007/s40747-021-00379-w
    [44] C. P. Niculescu, L. E. Persson, Convex Functions and Their Applications; Springer: New York, NY, USA, 2006. https://doi.org/10.1007/0-387-31077-0
    [45] M. A. Alqudah, A. Kashuri, P. O. Mohammed, M. Raees, T. Abdeljawad, M. Anwar, et al., On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space, AIMS Math., 6 (2021), 4638–4663. https://doi.org/10.3934/math.2021273 doi: 10.3934/math.2021273
    [46] M. B. Khan, M. A. Noor, M. M. Al-Shomrani, L. Abdullah, Some novel inequalities for LR-h-convex interval-valued functions by means of pseudo order relation, Math. Meth. Appl. Sci., 2021.
    [47] M. B. Khan, M. A. Noor, K. I. Noor, K. S. Nisar, K. A. Ismail, A. Elfasakhany, Some inequalities for LR-(h1, h2)-convex interval-valued functions by means of pseudo order relation, Int. J. Comput. Intell. Syst., 14 (2021), Article number: 180. https://doi.org/10.1007/s44196-021-00032-x doi: 10.1007/s44196-021-00032-x
    [48] D. Zhao, M. A. Ali, A. Kashuri, H. Budak, M. Z. Sarikaya, Hermite-Hadamard-type inequalities for the interval-valued approximately h-convex functions via generalized fractional integrals, J. Inequal. Appl., 2020 (2020), 1–38. https://doi.org/10.1186/s13660-019-2265-6 doi: 10.1186/s13660-019-2265-6
    [49] H. Kalsoom, M. A. Latif, Z. A. Khan, M. Vivas-Cortez, Some new Hermite-Hadamard-Fejér fractional type inequalities for h-convex and harmonically h-convex interval-valued functions, Mathematics, 10 (2022), 74. https://doi.org/10.3390/math10010074 doi: 10.3390/math10010074
    [50] M. B. Khan, H. G. Zaini, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, Riemann-Liouville fractional integral inequalities for generalized pre-invex functions of interval-valued settings based upon pseudo order relation, Mathematics, 10 (2022), 204. https://doi.org/10.3390/math10020204 doi: 10.3390/math10020204
    [51] M. B. Khan, S. Treanțǎ, H. Budak, Generalized p-convex fuzzy-interval-valued functions and inequalities based upon the fuzzy-order relation, Fractal Fract., 6 (2022), 63. https://doi.org/10.3390/fractalfract6020063 doi: 10.3390/fractalfract6020063
    [52] M. B. Khan, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some Hadamard-Fejér type inequalities for LR-convex interval-valued functions, Fractal Fract., 6 (2022), 6. https://doi.org/10.3390/fractalfract6010006 doi: 10.3390/fractalfract6010006
    [53] M. B. Khan, H. G. Zaini, S. Treanțǎ, G. Santos-García, J. E. Macías-Díaz, M. S. Soliman, Fractional calculus for convex functions in interval-valued settings and inequalities, Symmetry, 14 (2022), 341. https://doi.org/10.3390/sym14020341 doi: 10.3390/sym14020341
    [54] M. B. Khan, H. G. Zaini, J. E. Macías-Díaz, S. Treanțǎ, M. S. Soliman, Some fuzzy Riemann–Liouville fractional integral inequalities for preinvex fuzzy interval-valued functions, Symmetry, 14 (2022), 313. https://doi.org/10.3390/sym14020313 doi: 10.3390/sym14020313
    [55] M. B. Khan, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some new versions of integral inequalities for left and right preinvex functions in the interval-valued settings, Mathematics, 10 (2022), 611. https://doi.org/10.3390/math10040611 doi: 10.3390/math10040611
    [56] S. Treanţă, S. Jha, M. B. Khan, T. Saeed, On some constrained optimization problems, Mathematics, 10 (2022), 818. https://doi.org/10.3390/math10050818 doi: 10.3390/math10050818
    [57] S. Treanţă, M. B. Khan, T. Saeed, Optimality for control problem with PDEs of second-order as constraints, Mathematics, 10 (2022), 977. https://doi.org/10.3390/math10060977 doi: 10.3390/math10060977
    [58] M. B. Khan, J. E. Macías-Díaz, S. Treanțǎ, M. S. Soliman, H. G. Zaini, Hermite-Hadamard inequalities in fractional calculus for left and right harmonically convex functions via interval-valued settings, Fractal Fract., 6 (2022), 178. https://doi.org/10.3390/fractalfract6040178 doi: 10.3390/fractalfract6040178
    [59] S. Treanţă, M. B. Khan, T. Saeed, On some variational inequalities involving second-order partial derivatives, Fractal Fract., 6 (2022), 236. https://doi.org/10.3390/fractalfract6050236 doi: 10.3390/fractalfract6050236
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1950) PDF downloads(68) Cited by(13)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog